organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Cyclo­hexyl-3-iso­propyl­sulfanyl-1-benzo­furan-2-yl)acetic acid

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 20 December 2011; accepted 21 December 2011; online 14 January 2012)

In the title compound, C19H24O3S, the cylohexyl ring adopts a chair conformation. In the crystal, molecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers. These dimers are further stabilized by weak inter­molecular C—H⋯π inter­actions, and by slipped ππ inter­actions between the furan rings of adjacent mol­ecules [centroid–centroid distance = 3.557 (2) Å, inter­planar distance = 3.301 (2) Å and slippage = 1.325 (2) Å].

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structure of related compound, see: Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1957.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24O3S

  • Mr = 332.44

  • Triclinic, [P \overline 1]

  • a = 9.1261 (2) Å

  • b = 9.5308 (2) Å

  • c = 10.5577 (2) Å

  • α = 72.228 (1)°

  • β = 79.702 (1)°

  • γ = 85.724 (1)°

  • V = 860.19 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.36 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.955

  • 16313 measured reflections

  • 4297 independent reflections

  • 3683 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.05

  • 4297 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.87 (2) 1.81 (2) 2.6745 (14) 179 (2)
C15—H15BCg1ii 0.99 2.77 3.578 (2) 140
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted benzofuran derivatives have drawn much interest owing to their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of 2-(5-cyclohexyl-1-benzofuran-2-yl)acetic acid derivatives containing 3-methylsulfanyl (Seo et al., 2011) substituent, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.032 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring has the chair conformation. In the crystal structure, the carboxyl groups are involved in intermolecular O—H···O hydrogen bonds (see, Fig. 2 & Table 1), which link the molecules into centrosymmetric dimers. These dimers are further stabilized by weak intermolecular C—H···π interactions (see, Fig. 2 & Table 1; Cg1 is the centroid of the C2–C7 benzene ring). Additionally, the crystal packing (Fig. 2) shows a weak slipped between the furan rings of adjacent molecules, with a Cg2···Cg2ii distance of 3.557 (2) Å and an interplanar distance of 3.301 (2) Å resulting in a slippage of 1.325 (2) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structure of related compound, see: Seo et al. (2011).

Experimental top

Ethyl 2-(5-cyclohexyl-3-isopropylsulfanyl-1-benzofuran-2-yl)acetate (396 mg, 1.1 mmol) was added to a solution of potassium hydroxide (336 mg, 6 mmol) in water (10 ml) and methanol (15 ml), and the mixture was refluxed for 5h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH=1 with concentrated hydrochloric acid and then extracted with chloroform. The organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 84%, m.p. 423–424 K; Rf = 0.55 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

H atom in the carboxy group is found in a different Fourier map and refined freely. The other H atoms of C atoms were positioned geometrically and refined using ariding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—H···O, C—H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y - 1, - z + 1; (ii) - x + 1, - y, - z; (iii) -x + 1, - y, - z + 1.]
2-(5-Cyclohexyl-3-isopropylsulfanyl-1-benzofuran-2-yl)acetic acid top
Crystal data top
C19H24O3SZ = 2
Mr = 332.44F(000) = 356
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1261 (2) ÅCell parameters from 6099 reflections
b = 9.5308 (2) Åθ = 2.6–28.4°
c = 10.5577 (2) ŵ = 0.20 mm1
α = 72.228 (1)°T = 173 K
β = 79.702 (1)°Block, colourless
γ = 85.724 (1)°0.36 × 0.27 × 0.23 mm
V = 860.19 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4297 independent reflections
Radiation source: rotating anode3683 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.1°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.931, Tmax = 0.955l = 1414
16313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2514P]
where P = (Fo2 + 2Fc2)/3
4297 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H24O3Sγ = 85.724 (1)°
Mr = 332.44V = 860.19 (3) Å3
Triclinic, P1Z = 2
a = 9.1261 (2) ÅMo Kα radiation
b = 9.5308 (2) ŵ = 0.20 mm1
c = 10.5577 (2) ÅT = 173 K
α = 72.228 (1)°0.36 × 0.27 × 0.23 mm
β = 79.702 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4297 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3683 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.955Rint = 0.028
16313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
4297 reflectionsΔρmin = 0.24 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77443 (3)0.08125 (4)0.20862 (3)0.02569 (10)
O10.41530 (10)0.09376 (9)0.16072 (9)0.02482 (19)
O20.49565 (11)0.32309 (10)0.42671 (10)0.0303 (2)
O30.62246 (13)0.48943 (11)0.33781 (12)0.0398 (3)
H3O0.583 (2)0.549 (2)0.414 (2)0.063 (6)*
C30.43798 (13)0.27862 (13)0.16349 (12)0.0225 (2)
H30.51250.33950.16970.027*
C10.60123 (13)0.03588 (13)0.18486 (12)0.0219 (2)
C20.47208 (13)0.13333 (13)0.16428 (12)0.0211 (2)
C40.29330 (13)0.33348 (13)0.15341 (12)0.0226 (2)
C50.18669 (14)0.24291 (14)0.13832 (13)0.0252 (3)
H50.08910.28210.12880.030*
C60.21845 (14)0.09865 (14)0.13680 (13)0.0253 (3)
H60.14580.03870.12600.030*
C70.36164 (14)0.04727 (13)0.15196 (12)0.0219 (2)
C80.55972 (13)0.09689 (14)0.18353 (12)0.0236 (3)
C90.24973 (13)0.48216 (13)0.17527 (13)0.0230 (2)
H90.34080.54370.14510.028*
C100.20154 (14)0.45933 (14)0.32704 (13)0.0262 (3)
H10A0.11630.39200.36070.031*
H10B0.28470.41190.37470.031*
C110.15678 (15)0.60348 (15)0.35951 (14)0.0289 (3)
H11A0.11910.58210.45730.035*
H11B0.24540.66570.33740.035*
C120.03734 (15)0.68695 (15)0.28067 (15)0.0316 (3)
H12A0.01540.78280.29920.038*
H12B0.05530.62970.31000.038*
C130.08862 (16)0.71312 (14)0.13001 (14)0.0303 (3)
H13A0.17670.77690.09950.036*
H13B0.00830.76490.08040.036*
C140.12848 (16)0.56783 (14)0.09797 (14)0.0289 (3)
H14A0.16370.58820.00010.035*
H14B0.03840.50720.12230.035*
C150.63734 (15)0.24245 (14)0.20305 (14)0.0274 (3)
H15A0.74460.22990.20070.033*
H15B0.62810.28040.12740.033*
C160.57635 (14)0.35434 (13)0.33429 (13)0.0247 (3)
C170.73084 (15)0.08854 (16)0.38308 (14)0.0292 (3)
H170.63580.14630.39370.035*
C180.7115 (2)0.06369 (19)0.48197 (15)0.0445 (4)
H18A0.80410.12150.47270.067*
H18B0.63030.11240.46350.067*
H18C0.68760.05620.57400.067*
C190.85552 (19)0.1697 (2)0.40621 (18)0.0453 (4)
H19A0.83770.17200.49990.068*
H19B0.85880.27070.34530.068*
H19C0.95070.11880.38840.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02160 (15)0.02993 (17)0.02262 (16)0.00101 (11)0.00132 (11)0.00472 (13)
O10.0289 (4)0.0194 (4)0.0266 (5)0.0012 (3)0.0066 (4)0.0067 (4)
O20.0376 (5)0.0218 (4)0.0271 (5)0.0013 (4)0.0008 (4)0.0046 (4)
O30.0553 (7)0.0199 (5)0.0346 (6)0.0067 (4)0.0054 (5)0.0031 (4)
C30.0246 (6)0.0209 (6)0.0220 (6)0.0014 (4)0.0042 (5)0.0061 (5)
C10.0229 (5)0.0227 (6)0.0177 (5)0.0006 (4)0.0021 (4)0.0034 (5)
C20.0234 (5)0.0223 (6)0.0164 (5)0.0001 (4)0.0029 (4)0.0043 (5)
C40.0263 (6)0.0207 (5)0.0201 (6)0.0006 (4)0.0032 (5)0.0057 (5)
C50.0236 (6)0.0256 (6)0.0275 (6)0.0021 (4)0.0060 (5)0.0092 (5)
C60.0269 (6)0.0241 (6)0.0266 (6)0.0018 (5)0.0069 (5)0.0084 (5)
C70.0277 (6)0.0190 (5)0.0188 (5)0.0007 (4)0.0041 (5)0.0053 (5)
C80.0256 (6)0.0235 (6)0.0188 (6)0.0020 (4)0.0023 (5)0.0034 (5)
C90.0249 (6)0.0198 (5)0.0253 (6)0.0008 (4)0.0051 (5)0.0078 (5)
C100.0309 (6)0.0239 (6)0.0252 (6)0.0040 (5)0.0092 (5)0.0077 (5)
C110.0343 (7)0.0277 (6)0.0271 (7)0.0024 (5)0.0063 (5)0.0116 (6)
C120.0324 (7)0.0275 (6)0.0345 (7)0.0068 (5)0.0042 (6)0.0111 (6)
C130.0365 (7)0.0225 (6)0.0313 (7)0.0070 (5)0.0105 (6)0.0060 (5)
C140.0375 (7)0.0241 (6)0.0267 (6)0.0049 (5)0.0120 (5)0.0072 (5)
C150.0307 (6)0.0216 (6)0.0260 (6)0.0036 (5)0.0015 (5)0.0040 (5)
C160.0255 (6)0.0206 (6)0.0273 (6)0.0018 (4)0.0071 (5)0.0049 (5)
C170.0280 (6)0.0347 (7)0.0277 (7)0.0011 (5)0.0017 (5)0.0148 (6)
C180.0580 (10)0.0496 (9)0.0229 (7)0.0175 (8)0.0037 (7)0.0045 (7)
C190.0461 (9)0.0517 (10)0.0461 (9)0.0131 (7)0.0070 (7)0.0239 (8)
Geometric parameters (Å, º) top
S1—C11.7488 (12)C10—H10B0.9900
S1—C171.8351 (14)C11—C121.5182 (18)
O1—C71.3774 (14)C11—H11A0.9900
O1—C81.3781 (14)C11—H11B0.9900
O2—C161.2128 (16)C12—C131.523 (2)
O3—C161.3160 (15)C12—H12A0.9900
O3—H3O0.87 (2)C12—H12B0.9900
C3—C41.3934 (16)C13—C141.5268 (18)
C3—C21.3942 (17)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C1—C81.3525 (17)C14—H14A0.9900
C1—C21.4505 (16)C14—H14B0.9900
C2—C71.3932 (17)C15—C161.5092 (18)
C4—C51.4077 (17)C15—H15A0.9900
C4—C91.5173 (16)C15—H15B0.9900
C5—C61.3882 (17)C17—C181.508 (2)
C5—H50.9500C17—C191.5160 (19)
C6—C71.3800 (17)C17—H171.0000
C6—H60.9500C18—H18A0.9800
C8—C151.4832 (17)C18—H18B0.9800
C9—C141.5292 (17)C18—H18C0.9800
C9—C101.5355 (18)C19—H19A0.9800
C9—H91.0000C19—H19B0.9800
C10—C111.5250 (18)C19—H19C0.9800
C10—H10A0.9900
C1—S1—C17100.95 (6)C11—C12—C13110.51 (11)
C7—O1—C8105.84 (9)C11—C12—H12A109.5
C16—O3—H3O108.6 (14)C13—C12—H12A109.5
C4—C3—C2119.24 (11)C11—C12—H12B109.5
C4—C3—H3120.4C13—C12—H12B109.5
C2—C3—H3120.4H12A—C12—H12B108.1
C8—C1—C2106.07 (11)C12—C13—C14111.07 (11)
C8—C1—S1127.22 (10)C12—C13—H13A109.4
C2—C1—S1126.70 (9)C14—C13—H13A109.4
C7—C2—C3119.29 (11)C12—C13—H13B109.4
C7—C2—C1105.52 (11)C14—C13—H13B109.4
C3—C2—C1135.04 (11)H13A—C13—H13B108.0
C3—C4—C5119.17 (11)C13—C14—C9111.25 (11)
C3—C4—C9119.17 (11)C13—C14—H14A109.4
C5—C4—C9121.27 (11)C9—C14—H14A109.4
C6—C5—C4122.64 (11)C13—C14—H14B109.4
C6—C5—H5118.7C9—C14—H14B109.4
C4—C5—H5118.7H14A—C14—H14B108.0
C7—C6—C5116.17 (11)C8—C15—C16112.95 (11)
C7—C6—H6121.9C8—C15—H15A109.0
C5—C6—H6121.9C16—C15—H15A109.0
O1—C7—C6126.11 (11)C8—C15—H15B109.0
O1—C7—C2110.44 (10)C16—C15—H15B109.0
C6—C7—C2123.43 (11)H15A—C15—H15B107.8
C1—C8—O1112.09 (11)O2—C16—O3123.83 (12)
C1—C8—C15132.97 (12)O2—C16—C15123.84 (11)
O1—C8—C15114.94 (11)O3—C16—C15112.32 (11)
C4—C9—C14115.11 (10)C18—C17—C19112.04 (13)
C4—C9—C10108.57 (10)C18—C17—S1111.38 (10)
C14—C9—C10110.10 (10)C19—C17—S1107.38 (10)
C4—C9—H9107.6C18—C17—H17108.6
C14—C9—H9107.6C19—C17—H17108.6
C10—C9—H9107.6S1—C17—H17108.6
C11—C10—C9112.52 (10)C17—C18—H18A109.5
C11—C10—H10A109.1C17—C18—H18B109.5
C9—C10—H10A109.1H18A—C18—H18B109.5
C11—C10—H10B109.1C17—C18—H18C109.5
C9—C10—H10B109.1H18A—C18—H18C109.5
H10A—C10—H10B107.8H18B—C18—H18C109.5
C12—C11—C10111.41 (11)C17—C19—H19A109.5
C12—C11—H11A109.3C17—C19—H19B109.5
C10—C11—H11A109.3H19A—C19—H19B109.5
C12—C11—H11B109.3C17—C19—H19C109.5
C10—C11—H11B109.3H19A—C19—H19C109.5
H11A—C11—H11B108.0H19B—C19—H19C109.5
C17—S1—C1—C8104.25 (12)C2—C1—C8—C15177.78 (13)
C17—S1—C1—C274.88 (12)S1—C1—C8—C151.5 (2)
C4—C3—C2—C71.42 (18)C7—O1—C8—C12.16 (14)
C4—C3—C2—C1173.37 (13)C7—O1—C8—C15177.18 (10)
C8—C1—C2—C70.07 (14)C3—C4—C9—C14150.58 (12)
S1—C1—C2—C7179.35 (9)C5—C4—C9—C1436.65 (16)
C8—C1—C2—C3175.22 (13)C3—C4—C9—C1085.52 (13)
S1—C1—C2—C34.1 (2)C5—C4—C9—C1087.25 (14)
C2—C3—C4—C52.77 (18)C4—C9—C10—C11179.46 (10)
C2—C3—C4—C9170.16 (11)C14—C9—C10—C1153.70 (14)
C3—C4—C5—C61.88 (19)C9—C10—C11—C1254.49 (14)
C9—C4—C5—C6170.89 (12)C10—C11—C12—C1355.52 (15)
C4—C5—C6—C70.42 (19)C11—C12—C13—C1457.35 (15)
C8—O1—C7—C6176.30 (12)C12—C13—C14—C957.68 (15)
C8—O1—C7—C22.07 (13)C4—C9—C14—C13178.08 (11)
C5—C6—C7—O1176.30 (11)C10—C9—C14—C1354.99 (14)
C5—C6—C7—C21.87 (19)C1—C8—C15—C16109.45 (16)
C3—C2—C7—O1177.44 (10)O1—C8—C15—C1669.71 (14)
C1—C2—C7—O11.26 (14)C8—C15—C16—O214.72 (18)
C3—C2—C7—C60.98 (19)C8—C15—C16—O3166.22 (11)
C1—C2—C7—C6177.17 (12)C1—S1—C17—C1873.38 (11)
C2—C1—C8—O11.39 (14)C1—S1—C17—C19163.61 (11)
S1—C1—C8—O1179.34 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.87 (2)1.81 (2)2.6745 (14)179 (2)
C15—H15B···Cg1ii0.992.773.578 (2)140
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H24O3S
Mr332.44
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.1261 (2), 9.5308 (2), 10.5577 (2)
α, β, γ (°)72.228 (1), 79.702 (1), 85.724 (1)
V3)860.19 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.36 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
16313, 4297, 3683
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.05
No. of reflections4297
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.87 (2)1.81 (2)2.6745 (14)179 (2)
C15—H15B···Cg1ii0.992.773.578 (2)139.6
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as a RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds