organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,2-bis­­(3,5-di-tert-butyl-4-hy­dr­oxy­benz­yl)malonate

aChemistry & Biology College, Yantai University, Yantai 264005, People's Republic of China, and bYantai University, Yantai 264005, People's Republic of China
*Correspondence e-mail: zengtaotj@126.com

(Received 11 December 2011; accepted 20 December 2011; online 18 January 2012)

The title mol­ecule, C37H56O6, possesses twofold symmetry, with the twofold axis passing through the quaternary C atom. In the crystal, neighbouring mol­ecules are linked via O—H⋯O hydrogen bonds involving the phenol OH group and the carbonyl O atom, forming chains propagating in [101]. Within these chains, rings are formed with an R22(20) motif. There are also C—H⋯O inter­actions present within the rings.

Related literature

For hindered phenol anti­oxidants and their applications, see: Eggensperger et al. (1974[Eggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent No. 3856846.], 1976[Eggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent No. 3950382.]); Breese et al. 2000[Breese, K. D., Lameathe, J.-F. & DeArmitt, C. (2000). Polym. Degrad. Stabil. 70, 89-96.]; Yamazaki & Seguchi (1997[Yamazaki, T. & Seguchi, T. (1997). Polym. Sci. A Polym. Chem. 35, 2431-2439.]). For the synthesis of hindered phenol anti­oxidants, see: Eggensperger et al. (1974[Eggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent No. 3856846.], 1976[Eggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent No. 3950382.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C37H56O6

  • Mr = 596.82

  • Monoclinic, C 2/c

  • a = 20.006 (6) Å

  • b = 13.610 (4) Å

  • c = 14.252 (4) Å

  • β = 111.344 (5)°

  • V = 3614.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.989

  • 9457 measured reflections

  • 3280 independent reflections

  • 2010 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.151

  • S = 1.06

  • 3280 reflections

  • 206 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.80 (2) 2.38 (2) 2.996 (2) 134 (2)
C12—H12C⋯O2i 0.96 2.46 3.398 (3) 167
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A series of compounds containing the 2,6-di-tert-butylphenol moiety have been used in both polymers and lubricants as antioxidants (Eggensperger et al., 1974, 1976). They are often called hindered phenol antioxidants due to the presence of the extremely large 2,6-di-tert-butylphenol moiety (Breese et al., 2000; Yamazaki & Seguchi, 1997). As part of our ongoing studies of the chemistry of such compounds, we present herein the synthesis and the crystal structure of the title compound.

The title molecule is located about a 2-fold axis (Fig. 1), which passes through the quaternary carbon atom, C16. The bond angles involving C16 vary from 106.2 (2) to 111.9 (2)°. The remainder of the geometric parameters are within normal ranges.

In the crystal, neighbouring molecules are linked by O—H···O hydrogen bonds (Tab. 1 and Fig. 2), involving the phenolic OH group and the carbonyl O atom, forming chains in direction [1 0 1] that contain rings with a R22(20) motif (Bernstein et al., 1995). These rings are situated about the i nversion centres (the Wyckoff position 4c). C-H···O interactions are also present within the rings (Tab. 1).

Related literature top

For hindered phenol antioxidants and their applications, see: Eggensperger et al. (1974, 1976); Breese et al. 2000; Yamazaki & Seguchi (1997). For the synthesis of hindered phenol antioxidants, see: Eggensperger et al. (1974, 1976). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of diethyl malonate (4.0 g, 0.025 mol) and 2,6-di-tert-butyl-4-((dimethylamino)methyl)phenol (13.2 g, 0.05 mol) in 80 ml of toluene was heated to 373 K under a nitrogen atmosphere. Lithium amide (0.2 g) was then added and the mixture was stirred for further 6 h. The reaction mixture was then diluted with toluene (60 ml), washed with water (40 ml), and the oil layer was separated and dried with anhydrous MgSO4. After filtration and concentration, the solution was allowed to evaporate in the air to give the title product as a white powder [yield 13.1 g; 87.9%]. Block-like colourless crystals with dimensions at about 2-3 mm were obtained by slow evaporation of the solution of the title compound in toluene/ethanol (3:1; v:v).

Refinement top

All the H-atoms could be located in difference Fourier maps. The hydroxyl H-atom was refined with a distance restraint of O—H = 0.82 (2) Å, and UisoH = 1.2Ueq(O). The C-bound H-atoms were included in calculated positions and refined as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level. The 2-fold axis bisects atom C16 [symmetry code: (a) -x+1, y, -z+1/2].
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the O—H···O hydrogen bonds and as dashed cyan lines [C-bound H atoms have been omitted for clarity; see Tab. 1 for details].
Diethyl 2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate top
Crystal data top
C37H56O6F(000) = 1304
Mr = 596.82Dx = 1.097 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2211 reflections
a = 20.006 (6) Åθ = 2.2–23.3°
b = 13.610 (4) ŵ = 0.07 mm1
c = 14.252 (4) ÅT = 294 K
β = 111.344 (5)°Block, colourless
V = 3614.4 (18) Å30.22 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
3280 independent reflections
Radiation source: fine-focus sealed tube2010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2420
Tmin = 0.984, Tmax = 0.989k = 1611
9457 measured reflectionsl = 1417
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.7136P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3280 reflectionsΔρmax = 0.34 e Å3
206 parametersΔρmin = 0.25 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
102 constraintsExtinction coefficient: 0.009 (1)
Primary atom site location: structure-invariant direct methods
Crystal data top
C37H56O6V = 3614.4 (18) Å3
Mr = 596.82Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.006 (6) ŵ = 0.07 mm1
b = 13.610 (4) ÅT = 294 K
c = 14.252 (4) Å0.22 × 0.18 × 0.16 mm
β = 111.344 (5)°
Data collection top
Bruker SMART 1000
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2010 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.042
9457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
3280 reflectionsΔρmin = 0.25 e Å3
206 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71866 (9)0.42187 (11)0.62113 (12)0.0666 (5)
H10.7512 (12)0.3850 (16)0.6488 (18)0.080*
O20.62147 (8)0.10154 (10)0.29387 (12)0.0648 (5)
O30.54675 (8)0.02822 (10)0.35618 (12)0.0569 (5)
C10.66141 (11)0.37176 (15)0.55316 (15)0.0447 (5)
C20.64934 (10)0.27165 (15)0.56606 (14)0.0427 (5)
C30.59129 (11)0.22877 (15)0.49092 (14)0.0442 (5)
H3A0.58200.16270.49760.053*
C40.54664 (10)0.27825 (14)0.40700 (14)0.0410 (5)
C50.55917 (10)0.37794 (14)0.40102 (15)0.0442 (5)
H5A0.52880.41300.34600.053*
C60.61499 (11)0.42780 (14)0.47341 (14)0.0433 (5)
C70.62391 (12)0.54031 (16)0.46818 (17)0.0563 (6)
C80.69596 (16)0.56725 (19)0.4609 (2)0.0836 (9)
H8A0.69970.63740.45790.125*
H8B0.69920.53860.40110.125*
H8C0.73420.54270.51890.125*
C90.56543 (16)0.58469 (17)0.3764 (2)0.0934 (10)
H9A0.51930.57170.38010.140*
H9B0.56770.55590.31620.140*
H9C0.57250.65440.37530.140*
C100.61797 (15)0.58785 (18)0.5627 (2)0.0780 (8)
H10A0.57270.57080.56730.117*
H10B0.62130.65800.55840.117*
H10C0.65620.56450.62150.117*
C110.69699 (12)0.21224 (15)0.65805 (15)0.0509 (6)
C120.77149 (12)0.19636 (19)0.6533 (2)0.0744 (8)
H12A0.76660.16630.59020.112*
H12B0.79920.15430.70760.112*
H12C0.79530.25850.65900.112*
C130.66642 (15)0.10925 (19)0.6605 (2)0.0815 (9)
H13A0.61760.11470.65630.122*
H13B0.69440.07710.72230.122*
H13C0.66820.07160.60460.122*
C140.7024 (2)0.2628 (2)0.75627 (18)0.1034 (11)
H14A0.72810.32360.76270.155*
H14B0.72760.22080.81210.155*
H14C0.65510.27570.75570.155*
C150.48315 (10)0.22752 (14)0.32896 (15)0.0432 (5)
H15A0.44860.27740.29330.052*
H15B0.46040.18600.36390.052*
C160.50000.16358 (19)0.25000.0390 (7)
C170.56390 (11)0.09625 (14)0.30121 (16)0.0452 (5)
C180.60223 (15)0.04431 (19)0.4048 (2)0.0806 (9)
H18A0.61380.08110.35440.097*
H18B0.64540.01170.44870.097*
C190.5756 (2)0.1098 (2)0.4627 (3)0.1349 (15)
H19A0.55830.07210.50610.202*
H19B0.61360.15220.50270.202*
H19C0.53720.14870.41790.202*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (10)0.0581 (10)0.0683 (11)0.0038 (8)0.0064 (8)0.0100 (8)
O20.0362 (9)0.0680 (11)0.0886 (12)0.0093 (7)0.0209 (8)0.0083 (9)
O30.0506 (9)0.0445 (9)0.0687 (10)0.0078 (7)0.0133 (8)0.0154 (8)
C10.0392 (12)0.0532 (13)0.0402 (12)0.0006 (10)0.0125 (10)0.0089 (10)
C20.0412 (12)0.0520 (13)0.0357 (11)0.0039 (10)0.0150 (10)0.0004 (10)
C30.0450 (12)0.0457 (12)0.0434 (12)0.0003 (9)0.0179 (10)0.0027 (10)
C40.0370 (11)0.0462 (12)0.0406 (11)0.0020 (9)0.0149 (9)0.0023 (9)
C50.0405 (12)0.0485 (13)0.0403 (11)0.0072 (9)0.0107 (10)0.0008 (10)
C60.0426 (12)0.0442 (12)0.0424 (12)0.0030 (9)0.0146 (10)0.0024 (10)
C70.0490 (14)0.0466 (13)0.0623 (15)0.0011 (10)0.0071 (12)0.0023 (11)
C80.081 (2)0.0697 (17)0.105 (2)0.0119 (14)0.0392 (17)0.0075 (16)
C90.098 (2)0.0500 (15)0.091 (2)0.0007 (14)0.0152 (17)0.0087 (14)
C100.083 (2)0.0578 (16)0.0886 (19)0.0071 (13)0.0263 (16)0.0202 (14)
C110.0536 (14)0.0575 (14)0.0390 (12)0.0061 (10)0.0137 (10)0.0040 (10)
C120.0547 (16)0.0748 (17)0.0890 (19)0.0154 (12)0.0204 (14)0.0210 (15)
C130.0780 (19)0.0861 (19)0.0679 (17)0.0075 (15)0.0115 (14)0.0331 (15)
C140.146 (3)0.114 (2)0.0415 (15)0.039 (2)0.0247 (17)0.0077 (15)
C150.0357 (11)0.0466 (12)0.0462 (12)0.0021 (9)0.0135 (9)0.0023 (10)
C160.0318 (15)0.0369 (15)0.0434 (16)0.0000.0079 (13)0.000
C170.0389 (13)0.0398 (12)0.0529 (13)0.0006 (9)0.0118 (10)0.0039 (10)
C180.080 (2)0.0642 (17)0.088 (2)0.0283 (14)0.0186 (16)0.0248 (15)
C190.120 (3)0.099 (2)0.193 (4)0.031 (2)0.066 (3)0.083 (3)
Geometric parameters (Å, º) top
O1—C11.381 (2)C10—H10B0.9600
O1—H10.803 (16)C10—H10C0.9600
O2—C171.196 (2)C11—C141.528 (3)
O3—C171.336 (2)C11—C121.532 (3)
O3—C181.459 (3)C11—C131.535 (3)
C1—C61.403 (3)C12—H12A0.9600
C1—C21.407 (3)C12—H12B0.9600
C2—C31.389 (3)C12—H12C0.9600
C2—C111.540 (3)C13—H13A0.9600
C3—C41.380 (3)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.388 (3)C14—H14A0.9600
C4—C151.516 (3)C14—H14B0.9600
C5—C61.390 (3)C14—H14C0.9600
C5—H5A0.9300C15—C161.554 (2)
C6—C71.547 (3)C15—H15A0.9700
C7—C91.526 (3)C15—H15B0.9700
C7—C81.527 (4)C16—C17i1.526 (2)
C7—C101.538 (3)C16—C171.526 (2)
C8—H8A0.9600C16—C15i1.554 (2)
C8—H8B0.9600C18—C191.442 (4)
C8—H8C0.9600C18—H18A0.9700
C9—H9A0.9600C18—H18B0.9700
C9—H9B0.9600C19—H19A0.9600
C9—H9C0.9600C19—H19B0.9600
C10—H10A0.9600C19—H19C0.9600
C1—O1—H1110.7 (19)C12—C11—C2110.30 (17)
C17—O3—C18115.76 (19)C13—C11—C2111.76 (18)
O1—C1—C6115.80 (19)C11—C12—H12A109.5
O1—C1—C2121.62 (18)C11—C12—H12B109.5
C6—C1—C2122.53 (18)H12A—C12—H12B109.5
C3—C2—C1116.16 (18)C11—C12—H12C109.5
C3—C2—C11121.36 (18)H12A—C12—H12C109.5
C1—C2—C11122.48 (18)H12B—C12—H12C109.5
C4—C3—C2123.98 (19)C11—C13—H13A109.5
C4—C3—H3A118.0C11—C13—H13B109.5
C2—C3—H3A118.0H13A—C13—H13B109.5
C3—C4—C5117.11 (18)C11—C13—H13C109.5
C3—C4—C15121.26 (18)H13A—C13—H13C109.5
C5—C4—C15121.46 (17)H13B—C13—H13C109.5
C4—C5—C6123.08 (18)C11—C14—H14A109.5
C4—C5—H5A118.5C11—C14—H14B109.5
C6—C5—H5A118.5H14A—C14—H14B109.5
C5—C6—C1116.87 (19)C11—C14—H14C109.5
C5—C6—C7121.54 (17)H14A—C14—H14C109.5
C1—C6—C7121.56 (18)H14B—C14—H14C109.5
C9—C7—C8107.1 (2)C4—C15—C16116.22 (15)
C9—C7—C10107.7 (2)C4—C15—H15A108.2
C8—C7—C10109.6 (2)C16—C15—H15A108.2
C9—C7—C6111.54 (18)C4—C15—H15B108.2
C8—C7—C6111.67 (18)C16—C15—H15B108.2
C10—C7—C6109.11 (19)H15A—C15—H15B107.4
C7—C8—H8A109.5C17i—C16—C17106.2 (2)
C7—C8—H8B109.5C17i—C16—C15i110.79 (10)
H8A—C8—H8B109.5C17—C16—C15i108.55 (11)
C7—C8—H8C109.5C17i—C16—C15108.55 (11)
H8A—C8—H8C109.5C17—C16—C15110.79 (10)
H8B—C8—H8C109.5C15i—C16—C15111.9 (2)
C7—C9—H9A109.5O2—C17—O3123.65 (19)
C7—C9—H9B109.5O2—C17—C16126.01 (18)
H9A—C9—H9B109.5O3—C17—C16110.34 (17)
C7—C9—H9C109.5C19—C18—O3108.3 (3)
H9A—C9—H9C109.5C19—C18—H18A110.0
H9B—C9—H9C109.5O3—C18—H18A110.0
C7—C10—H10A109.5C19—C18—H18B110.0
C7—C10—H10B109.5O3—C18—H18B110.0
H10A—C10—H10B109.5H18A—C18—H18B108.4
C7—C10—H10C109.5C18—C19—H19A109.5
H10A—C10—H10C109.5C18—C19—H19B109.5
H10B—C10—H10C109.5H19A—C19—H19B109.5
C14—C11—C12111.0 (2)C18—C19—H19C109.5
C14—C11—C13106.6 (2)H19A—C19—H19C109.5
C12—C11—C13105.9 (2)H19B—C19—H19C109.5
C14—C11—C2111.06 (18)
O1—C1—C2—C3178.03 (19)C1—C6—C7—C1059.1 (3)
C6—C1—C2—C34.5 (3)C3—C2—C11—C14126.1 (3)
O1—C1—C2—C112.3 (3)C1—C2—C11—C1453.5 (3)
C6—C1—C2—C11175.11 (18)C3—C2—C11—C12110.4 (2)
C1—C2—C3—C40.2 (3)C1—C2—C11—C1269.9 (3)
C11—C2—C3—C4179.83 (18)C3—C2—C11—C137.1 (3)
C2—C3—C4—C53.3 (3)C1—C2—C11—C13172.5 (2)
C2—C3—C4—C15178.59 (19)C3—C4—C15—C1681.2 (2)
C3—C4—C5—C61.8 (3)C5—C4—C15—C16103.7 (2)
C15—C4—C5—C6177.16 (19)C4—C15—C16—C17i163.70 (16)
C4—C5—C6—C12.5 (3)C4—C15—C16—C1747.5 (2)
C4—C5—C6—C7175.45 (19)C4—C15—C16—C15i73.76 (15)
O1—C1—C6—C5176.62 (18)C18—O3—C17—O22.7 (3)
C2—C1—C6—C55.8 (3)C18—O3—C17—C16176.81 (18)
O1—C1—C6—C75.4 (3)C17i—C16—C17—O2129.7 (2)
C2—C1—C6—C7172.14 (19)C15i—C16—C17—O210.6 (3)
C5—C6—C7—C90.2 (3)C15—C16—C17—O2112.6 (2)
C1—C6—C7—C9178.0 (2)C17i—C16—C17—O349.75 (12)
C5—C6—C7—C8120.0 (2)C15i—C16—C17—O3168.89 (16)
C1—C6—C7—C862.1 (3)C15—C16—C17—O367.9 (2)
C5—C6—C7—C10118.7 (2)C17—O3—C18—C19178.4 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.80 (2)2.38 (2)2.996 (2)134 (2)
C12—H12C···O2ii0.962.463.398 (3)167
Symmetry code: (ii) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC37H56O6
Mr596.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)20.006 (6), 13.610 (4), 14.252 (4)
β (°) 111.344 (5)
V3)3614.4 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
9457, 3280, 2010
Rint0.042
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.151, 1.06
No. of reflections3280
No. of parameters206
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.803 (16)2.38 (2)2.996 (2)134 (2)
C12—H12C···O2i0.962.463.398 (3)167
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Technology Development Project of Shandong Province (No. 2010GGX10316) and the University Science and Technology Project of Shandong Province Education Committee (No. J09LB56).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBreese, K. D., Lameathe, J.-F. & DeArmitt, C. (2000). Polym. Degrad. Stabil. 70, 89–96.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent No. 3856846.  Google Scholar
First citationEggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent No. 3950382.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamazaki, T. & Seguchi, T. (1997). Polym. Sci. A Polym. Chem. 35, 2431–2439.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds