metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(1H-benzimidazol-2-yl)meth­yl]-1H-imidazole-κN3}­bis­­(3,5-dicarb­­oxy­benzoato-κO1)zinc octa­hydrate

aSchool of Chemical and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China, bSchool of Environmental and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, People's Republic of China, and cDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: mxr@zzu.edu.cn

(Received 11 January 2012; accepted 12 January 2012; online 18 January 2012)

In the title complex, [Zn(C9H5O6)2(C11H10N4)2]·8H2O, the ZnII ion exhibits site symmetry 2. It shows a distorted tetra­hedral coordination defined by two N atoms from two symmetry-related 1-[(1H-benzimidazol-2-yl)meth­yl]-1H-imid­azole ligands and by two O atoms from two symmetry-related monodeprotonated 3,5-dicarb­oxy­benzoate anions. In the crystal, complex mol­ecules and solvent water mol­ecules are linked through inter­molecular O—H⋯O, O—H⋯N, and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background information on ZnII complexes constructed from both aromatic carboxyl­ates and N-heterocyclic ligands, see: Lin et al. (2008[Lin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 9, 3345-3353.]); Tian et al. (2010[Tian, L., Yang, N. & Zhao, G.-Y. (2010). Inorg. Chem. Commun. 13, 1497-1500.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H5O6)2(C11H10N4)2]·8H2O

  • Mr = 1024.22

  • Monoclinic, C 2/c

  • a = 20.870 (4) Å

  • b = 15.008 (3) Å

  • c = 15.472 (3) Å

  • β = 109.51 (3)°

  • V = 4567.9 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.14 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.896, Tmax = 0.917

  • 15325 measured reflections

  • 4127 independent reflections

  • 3898 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.158

  • S = 1.07

  • 4127 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O9 0.85 2.22 2.936 (8) 142
O9—H9A⋯O4 0.85 2.15 2.634 (7) 115
O9—H9B⋯O10 0.85 2.24 2.783 (12) 122
O10—H10A⋯O9 0.85 1.93 2.783 (12) 179
N4—H4⋯O7i 0.86 1.97 2.808 (4) 163
O3—H3⋯O10ii 0.82 2.56 3.341 (10) 159
O5—H5⋯N3iii 0.82 1.77 2.577 (3) 165
O7—H7A⋯O2iv 0.85 1.98 2.784 (4) 156
O7—H7B⋯O8v 0.85 1.95 2.796 (5) 179
O8—H8B⋯O6vi 0.85 2.02 2.799 (6) 152
O10—H10B⋯O6vii 0.85 2.03 2.728 (9) 139
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, -y+1, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It is well known that the ZnII ion is able to coordinate simultaneously to both oxygen-containing and nitrogen-containing ligands and the final products can exhibit attractive structures and useful functional properties. A great number of ZnII complexes containing both aromatic carboxylates and N-heterocyclic ligands have been reported (Lin et al., 2008; Tian et al., 2010). In order to further explore such compounds with new structures, we selected 1-((1H-benzimidazol-1-yl)methyl)-1H-imidazole and 1,3,5-benzenetricarboxylic acid as ligands to self-assemble with Zn(NO3)2 and obtained the title complex, {[Zn(C9H5O6)2(C11H10N4)2] (H2O)8}, the crystal structure of which is reported herein. As shown in Figure 1, two 1-((1H-benzimidazol-1-yl)methyl)-1H-imidazole ligands and two monodeprotonated 1,3,5-benzenetricarboxylic acid anions coordinate to the ZnII ion which is located on a twofold rotation axis. The Zn—O bond length is slightly shorter than the Zn—N bond length. The environment around the ZnII ion can be best described as distorted tetrahedral. O—H···O, O—H···N, and N—H···O hydrogen bonds between solvent water/water molecules, between solvent water molecules and carboxylate O atoms, between carboxyl groups and solvent water molecules, between carboxyl groups and benzimidazole N atoms, between benzimidazole units and solvent water molecules of adjacent molecules consolidate the crystal packing (Figure 2).

Related literature top

For background information on ZnII complexes constructed from both aromatic carboxylates and N-heterocyclic ligands, see: Lin et al. (2008); Tian et al. (2010).

Experimental top

A mixture of Zn(NO3)2 (0.1 mmol), 1-((1H-benzimidazol-1-yl)methyl)-1H-imidazole (0.1 mmol), 1,3,5-benzenetricarboxylic acid (0.1 mmol) and water (10 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 120 °C for 72 h, then cooled to room temperature. Colourless crystals were obtained from the filtrate and dried in air.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) Å and 0.97 (CH2) Å. H atoms bound to N and O atoms were found from difference maps and refined with distance restraints of N-H = 0.86 Å and O-H = 0.82 (OH) Å and O-H = 0.85 (H2O) Å. All H atoms were refined with Uiso(H) = 1.2 Ueq(C,N,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title complex showing labeling and 30% probability displacement ellipsolids. H atoms are omitted for clarity. [Symmetry code A: -x + 2, +y, -z + 1.5.]
[Figure 2] Fig. 2. View of the crystal packing of the title complex, showing the three-dimensional structure stabilized by hydrogen bonds.
Bis{1-[(1H-benzimidazol-2-yl)methyl]-1H-imidazole- κN3}bis(3,5-dicarboxybenzoato-κO1)zinc octahydrate top
Crystal data top
[Zn(C9H5O6)2(C11H10N4)2]·8H2OF(000) = 2128
Mr = 1024.22Dx = 1.489 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6831 reflections
a = 20.870 (4) Åθ = 1.7–27.9°
b = 15.008 (3) ŵ = 0.63 mm1
c = 15.472 (3) ÅT = 293 K
β = 109.51 (3)°Prism, colourless
V = 4567.9 (16) Å30.18 × 0.15 × 0.14 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
4127 independent reflections
Radiation source: fine-focus sealed tube3898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 2.0°
ω scansh = 2525
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 1718
Tmin = 0.896, Tmax = 0.917l = 1818
15325 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0953P)2 + 7.0031P]
where P = (Fo2 + 2Fc2)/3
4127 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C9H5O6)2(C11H10N4)2]·8H2OV = 4567.9 (16) Å3
Mr = 1024.22Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.870 (4) ŵ = 0.63 mm1
b = 15.008 (3) ÅT = 293 K
c = 15.472 (3) Å0.18 × 0.15 × 0.14 mm
β = 109.51 (3)°
Data collection top
Rigaku Saturn
diffractometer
4127 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
3898 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.917Rint = 0.031
15325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.07Δρmax = 1.08 e Å3
4127 reflectionsΔρmin = 0.45 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.47361 (3)0.75000.02673 (18)
N11.00685 (12)0.54973 (17)0.85945 (17)0.0303 (5)
N21.04718 (12)0.60129 (16)0.99936 (16)0.0295 (5)
N31.20973 (13)0.63838 (16)1.09909 (17)0.0323 (6)
N41.15439 (13)0.75634 (17)1.11874 (19)0.0368 (6)
H41.12190.78911.12350.044*
O10.91112 (10)0.41744 (14)0.70946 (15)0.0353 (5)
O20.95138 (12)0.31291 (17)0.64061 (18)0.0486 (6)
O30.67237 (16)0.42512 (17)0.6806 (3)0.0685 (9)
H30.65390.46030.63910.082*
O40.60726 (13)0.3058 (2)0.6317 (3)0.0730 (10)
O50.70841 (13)0.02986 (15)0.5653 (3)0.0604 (8)
H50.71290.02440.57030.073*
O60.81799 (15)0.02479 (16)0.5819 (3)0.0655 (9)
O70.03572 (17)0.8297 (2)0.1368 (3)0.0841 (11)
H7A0.00960.79390.15170.101*
H7B0.05000.87610.16880.101*
O80.5834 (2)0.5183 (3)0.7433 (3)0.1037 (14)
H8A0.57240.46360.74010.124*
H8B0.60170.51380.80110.124*
O90.4962 (3)0.3677 (5)0.6555 (6)0.214 (4)
H9A0.51300.37460.61290.256*
H9B0.45920.39660.64280.256*
O100.4214 (6)0.4833 (11)0.5182 (7)0.417 (11)
H10A0.44420.44750.55970.501*
H10B0.38220.47330.52140.501*
C11.05420 (15)0.53995 (19)0.9405 (2)0.0303 (6)
H1A1.08780.49640.95460.036*
C20.96815 (16)0.6220 (2)0.8680 (2)0.0381 (7)
H2A0.93110.64510.82150.046*
C30.99263 (16)0.6536 (2)0.9542 (2)0.0396 (8)
H3A0.97580.70150.97820.048*
C41.09106 (16)0.6115 (2)1.0948 (2)0.0344 (7)
H4A1.10630.55311.12040.041*
H4B1.06500.63771.12980.041*
C51.15158 (15)0.6686 (2)1.10402 (19)0.0302 (6)
C61.21887 (16)0.7856 (2)1.1250 (2)0.0347 (7)
C71.24868 (19)0.8692 (2)1.1402 (3)0.0483 (9)
H7C1.22510.91941.14800.058*
C81.3160 (2)0.8734 (3)1.1431 (3)0.0519 (9)
H8C1.33810.92821.15290.062*
C91.35128 (18)0.7980 (3)1.1318 (3)0.0506 (9)
H9C1.39640.80371.13530.061*
C101.32114 (17)0.7154 (2)1.1157 (2)0.0419 (8)
H10C1.34460.66531.10740.050*
C111.25365 (15)0.7105 (2)1.1124 (2)0.0327 (7)
C120.90560 (15)0.3445 (2)0.6650 (2)0.0314 (6)
C130.83856 (15)0.2976 (2)0.64489 (19)0.0297 (6)
C140.78386 (15)0.3418 (2)0.6558 (2)0.0332 (7)
H14A0.78840.40090.67490.040*
C150.72163 (16)0.2984 (2)0.6385 (2)0.0357 (7)
C160.71589 (16)0.2091 (2)0.6120 (2)0.0363 (7)
H16A0.67470.17970.60070.044*
C170.77091 (16)0.1639 (2)0.6024 (2)0.0346 (7)
C180.83224 (16)0.2091 (2)0.6178 (2)0.0344 (7)
H18A0.86910.17960.60980.041*
C190.66265 (17)0.3463 (2)0.6498 (3)0.0439 (8)
C200.76632 (18)0.0659 (2)0.5806 (3)0.0435 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0215 (3)0.0258 (3)0.0320 (3)0.0000.0078 (2)0.000
N10.0237 (12)0.0282 (12)0.0380 (14)0.0005 (10)0.0089 (10)0.0032 (11)
N20.0276 (12)0.0287 (12)0.0324 (13)0.0035 (10)0.0104 (10)0.0038 (10)
N30.0291 (13)0.0262 (12)0.0383 (14)0.0012 (10)0.0070 (11)0.0028 (11)
N40.0317 (14)0.0321 (14)0.0479 (16)0.0030 (11)0.0152 (12)0.0087 (12)
O10.0294 (11)0.0326 (11)0.0417 (12)0.0077 (9)0.0090 (9)0.0042 (9)
O20.0372 (13)0.0513 (15)0.0651 (16)0.0110 (11)0.0276 (12)0.0135 (12)
O30.0585 (18)0.0375 (15)0.119 (3)0.0020 (13)0.0428 (18)0.0142 (16)
O40.0347 (14)0.0558 (17)0.129 (3)0.0097 (13)0.0275 (16)0.0182 (18)
O50.0418 (15)0.0241 (12)0.111 (3)0.0081 (10)0.0193 (15)0.0041 (13)
O60.0515 (17)0.0367 (15)0.115 (3)0.0043 (12)0.0364 (17)0.0187 (14)
O70.078 (2)0.065 (2)0.129 (3)0.0150 (17)0.060 (2)0.018 (2)
O80.100 (3)0.089 (3)0.111 (3)0.001 (2)0.020 (3)0.001 (2)
O90.117 (5)0.204 (7)0.321 (10)0.020 (5)0.074 (6)0.060 (7)
O100.317 (14)0.76 (3)0.254 (12)0.332 (17)0.204 (12)0.243 (16)
C10.0241 (14)0.0280 (15)0.0376 (16)0.0019 (11)0.0087 (12)0.0011 (12)
C20.0307 (16)0.0373 (17)0.0415 (18)0.0074 (13)0.0055 (13)0.0038 (14)
C30.0378 (17)0.0364 (17)0.0443 (18)0.0087 (14)0.0135 (15)0.0062 (14)
C40.0345 (16)0.0372 (16)0.0318 (15)0.0090 (13)0.0113 (13)0.0024 (13)
C50.0302 (15)0.0292 (15)0.0298 (15)0.0035 (12)0.0083 (12)0.0002 (12)
C60.0341 (16)0.0323 (16)0.0349 (16)0.0050 (13)0.0077 (13)0.0040 (13)
C70.053 (2)0.0324 (18)0.060 (2)0.0087 (16)0.0192 (18)0.0079 (16)
C80.051 (2)0.043 (2)0.058 (2)0.0209 (18)0.0141 (18)0.0030 (17)
C90.0346 (18)0.061 (2)0.053 (2)0.0129 (17)0.0102 (16)0.0041 (18)
C100.0336 (17)0.0413 (19)0.049 (2)0.0004 (14)0.0110 (15)0.0042 (15)
C110.0312 (15)0.0283 (15)0.0347 (16)0.0033 (12)0.0059 (12)0.0020 (12)
C120.0313 (15)0.0315 (15)0.0306 (15)0.0058 (12)0.0092 (12)0.0026 (12)
C130.0292 (15)0.0295 (15)0.0282 (14)0.0068 (12)0.0065 (12)0.0010 (12)
C140.0341 (16)0.0243 (14)0.0388 (17)0.0066 (12)0.0092 (13)0.0024 (12)
C150.0303 (16)0.0310 (16)0.0436 (18)0.0041 (13)0.0093 (13)0.0014 (13)
C160.0304 (16)0.0294 (16)0.0460 (18)0.0070 (13)0.0084 (13)0.0007 (13)
C170.0315 (16)0.0273 (15)0.0429 (18)0.0067 (12)0.0097 (13)0.0013 (13)
C180.0309 (16)0.0330 (16)0.0405 (17)0.0047 (13)0.0137 (13)0.0020 (13)
C190.0345 (18)0.0325 (17)0.063 (2)0.0033 (14)0.0139 (16)0.0040 (16)
C200.0409 (19)0.0302 (17)0.058 (2)0.0065 (15)0.0153 (16)0.0036 (15)
Geometric parameters (Å, º) top
Zn1—O11.941 (2)C1—H1A0.9300
Zn1—O1i1.941 (2)C2—C31.344 (5)
Zn1—N12.008 (2)C2—H2A0.9300
Zn1—N1i2.008 (2)C3—H3A0.9300
N1—C11.320 (4)C4—C51.493 (4)
N1—C21.385 (4)C4—H4A0.9700
N2—C11.338 (4)C4—H4B0.9700
N2—C31.367 (4)C6—C71.384 (5)
N2—C41.463 (4)C6—C111.390 (4)
N3—C51.322 (4)C7—C81.392 (5)
N3—C111.388 (4)C7—H7C0.9300
N4—C51.334 (4)C8—C91.392 (6)
N4—C61.388 (4)C8—H8C0.9300
N4—H40.8600C9—C101.375 (5)
O1—C121.278 (4)C9—H9C0.9300
O2—C121.233 (4)C10—C111.394 (5)
O3—C191.266 (4)C10—H10C0.9300
O3—H30.8200C12—C131.503 (4)
O4—C191.253 (4)C13—C141.378 (4)
O5—C201.272 (4)C13—C181.386 (4)
O5—H50.8200C14—C151.396 (4)
O6—C201.236 (4)C14—H14A0.9300
O7—H7A0.8500C15—C161.395 (4)
O7—H7B0.8492C15—C191.485 (5)
O8—H8A0.8501C16—C171.384 (5)
O8—H8B0.8502C16—H16A0.9300
O9—H9A0.8500C17—C181.397 (4)
O9—H9B0.8501C17—C201.505 (4)
O10—H10A0.8502C18—H18A0.9300
O10—H10B0.8498
O1—Zn1—O1i128.52 (13)N4—C6—C11105.8 (3)
O1—Zn1—N1108.11 (10)C6—C7—C8116.0 (3)
O1i—Zn1—N1100.57 (10)C6—C7—H7C122.0
O1—Zn1—N1i100.57 (10)C8—C7—H7C122.0
O1i—Zn1—N1i108.11 (10)C7—C8—C9121.9 (3)
N1—Zn1—N1i110.65 (15)C7—C8—H8C119.0
C1—N1—C2105.8 (3)C9—C8—H8C119.0
C1—N1—Zn1123.9 (2)C10—C9—C8121.8 (3)
C2—N1—Zn1130.3 (2)C10—C9—H9C119.1
C1—N2—C3108.0 (2)C8—C9—H9C119.1
C1—N2—C4125.9 (3)C9—C10—C11116.7 (3)
C3—N2—C4126.2 (3)C9—C10—H10C121.6
C5—N3—C11107.3 (3)C11—C10—H10C121.6
C5—N4—C6108.1 (3)N3—C11—C6107.7 (3)
C5—N4—H4125.9N3—C11—C10131.0 (3)
C6—N4—H4125.9C6—C11—C10121.3 (3)
C12—O1—Zn1116.8 (2)O2—C12—O1123.7 (3)
C19—O3—H3109.5O2—C12—C13121.3 (3)
C20—O5—H5109.5O1—C12—C13115.0 (3)
H7A—O7—H7B119.4C14—C13—C18119.9 (3)
H8A—O8—H8B90.1C14—C13—C12120.1 (3)
H9A—O9—H9B109.5C18—C13—C12119.9 (3)
H10A—O10—H10B98.7C13—C14—C15120.5 (3)
N1—C1—N2110.7 (3)C13—C14—H14A119.7
N1—C1—H1A124.7C15—C14—H14A119.7
N2—C1—H1A124.7C16—C15—C14119.2 (3)
C3—C2—N1109.3 (3)C16—C15—C19120.4 (3)
C3—C2—H2A125.4C14—C15—C19120.4 (3)
N1—C2—H2A125.4C17—C16—C15120.6 (3)
C2—C3—N2106.3 (3)C17—C16—H16A119.7
C2—C3—H3A126.9C15—C16—H16A119.7
N2—C3—H3A126.9C16—C17—C18119.3 (3)
N2—C4—C5112.4 (2)C16—C17—C20120.7 (3)
N2—C4—H4A109.1C18—C17—C20119.9 (3)
C5—C4—H4A109.1C13—C18—C17120.4 (3)
N2—C4—H4B109.1C13—C18—H18A119.8
C5—C4—H4B109.1C17—C18—H18A119.8
H4A—C4—H4B107.9O4—C19—O3123.9 (3)
N3—C5—N4111.1 (3)O4—C19—C15118.6 (3)
N3—C5—C4124.1 (3)O3—C19—C15117.5 (3)
N4—C5—C4124.8 (3)O6—C20—O5124.1 (3)
C7—C6—N4132.0 (3)O6—C20—C17119.6 (3)
C7—C6—C11122.2 (3)O5—C20—C17116.3 (3)
O1—Zn1—N1—C1121.9 (2)C5—N3—C11—C10178.6 (3)
O1i—Zn1—N1—C114.8 (3)C7—C6—C11—N3179.9 (3)
N1i—Zn1—N1—C1128.9 (3)N4—C6—C11—N30.0 (3)
O1—Zn1—N1—C260.7 (3)C7—C6—C11—C100.8 (5)
O1i—Zn1—N1—C2162.6 (3)N4—C6—C11—C10179.1 (3)
N1i—Zn1—N1—C248.5 (3)C9—C10—C11—N3178.9 (3)
O1i—Zn1—O1—C1234.72 (19)C9—C10—C11—C60.1 (5)
N1—Zn1—O1—C12155.2 (2)Zn1—O1—C12—O26.1 (4)
N1i—Zn1—O1—C1288.8 (2)Zn1—O1—C12—C13172.90 (18)
C2—N1—C1—N20.5 (3)O2—C12—C13—C14166.9 (3)
Zn1—N1—C1—N2178.40 (19)O1—C12—C13—C1414.1 (4)
C3—N2—C1—N10.2 (3)O2—C12—C13—C1814.9 (4)
C4—N2—C1—N1179.1 (3)O1—C12—C13—C18164.2 (3)
C1—N1—C2—C30.6 (4)C18—C13—C14—C150.9 (5)
Zn1—N1—C2—C3178.3 (2)C12—C13—C14—C15179.2 (3)
N1—C2—C3—N20.5 (4)C13—C14—C15—C161.5 (5)
C1—N2—C3—C20.2 (4)C13—C14—C15—C19179.6 (3)
C4—N2—C3—C2178.7 (3)C14—C15—C16—C170.4 (5)
C1—N2—C4—C586.6 (4)C19—C15—C16—C17179.3 (3)
C3—N2—C4—C592.1 (4)C15—C16—C17—C181.2 (5)
C11—N3—C5—N40.7 (3)C15—C16—C17—C20175.5 (3)
C11—N3—C5—C4178.9 (3)C14—C13—C18—C170.7 (5)
C6—N4—C5—N30.8 (4)C12—C13—C18—C17177.5 (3)
C6—N4—C5—C4178.9 (3)C16—C17—C18—C131.8 (5)
N2—C4—C5—N387.7 (4)C20—C17—C18—C13175.0 (3)
N2—C4—C5—N492.7 (4)C16—C15—C19—O42.6 (5)
C5—N4—C6—C7179.5 (4)C14—C15—C19—O4178.5 (3)
C5—N4—C6—C110.5 (3)C16—C15—C19—O3174.8 (4)
N4—C6—C7—C8179.3 (3)C14—C15—C19—O34.1 (5)
C11—C6—C7—C80.6 (5)C16—C17—C20—O6172.3 (4)
C6—C7—C8—C90.3 (6)C18—C17—C20—O64.4 (5)
C7—C8—C9—C101.0 (6)C16—C17—C20—O54.9 (5)
C8—C9—C10—C110.8 (5)C18—C17—C20—O5178.4 (3)
C5—N3—C11—C60.4 (3)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O90.852.222.936 (8)142
O9—H9A···O40.852.152.634 (7)115
O9—H9B···O100.852.242.783 (12)122
O10—H10A···O90.851.932.783 (12)179
N4—H4···O7ii0.861.972.808 (4)163
O3—H3···O10iii0.822.563.341 (10)159
O5—H5···N3iv0.821.772.577 (3)165
O7—H7A···O2v0.851.982.784 (4)156
O7—H7B···O8vi0.851.952.796 (5)179
O8—H8B···O6vii0.852.022.799 (6)152
O10—H10B···O6viii0.852.032.728 (9)139
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z1/2; (v) x1, y+1, z1/2; (vi) x1/2, y+3/2, z1/2; (vii) x+3/2, y+1/2, z+3/2; (viii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H5O6)2(C11H10N4)2]·8H2O
Mr1024.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.870 (4), 15.008 (3), 15.472 (3)
β (°) 109.51 (3)
V3)4567.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.18 × 0.15 × 0.14
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.896, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
15325, 4127, 3898
Rint0.031
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.158, 1.07
No. of reflections4127
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.45

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O90.852.222.936 (8)142.0
O9—H9A···O40.852.152.634 (7)115.4
O9—H9B···O100.852.242.783 (12)121.9
O10—H10A···O90.851.932.783 (12)179.1
N4—H4···O7i0.861.972.808 (4)163.2
O3—H3···O10ii0.822.563.341 (10)159.1
O5—H5···N3iii0.821.772.577 (3)165.4
O7—H7A···O2iv0.851.982.784 (4)156.4
O7—H7B···O8v0.851.952.796 (5)179.4
O8—H8B···O6vi0.852.022.799 (6)151.8
O10—H10B···O6vii0.852.032.728 (9)139.3
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x1, y+1, z1/2; (v) x1/2, y+3/2, z1/2; (vi) x+3/2, y+1/2, z+3/2; (vii) x1/2, y+1/2, z.
 

Acknowledgements

We gratefully acknowledge financial support by the National Natural Science Foundation of China (No. J0830412).

References

First citationLin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 9, 3345–3353.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Yang, N. & Zhao, G.-Y. (2010). Inorg. Chem. Commun. 13, 1497–1500.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds