metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m191-m192

Bis[(1S,1′S)-1,1′-(4-amino-4H-1,2,4-triazole-3,5-di­yl)di­ethanol-κN1]bis­­(nitrato-κO)zinc

aCollege of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: xgliu07@gmail.com

(Received 4 January 2012; accepted 14 January 2012; online 21 January 2012)

In the title homochiral mononuclear compound, [Zn(NO3)2(C6H12N4O2)2], the ZnII atom is located on a twofold rotation axis and coordinated by two N atoms from two ligands and two O atoms from two NO3 anions, adopting a distorted tetra­hedral coordination geometry. The compound is enanti­omerically pure and corresponds to the S diastereoisomer, with the optical activity originating from the chiral ligand. In the crystal, mol­ecules are connected into three-dimensional supra­molecular networks through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For 4-amino-4H-1,2,4-triazole transition metal complexes, see: Zhai et al. (2006[Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126-2135.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33-43.]). For the non-linear optical properties of chiral coordination compounds, see: Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]). For uses of chiral coordination compounds, see: Hang et al. (2011[Hang, T., Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2011). Chem. Soc. Rev. 40, 3577-3598.]); Lin (2010[Lin, W. (2010). Top. Catal. 53, 869-875.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NO3)2(C6H12N4O2)2]

  • Mr = 533.78

  • Tetragonal, P 41 21 2

  • a = 12.1252 (7) Å

  • c = 14.6108 (17) Å

  • V = 2148.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 298 K

  • 0.36 × 0.18 × 0.12 mm

Data collection
  • Bruker APEX DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.767, Tmax = 0.862

  • 7446 measured reflections

  • 2463 independent reflections

  • 2154 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.05

  • 2463 reflections

  • 154 parameters

  • 378 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 993 Friedel pairs

  • Flack parameter: −0.022 (15)

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.0239 (19)
Zn1—O3 2.071 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2ii 0.82 2.07 2.867 (3) 163
N4—H4B⋯O5ii 0.89 2.51 3.142 (5) 129
O2—H2⋯N2iii 0.82 2.13 2.943 (3) 174
N4—H4C⋯O4iv 0.89 2.40 3.022 (4) 127
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{7\over 4}}]; (iii) [-y+2, -x+2, -z+{\script{3\over 2}}]; (iv) [-x+2, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg & Putz, 2007[Brandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chiral coordination complexes have received considerable attention due to their potential applications in the area of ferroelectrics, enantiopure catalysis and separation (Hang et al., 2011; Lin et al., 2010). Among the different approaches to synthesize chiral coordination compounds, the most effective synthetic strategy is to use optically pure chiral ligands. Herein, we report a chiral zinc coordination compound (S)-[Zn(deoatrz)2(NO3)2], by using an enantiopure (1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole-3,5-diyl)diethanol (deoatrz), reacting with zinc salts. Furthermore, its structure is characterized.

Single crystal structural analysis reveals that the title compound crystallizes in the tetragonal system, chiral space group P41212. The title compound is a mononuclear and its asymmetric unit consists of one Zn atom, two deoatrz ligands and two NO3– anions (Fig. 1). The Zn atom is coordinated by two N atoms (N1, N1A) from two deoatrz ligands and two NO3– anions (O3, O3A), adopting a distorted tetrahedral coordination geometry. The Zn—O and Zn—N bond lengths are 2.071 (2) and 2.024 (1) Å, respectively. The bond angles around Zn atom vary from 95.9 (8) to 143.5 (1)o.

As shown in Fig. 2, the interesting H-bonds are observed in the title compound. The fundamentally units are one dimensional chiral hydrogen bond chains along c axis, and subsequently the chains are connected into three-dimensional chiral supramolecular networks through O—H···O, O—H···N and N—H···O hydrogen bond interactions.

Related literature top

For 4-amino-4H-1,2,4-triazole transition metal complexes, see: Zhai et al. (2006); Yi et al. (2004). For the non-linear optical properties of chiral coordination compounds, see: Evans & Lin (2002). For uses of chiral coordination compounds, see: Hang et al. (2011); Lin (2010).

Experimental top

An 10 ml ethanol solution of (1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole -3,5-diyl)diethanol (0.2 mmol, 0.0344 g) and Zn(NO3)2.6H2O (0.10 mmol, 0.0298 g) was stirred for five minutes and then filtered. The filtrate was carefully layered with 10 ml ethyl ether. After one week, colorless needle-like crystals of the title compound were obtained. Yield: 45%.

Refinement top

All H atoms were put in calculated positions. All H atoms were refined with Uiso(H) = 1.2Ueq(N and O) and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination geometry of Znic in the title compound with atomic labeling scheme. Thermal ellipsoids are at the 30% probability level. All H atoms except those attached to O and N atoms are omitted for clarity.
[Figure 2] Fig. 2. The hydrogen-bonded chains in the title compound along the c axis.
[Figure 3] Fig. 3. Three dimensional hydrogen-bonded supramolecular networks in the title compound Viewed from c dimension.
Bis[(1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole-3,5- diyl)diethanol-κN1]bis(nitrato-κO)zinc top
Crystal data top
[Zn(NO3)2(C6H12N4O2)2]Dx = 1.651 Mg m3
Mr = 533.78Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 7446 reflections
Hall symbol: P 4abw 2nwθ = 1.7–27.5°
a = 12.1252 (7) ŵ = 1.22 mm1
c = 14.6108 (17) ÅT = 298 K
V = 2148.1 (3) Å3Needle, colourless
Z = 40.36 × 0.18 × 0.12 mm
F(000) = 1104
Data collection top
Bruker APEX DUO
diffractometer
2463 independent reflections
Radiation source: fine-focus sealed tube2154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 159
Tmin = 0.767, Tmax = 0.862k = 1513
7446 measured reflectionsl = 1812
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2512P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2463 reflectionsΔρmax = 0.32 e Å3
154 parametersΔρmin = 0.23 e Å3
378 restraintsAbsolute structure: Flack (1983), 993 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (15)
Crystal data top
[Zn(NO3)2(C6H12N4O2)2]Z = 4
Mr = 533.78Mo Kα radiation
Tetragonal, P41212µ = 1.22 mm1
a = 12.1252 (7) ÅT = 298 K
c = 14.6108 (17) Å0.36 × 0.18 × 0.12 mm
V = 2148.1 (3) Å3
Data collection top
Bruker APEX DUO
diffractometer
2463 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2154 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.862Rint = 0.032
7446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.23 e Å3
2463 reflectionsAbsolute structure: Flack (1983), 993 Friedel pairs
154 parametersAbsolute structure parameter: 0.022 (15)
378 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.92340 (3)0.92340 (3)1.00000.03222 (13)
O10.72436 (18)0.90461 (18)0.95521 (12)0.0417 (5)
H10.70210.84930.98170.063*
O21.13628 (15)0.75723 (17)0.67187 (13)0.0336 (4)
H21.14790.82350.67770.050*
O31.09002 (17)0.89583 (19)1.02136 (13)0.0464 (5)
O41.0802 (3)1.0273 (3)1.1173 (3)0.1176 (14)
O51.2371 (2)0.9742 (3)1.0727 (2)0.0758 (9)
N10.91797 (19)0.85483 (18)0.87379 (13)0.0285 (5)
N21.00505 (19)0.81575 (19)0.82025 (13)0.0279 (5)
N30.84957 (17)0.80180 (17)0.74473 (15)0.0271 (4)
N40.7738 (2)0.7823 (2)0.67330 (16)0.0427 (6)
H4B0.79280.72080.64400.064*
H4C0.77530.83880.63450.064*
N51.1372 (2)0.9678 (2)1.07029 (17)0.0417 (6)
C10.8266 (2)0.8474 (2)0.82697 (16)0.0273 (5)
C20.9608 (2)0.7841 (2)0.74215 (16)0.0262 (5)
C30.7171 (2)0.8883 (2)0.85876 (17)0.0332 (6)
H30.65950.83430.84460.040*
C40.6903 (3)0.9988 (3)0.8141 (2)0.0467 (8)
H4D0.62161.02610.83770.070*
H4E0.68440.98920.74900.070*
H4F0.74791.05070.82740.070*
C51.0219 (2)0.7390 (2)0.66148 (17)0.0299 (6)
H50.99680.77760.60630.036*
C61.0044 (3)0.6164 (3)0.6482 (2)0.0460 (8)
H6A1.03890.59340.59230.069*
H6B0.92680.60110.64520.069*
H6C1.03630.57700.69870.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03548 (17)0.03548 (17)0.02569 (18)0.0024 (2)0.00483 (13)0.00483 (13)
O10.0449 (12)0.0468 (14)0.0334 (9)0.0032 (10)0.0117 (9)0.0021 (9)
O20.0277 (10)0.0310 (11)0.0420 (9)0.0005 (8)0.0038 (8)0.0056 (9)
O30.0380 (12)0.0514 (13)0.0497 (10)0.0025 (9)0.0045 (9)0.0172 (9)
O40.0629 (19)0.112 (3)0.178 (3)0.0013 (19)0.005 (2)0.105 (3)
O50.0356 (15)0.102 (2)0.0901 (18)0.0029 (14)0.0133 (13)0.0283 (17)
N10.0269 (11)0.0310 (11)0.0277 (9)0.0003 (10)0.0016 (9)0.0025 (8)
N20.0260 (11)0.0307 (11)0.0269 (9)0.0038 (9)0.0002 (8)0.0031 (8)
N30.0242 (10)0.0296 (10)0.0275 (8)0.0036 (8)0.0028 (9)0.0012 (9)
N40.0409 (14)0.0495 (16)0.0378 (10)0.0041 (11)0.0161 (11)0.0046 (12)
N50.0369 (15)0.0375 (14)0.0508 (13)0.0048 (11)0.0053 (11)0.0062 (12)
C10.0282 (13)0.0250 (13)0.0288 (10)0.0015 (10)0.0020 (10)0.0035 (10)
C20.0265 (11)0.0248 (12)0.0272 (10)0.0010 (9)0.0026 (10)0.0020 (10)
C30.0265 (14)0.0394 (15)0.0336 (11)0.0004 (11)0.0022 (10)0.0016 (11)
C40.0406 (18)0.0481 (19)0.0515 (16)0.0162 (15)0.0033 (14)0.0044 (15)
C50.0278 (13)0.0339 (14)0.0281 (10)0.0028 (11)0.0015 (10)0.0028 (10)
C60.0423 (18)0.0410 (18)0.0546 (17)0.0048 (15)0.0031 (15)0.0171 (14)
Geometric parameters (Å, º) top
Zn1—N12.0239 (19)N3—N41.410 (3)
Zn1—N1i2.0239 (19)N4—H4B0.8900
Zn1—O32.071 (2)N4—H4C0.8900
Zn1—O3i2.071 (2)C1—C31.492 (4)
O1—C31.426 (3)C2—C51.496 (4)
O1—H10.8200C3—C41.525 (4)
O2—C51.412 (3)C3—H30.9800
O2—H20.8200C4—H4D0.9600
O3—N51.265 (3)C4—H4E0.9600
O4—N51.212 (4)C4—H4F0.9600
O5—N51.215 (4)C5—C61.514 (4)
N1—C11.305 (3)C5—H50.9800
N1—N21.397 (3)C6—H6A0.9600
N2—C21.318 (3)C6—H6B0.9600
N3—C11.352 (3)C6—H6C0.9600
N3—C21.366 (3)
N1—Zn1—N1i143.46 (13)N2—C2—C5125.9 (2)
N1—Zn1—O395.90 (8)N3—C2—C5124.6 (2)
N1i—Zn1—O3104.96 (8)O1—C3—C1107.4 (2)
N1—Zn1—O3i104.96 (8)O1—C3—C4108.4 (2)
N1i—Zn1—O3i95.90 (8)C1—C3—C4110.4 (2)
O3—Zn1—O3i109.73 (13)O1—C3—H3110.2
C3—O1—H1109.5C1—C3—H3110.2
C5—O2—H2109.5C4—C3—H3110.2
N5—O3—Zn1114.52 (17)C3—C4—H4D109.5
C1—N1—N2108.94 (19)C3—C4—H4E109.5
C1—N1—Zn1122.26 (18)H4D—C4—H4E109.5
N2—N1—Zn1128.68 (16)C3—C4—H4F109.5
C2—N2—N1106.0 (2)H4D—C4—H4F109.5
C1—N3—C2107.0 (2)H4E—C4—H4F109.5
C1—N3—N4126.3 (2)O2—C5—C2110.2 (2)
C2—N3—N4126.6 (2)O2—C5—C6107.8 (2)
N3—N4—H4B109.2C2—C5—C6113.0 (2)
N3—N4—H4C109.2O2—C5—H5108.6
H4B—N4—H4C109.5C2—C5—H5108.6
O4—N5—O5120.9 (3)C6—C5—H5108.6
O4—N5—O3118.2 (3)C5—C6—H6A109.5
O5—N5—O3120.8 (3)C5—C6—H6B109.5
N1—C1—N3108.6 (2)H6A—C6—H6B109.5
N1—C1—C3124.7 (2)C5—C6—H6C109.5
N3—C1—C3126.6 (2)H6A—C6—H6C109.5
N2—C2—N3109.4 (2)H6B—C6—H6C109.5
Symmetry code: (i) y, x, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.822.072.867 (3)163
N4—H4B···O5ii0.892.513.142 (5)129
O2—H2···N2iii0.822.132.943 (3)174
N4—H4C···O4iv0.892.403.022 (4)127
Symmetry codes: (ii) x1/2, y+3/2, z+7/4; (iii) y+2, x+2, z+3/2; (iv) x+2, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(NO3)2(C6H12N4O2)2]
Mr533.78
Crystal system, space groupTetragonal, P41212
Temperature (K)298
a, c (Å)12.1252 (7), 14.6108 (17)
V3)2148.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.36 × 0.18 × 0.12
Data collection
DiffractometerBruker APEX DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.767, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
7446, 2463, 2154
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.05
No. of reflections2463
No. of parameters154
No. of restraints378
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.23
Absolute structureFlack (1983), 993 Friedel pairs
Absolute structure parameter0.022 (15)

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2007).

Selected geometric parameters (Å, º) top
Zn1—N12.0239 (19)Zn1—O32.071 (2)
Zn1—N1i2.0239 (19)Zn1—O3i2.071 (2)
N1—Zn1—N1i143.46 (13)N1—Zn1—O3i104.96 (8)
N1—Zn1—O395.90 (8)N1i—Zn1—O3i95.90 (8)
N1i—Zn1—O3104.96 (8)O3—Zn1—O3i109.73 (13)
Symmetry code: (i) y, x, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.822.072.867 (3)163.4
N4—H4B···O5ii0.892.513.142 (5)128.9
O2—H2···N2iii0.822.132.943 (3)174.4
N4—H4C···O4iv0.892.403.022 (4)127.0
Symmetry codes: (ii) x1/2, y+3/2, z+7/4; (iii) y+2, x+2, z+3/2; (iv) x+2, y+2, z1/2.
 

Acknowledgements

The authors thank Yuan Deng for collecting the X-ray crystal data. We are also grateful to the National Natural Science Foundation of China (21101048), the Qianjiang Talent Projects of Zhejiang Province (2011R10091), the Education Office of Zhejiang Province (201065XP139) and Hangzhou Normal University (HSKQ0007) for financial support.

References

First citationBrandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHang, T., Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2011). Chem. Soc. Rev. 40, 3577–3598.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLin, W. (2010). Top. Catal. 53, 869–875.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m191-m192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds