metal-organic compounds
Bis[(1S,1′S)-1,1′-(4-amino-4H-1,2,4-triazole-3,5-diyl)diethanol-κN1]bis(nitrato-κO)zinc
aCollege of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: xgliu07@gmail.com
In the title homochiral mononuclear compound, [Zn(NO3)2(C6H12N4O2)2], the ZnII atom is located on a twofold rotation axis and coordinated by two N atoms from two ligands and two O atoms from two NO3− anions, adopting a distorted tetrahedral coordination geometry. The compound is enantiomerically pure and corresponds to the S diastereoisomer, with the optical activity originating from the chiral ligand. In the crystal, molecules are connected into three-dimensional supramolecular networks through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.
Related literature
For 4-amino-4H-1,2,4-triazole transition metal complexes, see: Zhai et al. (2006); Yi et al. (2004). For the non-linear optical properties of chiral coordination compounds, see: Evans & Lin (2002). For uses of chiral coordination compounds, see: Hang et al. (2011); Lin (2010).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg & Putz, 2007); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812001754/ff2051sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812001754/ff2051Isup2.hkl
An 10 ml ethanol solution of (1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole -3,5-diyl)diethanol (0.2 mmol, 0.0344 g) and Zn(NO3)2.6H2O (0.10 mmol, 0.0298 g) was stirred for five minutes and then filtered. The filtrate was carefully layered with 10 ml ethyl ether. After one week, colorless needle-like crystals of the title compound were obtained. Yield: 45%.
All H atoms were put in calculated positions. All H atoms were refined with Uiso(H) = 1.2Ueq(N and O) and Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(NO3)2(C6H12N4O2)2] | Dx = 1.651 Mg m−3 |
Mr = 533.78 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 7446 reflections |
Hall symbol: P 4abw 2nw | θ = 1.7–27.5° |
a = 12.1252 (7) Å | µ = 1.22 mm−1 |
c = 14.6108 (17) Å | T = 298 K |
V = 2148.1 (3) Å3 | Needle, colourless |
Z = 4 | 0.36 × 0.18 × 0.12 mm |
F(000) = 1104 |
Bruker APEX DUO diffractometer | 2463 independent reflections |
Radiation source: fine-focus sealed tube | 2154 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −15→9 |
Tmin = 0.767, Tmax = 0.862 | k = −15→13 |
7446 measured reflections | l = −18→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2512P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2463 reflections | Δρmax = 0.32 e Å−3 |
154 parameters | Δρmin = −0.23 e Å−3 |
378 restraints | Absolute structure: Flack (1983), 993 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.022 (15) |
[Zn(NO3)2(C6H12N4O2)2] | Z = 4 |
Mr = 533.78 | Mo Kα radiation |
Tetragonal, P41212 | µ = 1.22 mm−1 |
a = 12.1252 (7) Å | T = 298 K |
c = 14.6108 (17) Å | 0.36 × 0.18 × 0.12 mm |
V = 2148.1 (3) Å3 |
Bruker APEX DUO diffractometer | 2463 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2154 reflections with I > 2σ(I) |
Tmin = 0.767, Tmax = 0.862 | Rint = 0.032 |
7446 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.088 | Δρmax = 0.32 e Å−3 |
S = 1.05 | Δρmin = −0.23 e Å−3 |
2463 reflections | Absolute structure: Flack (1983), 993 Friedel pairs |
154 parameters | Absolute structure parameter: −0.022 (15) |
378 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.92340 (3) | 0.92340 (3) | 1.0000 | 0.03222 (13) | |
O1 | 0.72436 (18) | 0.90461 (18) | 0.95521 (12) | 0.0417 (5) | |
H1 | 0.7021 | 0.8493 | 0.9817 | 0.063* | |
O2 | 1.13628 (15) | 0.75723 (17) | 0.67187 (13) | 0.0336 (4) | |
H2 | 1.1479 | 0.8235 | 0.6777 | 0.050* | |
O3 | 1.09002 (17) | 0.89583 (19) | 1.02136 (13) | 0.0464 (5) | |
O4 | 1.0802 (3) | 1.0273 (3) | 1.1173 (3) | 0.1176 (14) | |
O5 | 1.2371 (2) | 0.9742 (3) | 1.0727 (2) | 0.0758 (9) | |
N1 | 0.91797 (19) | 0.85483 (18) | 0.87379 (13) | 0.0285 (5) | |
N2 | 1.00505 (19) | 0.81575 (19) | 0.82025 (13) | 0.0279 (5) | |
N3 | 0.84957 (17) | 0.80180 (17) | 0.74473 (15) | 0.0271 (4) | |
N4 | 0.7738 (2) | 0.7823 (2) | 0.67330 (16) | 0.0427 (6) | |
H4B | 0.7928 | 0.7208 | 0.6440 | 0.064* | |
H4C | 0.7753 | 0.8388 | 0.6345 | 0.064* | |
N5 | 1.1372 (2) | 0.9678 (2) | 1.07029 (17) | 0.0417 (6) | |
C1 | 0.8266 (2) | 0.8474 (2) | 0.82697 (16) | 0.0273 (5) | |
C2 | 0.9608 (2) | 0.7841 (2) | 0.74215 (16) | 0.0262 (5) | |
C3 | 0.7171 (2) | 0.8883 (2) | 0.85876 (17) | 0.0332 (6) | |
H3 | 0.6595 | 0.8343 | 0.8446 | 0.040* | |
C4 | 0.6903 (3) | 0.9988 (3) | 0.8141 (2) | 0.0467 (8) | |
H4D | 0.6216 | 1.0261 | 0.8377 | 0.070* | |
H4E | 0.6844 | 0.9892 | 0.7490 | 0.070* | |
H4F | 0.7479 | 1.0507 | 0.8274 | 0.070* | |
C5 | 1.0219 (2) | 0.7390 (2) | 0.66148 (17) | 0.0299 (6) | |
H5 | 0.9968 | 0.7776 | 0.6063 | 0.036* | |
C6 | 1.0044 (3) | 0.6164 (3) | 0.6482 (2) | 0.0460 (8) | |
H6A | 1.0389 | 0.5934 | 0.5923 | 0.069* | |
H6B | 0.9268 | 0.6011 | 0.6452 | 0.069* | |
H6C | 1.0363 | 0.5770 | 0.6987 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03548 (17) | 0.03548 (17) | 0.02569 (18) | 0.0024 (2) | 0.00483 (13) | −0.00483 (13) |
O1 | 0.0449 (12) | 0.0468 (14) | 0.0334 (9) | −0.0032 (10) | 0.0117 (9) | 0.0021 (9) |
O2 | 0.0277 (10) | 0.0310 (11) | 0.0420 (9) | 0.0005 (8) | 0.0038 (8) | −0.0056 (9) |
O3 | 0.0380 (12) | 0.0514 (13) | 0.0497 (10) | 0.0025 (9) | −0.0045 (9) | −0.0172 (9) |
O4 | 0.0629 (19) | 0.112 (3) | 0.178 (3) | 0.0013 (19) | −0.005 (2) | −0.105 (3) |
O5 | 0.0356 (15) | 0.102 (2) | 0.0901 (18) | 0.0029 (14) | −0.0133 (13) | −0.0283 (17) |
N1 | 0.0269 (11) | 0.0310 (11) | 0.0277 (9) | 0.0003 (10) | 0.0016 (9) | −0.0025 (8) |
N2 | 0.0260 (11) | 0.0307 (11) | 0.0269 (9) | 0.0038 (9) | −0.0002 (8) | −0.0031 (8) |
N3 | 0.0242 (10) | 0.0296 (10) | 0.0275 (8) | −0.0036 (8) | −0.0028 (9) | −0.0012 (9) |
N4 | 0.0409 (14) | 0.0495 (16) | 0.0378 (10) | −0.0041 (11) | −0.0161 (11) | −0.0046 (12) |
N5 | 0.0369 (15) | 0.0375 (14) | 0.0508 (13) | 0.0048 (11) | −0.0053 (11) | −0.0062 (12) |
C1 | 0.0282 (13) | 0.0250 (13) | 0.0288 (10) | −0.0015 (10) | 0.0020 (10) | 0.0035 (10) |
C2 | 0.0265 (11) | 0.0248 (12) | 0.0272 (10) | −0.0010 (9) | −0.0026 (10) | 0.0020 (10) |
C3 | 0.0265 (14) | 0.0394 (15) | 0.0336 (11) | −0.0004 (11) | 0.0022 (10) | 0.0016 (11) |
C4 | 0.0406 (18) | 0.0481 (19) | 0.0515 (16) | 0.0162 (15) | 0.0033 (14) | 0.0044 (15) |
C5 | 0.0278 (13) | 0.0339 (14) | 0.0281 (10) | 0.0028 (11) | −0.0015 (10) | −0.0028 (10) |
C6 | 0.0423 (18) | 0.0410 (18) | 0.0546 (17) | −0.0048 (15) | 0.0031 (15) | −0.0171 (14) |
Zn1—N1 | 2.0239 (19) | N3—N4 | 1.410 (3) |
Zn1—N1i | 2.0239 (19) | N4—H4B | 0.8900 |
Zn1—O3 | 2.071 (2) | N4—H4C | 0.8900 |
Zn1—O3i | 2.071 (2) | C1—C3 | 1.492 (4) |
O1—C3 | 1.426 (3) | C2—C5 | 1.496 (4) |
O1—H1 | 0.8200 | C3—C4 | 1.525 (4) |
O2—C5 | 1.412 (3) | C3—H3 | 0.9800 |
O2—H2 | 0.8200 | C4—H4D | 0.9600 |
O3—N5 | 1.265 (3) | C4—H4E | 0.9600 |
O4—N5 | 1.212 (4) | C4—H4F | 0.9600 |
O5—N5 | 1.215 (4) | C5—C6 | 1.514 (4) |
N1—C1 | 1.305 (3) | C5—H5 | 0.9800 |
N1—N2 | 1.397 (3) | C6—H6A | 0.9600 |
N2—C2 | 1.318 (3) | C6—H6B | 0.9600 |
N3—C1 | 1.352 (3) | C6—H6C | 0.9600 |
N3—C2 | 1.366 (3) | ||
N1—Zn1—N1i | 143.46 (13) | N2—C2—C5 | 125.9 (2) |
N1—Zn1—O3 | 95.90 (8) | N3—C2—C5 | 124.6 (2) |
N1i—Zn1—O3 | 104.96 (8) | O1—C3—C1 | 107.4 (2) |
N1—Zn1—O3i | 104.96 (8) | O1—C3—C4 | 108.4 (2) |
N1i—Zn1—O3i | 95.90 (8) | C1—C3—C4 | 110.4 (2) |
O3—Zn1—O3i | 109.73 (13) | O1—C3—H3 | 110.2 |
C3—O1—H1 | 109.5 | C1—C3—H3 | 110.2 |
C5—O2—H2 | 109.5 | C4—C3—H3 | 110.2 |
N5—O3—Zn1 | 114.52 (17) | C3—C4—H4D | 109.5 |
C1—N1—N2 | 108.94 (19) | C3—C4—H4E | 109.5 |
C1—N1—Zn1 | 122.26 (18) | H4D—C4—H4E | 109.5 |
N2—N1—Zn1 | 128.68 (16) | C3—C4—H4F | 109.5 |
C2—N2—N1 | 106.0 (2) | H4D—C4—H4F | 109.5 |
C1—N3—C2 | 107.0 (2) | H4E—C4—H4F | 109.5 |
C1—N3—N4 | 126.3 (2) | O2—C5—C2 | 110.2 (2) |
C2—N3—N4 | 126.6 (2) | O2—C5—C6 | 107.8 (2) |
N3—N4—H4B | 109.2 | C2—C5—C6 | 113.0 (2) |
N3—N4—H4C | 109.2 | O2—C5—H5 | 108.6 |
H4B—N4—H4C | 109.5 | C2—C5—H5 | 108.6 |
O4—N5—O5 | 120.9 (3) | C6—C5—H5 | 108.6 |
O4—N5—O3 | 118.2 (3) | C5—C6—H6A | 109.5 |
O5—N5—O3 | 120.8 (3) | C5—C6—H6B | 109.5 |
N1—C1—N3 | 108.6 (2) | H6A—C6—H6B | 109.5 |
N1—C1—C3 | 124.7 (2) | C5—C6—H6C | 109.5 |
N3—C1—C3 | 126.6 (2) | H6A—C6—H6C | 109.5 |
N2—C2—N3 | 109.4 (2) | H6B—C6—H6C | 109.5 |
Symmetry code: (i) y, x, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2ii | 0.82 | 2.07 | 2.867 (3) | 163 |
N4—H4B···O5ii | 0.89 | 2.51 | 3.142 (5) | 129 |
O2—H2···N2iii | 0.82 | 2.13 | 2.943 (3) | 174 |
N4—H4C···O4iv | 0.89 | 2.40 | 3.022 (4) | 127 |
Symmetry codes: (ii) x−1/2, −y+3/2, −z+7/4; (iii) −y+2, −x+2, −z+3/2; (iv) −x+2, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(NO3)2(C6H12N4O2)2] |
Mr | 533.78 |
Crystal system, space group | Tetragonal, P41212 |
Temperature (K) | 298 |
a, c (Å) | 12.1252 (7), 14.6108 (17) |
V (Å3) | 2148.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.22 |
Crystal size (mm) | 0.36 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Bruker APEX DUO diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.767, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7446, 2463, 2154 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.088, 1.05 |
No. of reflections | 2463 |
No. of parameters | 154 |
No. of restraints | 378 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.23 |
Absolute structure | Flack (1983), 993 Friedel pairs |
Absolute structure parameter | −0.022 (15) |
Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2007).
Zn1—N1 | 2.0239 (19) | Zn1—O3 | 2.071 (2) |
Zn1—N1i | 2.0239 (19) | Zn1—O3i | 2.071 (2) |
N1—Zn1—N1i | 143.46 (13) | N1—Zn1—O3i | 104.96 (8) |
N1—Zn1—O3 | 95.90 (8) | N1i—Zn1—O3i | 95.90 (8) |
N1i—Zn1—O3 | 104.96 (8) | O3—Zn1—O3i | 109.73 (13) |
Symmetry code: (i) y, x, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2ii | 0.82 | 2.07 | 2.867 (3) | 163.4 |
N4—H4B···O5ii | 0.89 | 2.51 | 3.142 (5) | 128.9 |
O2—H2···N2iii | 0.82 | 2.13 | 2.943 (3) | 174.4 |
N4—H4C···O4iv | 0.89 | 2.40 | 3.022 (4) | 127.0 |
Symmetry codes: (ii) x−1/2, −y+3/2, −z+7/4; (iii) −y+2, −x+2, −z+3/2; (iv) −x+2, −y+2, z−1/2. |
Acknowledgements
The authors thank Yuan Deng for collecting the X-ray crystal data. We are also grateful to the National Natural Science Foundation of China (21101048), the Qianjiang Talent Projects of Zhejiang Province (2011R10091), the Education Office of Zhejiang Province (201065XP139) and Hangzhou Normal University (HSKQ0007) for financial support.
References
Brandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hang, T., Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2011). Chem. Soc. Rev. 40, 3577–3598. Web of Science CrossRef CAS PubMed Google Scholar
Lin, W. (2010). Top. Catal. 53, 869–875. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral coordination complexes have received considerable attention due to their potential applications in the area of ferroelectrics, enantiopure catalysis and separation (Hang et al., 2011; Lin et al., 2010). Among the different approaches to synthesize chiral coordination compounds, the most effective synthetic strategy is to use optically pure chiral ligands. Herein, we report a chiral zinc coordination compound (S)-[Zn(deoatrz)2(NO3)2], by using an enantiopure (1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole-3,5-diyl)diethanol (deoatrz), reacting with zinc salts. Furthermore, its structure is characterized.
Single crystal structural analysis reveals that the title compound crystallizes in the tetragonal system, chiral space group P41212. The title compound is a mononuclear and its asymmetric unit consists of one Zn atom, two deoatrz ligands and two NO3– anions (Fig. 1). The Zn atom is coordinated by two N atoms (N1, N1A) from two deoatrz ligands and two NO3– anions (O3, O3A), adopting a distorted tetrahedral coordination geometry. The Zn—O and Zn—N bond lengths are 2.071 (2) and 2.024 (1) Å, respectively. The bond angles around Zn atom vary from 95.9 (8) to 143.5 (1)o.
As shown in Fig. 2, the interesting H-bonds are observed in the title compound. The fundamentally units are one dimensional chiral hydrogen bond chains along c axis, and subsequently the chains are connected into three-dimensional chiral supramolecular networks through O—H···O, O—H···N and N—H···O hydrogen bond interactions.