organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[4-(Di­methyl­amino)­phen­yl]ethen­yl}-1-methyl­pyridinium 3,5-dicarb­­oxy­benzene­sulfonate methanol monosolvate

aDepartment of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
*Correspondence e-mail: yangz@ustb.edu.cn

(Received 28 October 2011; accepted 18 December 2011; online 7 January 2012)

In the crystal structure of the title solvated salt, C16H19N2+·C8H5O7S·CH3OH, the anions and the methanol solvent mol­ecules are linked by O—H⋯O hydrogen bonds. The cations and anions are packed as alternate layers parallel to (11[\overline2]). The crystal structure is further stabilized by a ππ inter­action between the pyridinium and benzene rings of the cations, with a centroid–centroid distance of 3.5492 (4) Å.

Related literature

The title compound was synthesized as part of our continuing research on the nonlinear optical properties of DAS (4-N,N-dimethyl­amino-4′-N′-methyl­stilbazolium) derivatives. For the synthesis, see: Okada et al. (1990[Okada, S., Masaki, I., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn J. Appl. Phys. 29, 1112-1115.]). For background to non-linear optical materials, see: Bosshard et al. (1995[Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.]); Nalwa & Miyata (1997[Nalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]); Yang, Mutter et al. (2007[Yang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018-2023.]); Ruiz et al. (2006[Ruiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839-2842.]). For the effects of different substituents of benzene sulfonate on its non-linear optical properties, see: Okada et al. (2003[Okada, S., Nogi, K., Anwar, Tsuji, K., Duan X. M., Oikawa, H., Matsuda, H. & Nakanishi H. (2003). Jpn J. Appl. Phys. 42, 668-671.]); Yang, Wörle et al. (2007[Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83-86.]); Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]), Yang et al. (2005[Yang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072-1075.]). For standard bond-lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N2+·C8H5O7S·CH4O

  • Mr = 516.55

  • Triclinic, [P \overline 1]

  • a = 7.5277 (12) Å

  • b = 10.5517 (17) Å

  • c = 16.467 (3) Å

  • α = 106.750 (7)°

  • β = 97.504 (8)°

  • γ = 100.273 (8)°

  • V = 1209.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.45 × 0.31 × 0.22 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.629, Tmax = 1.000

  • 15622 measured reflections

  • 5523 independent reflections

  • 5192 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.116

  • S = 1.13

  • 5523 reflections

  • 332 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.84 1.89 2.6796 (18) 156
O4—H4A⋯O8ii 0.84 1.79 2.6156 (18) 168
O8—H8⋯O7iii 0.84 1.86 2.6897 (18) 169
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y, -z+1; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the last three decades, nonlinear optical materials have been of considerable interest for their potential applications such as frequency conversion, electro-optic modulation and THz generation (Bosshard et al., 1995; Nalwa & Miyata, 1997; Yang, Mutter et al., 2007). In order to create efficient NLO materials, both the molecular and bulk properties must be optimized (Yang et al., 2005; Ruiz et al., 2006; Yang, Wörle et al., 2007). The title compound was synthesized as part of our continuing research on the nonlinear optical properties of DAS (4-N, N-dimethylamino-4'-N'-methyl-stilbazolium) derivatives.

Fig. 1 illustrates the molecular structure of the title compound together with the atomic numbering scheme. The unit cell of the title compound contains two asymmetric units, each consisting of one C16H19N2+ cation, one C8H5O7S- anion and one methanol molecule. The bond distances and angles in both the cation and anion are in normal ranges (Allen et al., 1987). In the crystal structure, atoms O4, O6, O7 and O8 of the anion are involved in O—H···O interactions. The cations and anions are stacked in a parallel manner and form alternating layers parallel to the (112) plane. The crystal structure is further stabilized by a π···π interaction between the pyridinium and C3–C8 benzene rings with a centroid–centroid distance of 3.5492 (4) Å, which combine with the intermolecular O—H···O interactions to form a three-dimensional network.

Related literature top

The title compound was synthesized as part of our continuing research on the nonlinear optical properties of DAS (4-N,N-dimethylamino-4'-N'-methylstilbazolium) derivatives. For the synthesis, see: Okada et al. (1990). For background to non-linear optical materials, see: Bosshard et al. (1995); Nalwa & Miyata (1997); Yang, Mutter et al. (2007); Ruiz et al. (2006). For the effects of different substituents of benzene sulfonate on its non-linear optical properties, see: Okada et al. (2003); Yang, Wörle et al. (2007); Ogawa et al. (2008), Yang et al. (2005). For standard bond-lengths, see: Allen et al. (1987).

Experimental top

4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 3,5-dicarboxybenzenesulfonate was prepared by the metathesization of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium iodide (Okada et al., 1990) with the sodium salt of the 3,5-dicarboxybenzenesulfonic acid. The title compound was then recrystallized from methanol to get high purity material for crystal growth. 4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 3,5-dicarboxybenzenesulfonate: yield 72%; 1H-NMR (400 MHz, DMSO-d6): 8.67 (d, 2H, J= 6.8Hz, C5H4N), 8.39 (s, 1H, C6H3SO3-), 8.34 (d, 2H, C6H3SO3-), 8.03(d, 2H, J= 6.8Hz, C5H4N), 7.91 (d, 1H, J= 16.0Hz, CH), 7.59(d, 2H, J= 8.4Hz, C6H3SO3-), 7.17 (d, 1H, J= 16.0Hz, CH), 6.79 (d, 2H, J= 8.8Hz, C6H4), 4.16 (s, 3H, NMe), 3.01 (s, 6H, NMe2). C, H, N analysis calcd. for C24H24N2O7S: C 59.49, H 4.99, N 5.78; found: C 59.39, H 5.02, N 5.79. Crystals were obtained by slow cooling method from 45°C to room temperature in methanol.

Refinement top

All H atoms were located geometrically (methyl C-H = 0.98 Å, aromatic C-H = 0.95Å and O-H = 0.84 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound showing the hydrogen bonds as dashed lines.
4-{2-[4-(Dimethylamino)phenyl]ethenyl}-1-methylpyridinium 3,5-dicarboxybenzenesulfonate methanol monosolvate top
Crystal data top
C16H19N2+·C8H5O7S·CH4OZ = 2
Mr = 516.55F(000) = 544
Triclinic, P1Dx = 1.419 Mg m3
a = 7.5277 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5517 (17) ÅCell parameters from 4222 reflections
c = 16.467 (3) Åθ = 1.3–27.5°
α = 106.750 (7)°µ = 0.19 mm1
β = 97.504 (8)°T = 173 K
γ = 100.273 (8)°Block, red
V = 1209.2 (3) Å30.45 × 0.31 × 0.22 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
5523 independent reflections
Radiation source: fine-focus sealed tube5192 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scans at fixed χ = 45°h = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1313
Tmin = 0.629, Tmax = 1.000l = 2121
15622 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4666P]
where P = (Fo2 + 2Fc2)/3
5523 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H19N2+·C8H5O7S·CH4Oγ = 100.273 (8)°
Mr = 516.55V = 1209.2 (3) Å3
Triclinic, P1Z = 2
a = 7.5277 (12) ÅMo Kα radiation
b = 10.5517 (17) ŵ = 0.19 mm1
c = 16.467 (3) ÅT = 173 K
α = 106.750 (7)°0.45 × 0.31 × 0.22 mm
β = 97.504 (8)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
5523 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
5192 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 1.000Rint = 0.037
15622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.13Δρmax = 0.33 e Å3
5523 reflectionsΔρmin = 0.33 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38860 (5)0.41490 (4)0.77513 (3)0.02588 (12)
O10.1455 (2)0.37615 (12)0.99887 (8)0.0390 (3)
H10.20360.37981.04700.059*
O20.1780 (2)0.16194 (13)0.96041 (8)0.0420 (3)
O30.09373 (18)0.12371 (12)0.64695 (8)0.0350 (3)
O40.28863 (18)0.04200 (13)0.57227 (8)0.0346 (3)
H4A0.29260.11410.53270.052*
O50.55084 (17)0.36035 (13)0.80299 (9)0.0374 (3)
O60.28648 (18)0.54879 (12)0.83184 (8)0.0347 (3)
O70.42469 (17)0.41121 (12)0.68482 (8)0.0332 (3)
O80.2880 (2)0.24475 (14)0.56382 (8)0.0436 (4)
H80.38540.28900.59930.065*
N10.3505 (2)0.25772 (15)0.60065 (10)0.0338 (3)
N20.9237 (2)0.38403 (14)1.25311 (10)0.0313 (3)
C10.4220 (3)0.37550 (19)0.56160 (13)0.0406 (4)
H1C0.39640.44240.59180.061*
H1A0.55520.34720.56620.061*
H1B0.36260.41620.50060.061*
C20.2606 (3)0.1979 (2)0.54209 (12)0.0401 (4)
H2B0.34430.11520.54240.060*
H2A0.14880.17520.56100.060*
H2C0.22800.26310.48350.060*
C30.4215 (2)0.18111 (16)0.68546 (11)0.0261 (3)
C40.3830 (2)0.05246 (17)0.72159 (11)0.0281 (3)
H40.30440.01900.68700.034*
C50.4577 (2)0.02533 (16)0.80627 (11)0.0271 (3)
H50.43010.11160.82880.033*
C60.5736 (2)0.02072 (16)0.85963 (11)0.0271 (3)
C70.6059 (2)0.15028 (17)0.82433 (11)0.0297 (4)
H70.67990.18530.85990.036*
C80.5340 (2)0.22835 (16)0.73985 (11)0.0297 (4)
H8A0.56060.31510.71800.036*
C90.6622 (2)0.05654 (17)0.94810 (11)0.0290 (4)
H90.72960.01070.97850.035*
C100.6608 (2)0.18460 (17)0.99228 (11)0.0296 (4)
H100.59370.23340.96420.036*
C110.7569 (2)0.25224 (17)1.08083 (11)0.0282 (3)
C120.7411 (2)0.38370 (18)1.12496 (12)0.0325 (4)
H120.67210.42991.09560.039*
C130.8239 (2)0.44591 (18)1.20961 (12)0.0333 (4)
H130.81070.53471.23840.040*
C140.9459 (3)0.25904 (18)1.21244 (12)0.0351 (4)
H141.01860.21661.24320.042*
C150.8659 (2)0.19230 (17)1.12795 (12)0.0333 (4)
H150.88400.10441.10060.040*
C161.0116 (3)0.4516 (2)1.34462 (12)0.0421 (5)
H16B0.93680.51131.37310.063*
H16C1.13460.50561.34850.063*
H16A1.02210.38281.37320.063*
C170.1147 (2)0.25092 (16)0.94444 (11)0.0280 (3)
C180.1751 (2)0.03581 (16)0.64270 (10)0.0256 (3)
C190.0110 (2)0.23178 (16)0.86173 (10)0.0242 (3)
C200.1150 (2)0.32637 (15)0.85514 (10)0.0242 (3)
H200.10070.40690.90230.029*
C210.2395 (2)0.30264 (15)0.77944 (10)0.0231 (3)
C220.2594 (2)0.18634 (15)0.70939 (10)0.0241 (3)
H220.34340.17140.65740.029*
C230.1550 (2)0.09165 (15)0.71595 (10)0.0236 (3)
C240.0322 (2)0.11394 (16)0.79225 (10)0.0248 (3)
H240.03730.04870.79700.030*
C250.1596 (3)0.19091 (19)0.60747 (12)0.0368 (4)
H25A0.10640.09480.57530.055*
H25C0.06160.24100.61180.055*
H25B0.22180.19960.66560.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0280 (2)0.02105 (19)0.0269 (2)0.00778 (15)0.00144 (16)0.00678 (15)
O10.0533 (8)0.0281 (6)0.0274 (6)0.0160 (6)0.0121 (6)0.0009 (5)
O20.0555 (8)0.0343 (7)0.0324 (7)0.0236 (6)0.0088 (6)0.0042 (5)
O30.0403 (7)0.0317 (6)0.0295 (6)0.0159 (5)0.0021 (5)0.0017 (5)
O40.0414 (7)0.0339 (7)0.0227 (6)0.0112 (6)0.0017 (5)0.0020 (5)
O50.0325 (7)0.0365 (7)0.0499 (8)0.0159 (5)0.0121 (6)0.0171 (6)
O60.0427 (7)0.0219 (6)0.0335 (7)0.0094 (5)0.0085 (6)0.0055 (5)
O70.0386 (7)0.0299 (6)0.0284 (6)0.0083 (5)0.0059 (5)0.0101 (5)
O80.0445 (8)0.0437 (8)0.0262 (6)0.0102 (6)0.0031 (6)0.0001 (6)
N10.0385 (8)0.0296 (7)0.0305 (8)0.0129 (6)0.0022 (6)0.0042 (6)
N20.0292 (7)0.0294 (7)0.0306 (8)0.0019 (6)0.0038 (6)0.0064 (6)
C10.0514 (12)0.0325 (9)0.0338 (10)0.0152 (8)0.0048 (9)0.0027 (8)
C20.0436 (11)0.0466 (11)0.0281 (9)0.0186 (9)0.0003 (8)0.0065 (8)
C30.0260 (8)0.0239 (8)0.0274 (8)0.0048 (6)0.0058 (7)0.0069 (6)
C40.0286 (8)0.0272 (8)0.0318 (9)0.0102 (7)0.0061 (7)0.0123 (7)
C50.0296 (8)0.0230 (7)0.0304 (8)0.0079 (6)0.0096 (7)0.0081 (6)
C60.0276 (8)0.0269 (8)0.0280 (8)0.0048 (6)0.0079 (7)0.0106 (6)
C70.0327 (9)0.0301 (8)0.0303 (9)0.0107 (7)0.0057 (7)0.0135 (7)
C80.0356 (9)0.0229 (8)0.0337 (9)0.0106 (7)0.0096 (7)0.0101 (7)
C90.0304 (9)0.0297 (8)0.0295 (9)0.0072 (7)0.0074 (7)0.0126 (7)
C100.0294 (9)0.0298 (8)0.0323 (9)0.0080 (7)0.0067 (7)0.0130 (7)
C110.0261 (8)0.0284 (8)0.0300 (9)0.0032 (6)0.0085 (7)0.0095 (7)
C120.0320 (9)0.0296 (8)0.0368 (9)0.0092 (7)0.0046 (7)0.0118 (7)
C130.0320 (9)0.0267 (8)0.0389 (10)0.0072 (7)0.0067 (8)0.0066 (7)
C140.0360 (10)0.0310 (9)0.0374 (10)0.0089 (7)0.0017 (8)0.0114 (7)
C150.0385 (10)0.0257 (8)0.0345 (9)0.0098 (7)0.0058 (8)0.0071 (7)
C160.0416 (11)0.0423 (11)0.0315 (10)0.0009 (9)0.0004 (8)0.0034 (8)
C170.0295 (8)0.0271 (8)0.0267 (8)0.0116 (7)0.0024 (7)0.0057 (6)
C180.0243 (8)0.0284 (8)0.0229 (8)0.0049 (6)0.0049 (6)0.0070 (6)
C190.0246 (8)0.0247 (7)0.0233 (8)0.0066 (6)0.0040 (6)0.0075 (6)
C200.0266 (8)0.0209 (7)0.0240 (8)0.0051 (6)0.0039 (6)0.0062 (6)
C210.0229 (7)0.0216 (7)0.0261 (8)0.0057 (6)0.0044 (6)0.0094 (6)
C220.0238 (8)0.0256 (8)0.0226 (7)0.0050 (6)0.0030 (6)0.0082 (6)
C230.0237 (7)0.0238 (7)0.0230 (8)0.0051 (6)0.0061 (6)0.0067 (6)
C240.0261 (8)0.0250 (7)0.0251 (8)0.0096 (6)0.0056 (6)0.0080 (6)
C250.0352 (10)0.0354 (9)0.0347 (10)0.0039 (8)0.0056 (8)0.0062 (8)
Geometric parameters (Å, º) top
S1—O51.4427 (13)C7—C81.375 (2)
S1—O61.4572 (12)C7—H70.9500
S1—O71.4643 (13)C8—H8A0.9500
S1—C211.7801 (16)C9—C101.340 (2)
O1—C171.325 (2)C9—H90.9500
O1—H10.8400C10—C111.449 (2)
O2—C171.203 (2)C10—H100.9500
O3—C181.212 (2)C11—C121.402 (2)
O4—C181.326 (2)C11—C151.406 (2)
O4—H4A0.8400C12—C131.364 (3)
O8—C251.412 (2)C12—H120.9500
O8—H80.8400C13—H130.9500
N1—C31.375 (2)C14—C151.364 (3)
N1—C11.455 (2)C14—H140.9500
N1—C21.456 (2)C15—H150.9500
N2—C131.345 (2)C16—H16B0.9800
N2—C141.347 (2)C16—H16C0.9800
N2—C161.473 (2)C16—H16A0.9800
C1—H1C0.9800C17—C191.493 (2)
C1—H1A0.9800C18—C231.494 (2)
C1—H1B0.9800C19—C201.393 (2)
C2—H2B0.9800C19—C241.394 (2)
C2—H2A0.9800C20—C211.388 (2)
C2—H2C0.9800C20—H200.9500
C3—C81.406 (2)C21—C221.390 (2)
C3—C41.414 (2)C22—C231.396 (2)
C4—C51.380 (2)C22—H220.9500
C4—H40.9500C23—C241.392 (2)
C5—C61.402 (2)C24—H240.9500
C5—H50.9500C25—H25A0.9800
C6—C71.401 (2)C25—H25C0.9800
C6—C91.449 (2)C25—H25B0.9800
O5—S1—O6114.32 (8)C12—C11—C15116.21 (16)
O5—S1—O7113.04 (8)C12—C11—C10120.18 (16)
O6—S1—O7111.46 (7)C15—C11—C10123.60 (16)
O5—S1—C21105.50 (7)C13—C12—C11120.71 (17)
O6—S1—C21106.09 (7)C13—C12—H12119.6
O7—S1—C21105.58 (7)C11—C12—H12119.6
C17—O1—H1109.5N2—C13—C12121.34 (16)
C18—O4—H4A109.5N2—C13—H13119.3
C25—O8—H8109.5C12—C13—H13119.3
C3—N1—C1119.25 (15)N2—C14—C15121.23 (17)
C3—N1—C2119.96 (15)N2—C14—H14119.4
C1—N1—C2116.88 (15)C15—C14—H14119.4
C13—N2—C14119.76 (16)C14—C15—C11120.71 (16)
C13—N2—C16120.98 (16)C14—C15—H15119.6
C14—N2—C16119.25 (16)C11—C15—H15119.6
N1—C1—H1C109.5N2—C16—H16B109.5
N1—C1—H1A109.5N2—C16—H16C109.5
H1C—C1—H1A109.5H16B—C16—H16C109.5
N1—C1—H1B109.5N2—C16—H16A109.5
H1C—C1—H1B109.5H16B—C16—H16A109.5
H1A—C1—H1B109.5H16C—C16—H16A109.5
N1—C2—H2B109.5O2—C17—O1123.90 (16)
N1—C2—H2A109.5O2—C17—C19123.72 (15)
H2B—C2—H2A109.5O1—C17—C19112.37 (13)
N1—C2—H2C109.5O3—C18—O4123.48 (15)
H2B—C2—H2C109.5O3—C18—C23123.32 (15)
H2A—C2—H2C109.5O4—C18—C23113.19 (14)
N1—C3—C8121.18 (15)C20—C19—C24119.86 (15)
N1—C3—C4121.36 (15)C20—C19—C17120.65 (14)
C8—C3—C4117.45 (15)C24—C19—C17119.37 (14)
C5—C4—C3121.16 (15)C21—C20—C19119.82 (14)
C5—C4—H4119.4C21—C20—H20120.1
C3—C4—H4119.4C19—C20—H20120.1
C4—C5—C6121.17 (15)C20—C21—C22120.65 (14)
C4—C5—H5119.4C20—C21—S1119.61 (12)
C6—C5—H5119.4C22—C21—S1119.54 (12)
C7—C6—C5117.35 (15)C21—C22—C23119.52 (15)
C7—C6—C9118.11 (15)C21—C22—H22120.2
C5—C6—C9124.54 (15)C23—C22—H22120.2
C8—C7—C6122.09 (16)C24—C23—C22120.01 (14)
C8—C7—H7119.0C24—C23—C18118.89 (14)
C6—C7—H7119.0C22—C23—C18121.09 (14)
C7—C8—C3120.72 (15)C23—C24—C19120.12 (15)
C7—C8—H8A119.6C23—C24—H24119.9
C3—C8—H8A119.6C19—C24—H24119.9
C10—C9—C6128.01 (16)O8—C25—H25A109.5
C10—C9—H9116.0O8—C25—H25C109.5
C6—C9—H9116.0H25A—C25—H25C109.5
C9—C10—C11123.11 (16)O8—C25—H25B109.5
C9—C10—H10118.4H25A—C25—H25B109.5
C11—C10—H10118.4H25C—C25—H25B109.5
C1—N1—C3—C812.7 (3)C10—C11—C15—C14176.93 (16)
C2—N1—C3—C8169.80 (16)O2—C17—C19—C20163.92 (17)
C1—N1—C3—C4167.82 (16)O1—C17—C19—C2014.8 (2)
C2—N1—C3—C410.8 (3)O2—C17—C19—C2412.2 (3)
N1—C3—C4—C5178.64 (15)O1—C17—C19—C24169.03 (15)
C8—C3—C4—C51.9 (2)C24—C19—C20—C210.2 (2)
C3—C4—C5—C60.3 (3)C17—C19—C20—C21175.99 (15)
C4—C5—C6—C71.9 (2)C19—C20—C21—C221.2 (2)
C4—C5—C6—C9177.82 (16)C19—C20—C21—S1173.64 (12)
C5—C6—C7—C82.5 (2)O5—S1—C21—C2089.52 (14)
C9—C6—C7—C8177.17 (15)O6—S1—C21—C2032.14 (15)
C6—C7—C8—C31.0 (3)O7—S1—C21—C20150.54 (13)
N1—C3—C8—C7179.29 (16)O5—S1—C21—C2285.32 (14)
C4—C3—C8—C71.2 (2)O6—S1—C21—C22153.02 (13)
C7—C6—C9—C10174.95 (17)O7—S1—C21—C2234.61 (14)
C5—C6—C9—C104.7 (3)C20—C21—C22—C231.0 (2)
C6—C9—C10—C11179.27 (15)S1—C21—C22—C23173.75 (12)
C9—C10—C11—C12176.31 (16)C21—C22—C23—C240.0 (2)
C9—C10—C11—C152.3 (3)C21—C22—C23—C18178.81 (14)
C15—C11—C12—C131.9 (3)O3—C18—C23—C242.3 (2)
C10—C11—C12—C13176.88 (16)O4—C18—C23—C24176.68 (14)
C14—N2—C13—C121.1 (3)O3—C18—C23—C22176.44 (16)
C16—N2—C13—C12179.62 (17)O4—C18—C23—C224.5 (2)
C11—C12—C13—N20.5 (3)C22—C23—C24—C191.0 (2)
C13—N2—C14—C151.2 (3)C18—C23—C24—C19179.82 (14)
C16—N2—C14—C15179.51 (17)C20—C19—C24—C230.9 (2)
N2—C14—C15—C110.3 (3)C17—C19—C24—C23177.13 (15)
C12—C11—C15—C141.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.841.892.6796 (18)156
O4—H4A···O8ii0.841.792.6156 (18)168
O8—H8···O7iii0.841.862.6897 (18)169
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H19N2+·C8H5O7S·CH4O
Mr516.55
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.5277 (12), 10.5517 (17), 16.467 (3)
α, β, γ (°)106.750 (7), 97.504 (8), 100.273 (8)
V3)1209.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.45 × 0.31 × 0.22
Data collection
DiffractometerRigaku Saturn724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.629, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15622, 5523, 5192
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.13
No. of reflections5523
No. of parameters332
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.841.892.6796 (18)155.5
O4—H4A···O8ii0.841.792.6156 (18)168.3
O8—H8···O7iii0.841.862.6897 (18)169.2
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation (grant No. 50803005), the Fundamental Research Funds for the Central Universities, the Scientific Research Foundation for Returned Overseas Chinese Scholars and the National Natural Science Fund for Distinguished Young Scholars (grant No. 51025313).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationOkada, S., Masaki, I., Matsuda, H., Nakanishi, H., Kato, M., Muramatsu, R. & Otsuka, M. (1990). Jpn J. Appl. Phys. 29, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationOkada, S., Nogi, K., Anwar, Tsuji, K., Duan X. M., Oikawa, H., Matsuda, H. & Nakanishi H. (2003). Jpn J. Appl. Phys. 42, 668–671.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRuiz, B., Yang, Z., Gramlich, V., Jazbinsek, M. & Günter, P. (2006). J. Mater. Chem. 16, 2839–2842.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072–1075.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z., Mutter, L., Ruiz, B., Aravazhi, S., Stillhart, M., Jazbinsek, M., Gramlich, V. & Günter, P. (2007). Adv. Funct. Mater. 17, 2018–2023.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83–86.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds