inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Terbium (lithium zinc) distannide, TbLi1–xZnxSn2 (x = 0.2)

aIvano-Frankivsk National Medical University, Department of Chemistry, Galytska str. 2, 76018 Ivano-Frankivsk, Ukraine, bDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv, Ukraine, and cInstitute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
*Correspondence e-mail: tarasiuk.i@gmail.com

(Received 17 November 2011; accepted 17 January 2012; online 21 January 2012)

The new terbium (lithium zinc) distannide, TbLi1–xZnxSn2 (x = 0.2) crystallizes in the ortho­rhom­bic CeNiSi2 structure type with space group Cmcm and Pearson symbol oS16. Of the four independent 4c atom positions (m2m site symmetry), three are fully occupied by individual atoms (two by Sn and one by Tb atoms) and the fourth is occupied by Li and Zn atoms with a statistical distribution. The Tb coordination polyhedron is a 21-vertex pseudo-Frank–Kasper polyhedron. One Sn atom is enclosed in a tricapped trigonal prism, the second Sn atom is in a cubocta­hedron and the statistically distributed (Li,Zn) site is in a tetra­gonal anti­prism with one added atom. Electronic structure calculations were used for the elucidation of reasons for and the ability of mutual substitution of lithium and transition metals. Positive charge density was observed around the rare earth atom and the Li and Zn atoms, the negative charge density in the proximity of the Sn atoms.

Related literature

For general background, see: Andersen et al. (1986[Andersen, K., Povlovska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 51-53.]); Pavlyuk et al. (2009[Pavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145-148.]). For related structures, see: Pavlyuk & Bodak (1992a[Pavlyuk, V. & Bodak, O. (1992a). Inorg. Mater. 28, 877-879.],b[Pavlyuk, V. & Bodak, O. (1992b). Akad. Nauk SSSR Izvest. Metally. 6, 207-210.]); Pavlyuk et al. (1991[Pavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dopov. Akad. Nauk Ukr., 1, 112-114.], 1993[Pavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dopov. Akad. Nauk Ukr., 9, 84-87.]). For isotypic structures, see: Pavlyuk et al. (1989[Pavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989). Inorg. Mater. 25, 962-965.]).

Experimental

Crystal data
  • TbLi0.8Zn0.2Sn2

  • Mr = 414.85

  • Orthorhombic, C m c m

  • a = 4.4495 (7) Å

  • b = 17.699 (3) Å

  • c = 4.3978 (7) Å

  • V = 346.33 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 35.55 mm−1

  • T = 293 K

  • 0.08 × 0.04 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.344, Tmax = 0.658

  • 1198 measured reflections

  • 261 independent reflections

  • 190 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.19

  • 261 reflections

  • 20 parameters

  • Δρmax = 2.15 e Å−3

  • Δρmin = −2.64 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the systematic investigation of alloys of the Tb–Li–Sn and Tb–Zn–Sn ternary systems the ternary compounds with the corresponding compositions TbLiSn2 (Pavlyuk et al., 1989) and TbZnSn2 (Pavlyuk et al., 2009) were found. According to the X-ray data, TbLiSn2 crystallizes with orthorhombic symmetry (space group Cmcm, CeNiSi2 structure type) and the TbZnSn2 with tetragonal symmetry (space group P4/nmm, HfCuSi2 structure type). Structural studies of the four-component alloys from TbLiSn2–TbZnSn2 sections indicate the existence of TbLi1–xZnxSn2 (x = 0 - 1/5) limited solid solution. In the ternary TbLiSn2 compound lithium atoms occupy the same crystallographic position that the atoms of transition metal in the original CeNiSi2 structure type. The same was observed previously when we studied RELiGe with the ZrNiAl type (Pavlyuk et al., 1991 and Pavlyuk et al., 1992a) and RE3Li2Ge3 with Hf3Ni2Si3 type (Pavlyuk & Bodak, 1992b). X-ray single-crystal study showed that the TbLi1–xZnxSn2 solid solution formed by the partial substitution of lithium atoms by zinc atoms in 4c site. The ability of lithium atoms to substitute the atoms of transition metals we observed previously studying solid solutions RELixCu2–xSi2 and RELixCu2–xGe2 (Pavlyuk et al., 1993).

The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The coordination polyhedra of atoms are: Tb1 – 21-vertex pseudo Frank-Kasper polyhedron [Tb(Zn,Li)5Sn10Tb6], Sn1 – 9-vertex tricapped trigonal prism [Sn1(Li,Zn)Sn2Tb6], Sn2 – 12-vertex cuboctahedron [Sn2(Li,Zn)4Sn4Tb4] and statistical mixture (Li,Zn) – 9-vertex tetragonal antiprism with one added atom [(Li,Zn)Sn5Tb4].

Formation of the same RELi1–xZnxSn2 solid solutions were observed with other rare earth metals, such as Gd, Dy, Ho and Y.

The electronic structure calculations using TB-LMTO-ASA (Andersen et al., 1986) program package were performed for the elucidation of reasons of the formation of solid solutions and the ability to mutual substitution of lithium and transition metals. The ordered model of RELiSn2 ternary phase and hypothetical REZnSn2 with CeNiSi2 structure type were analyzed. Among the rare earth metals was taken yttrium, which has less number of electrons than majority of other rare earth metals.

According to the results of calculations in the both models the rare earth atoms donate their electrons to tin atoms. The lithium atoms (Fig. 2a) and zinc atoms (Fig. 2 b) also loses their electrons. So positive charge density in various scale can be observed around rare earth, lithium and zinc atoms and negative charge density is around tin atoms. Taking into account these data and also the closeness of the effective radius of zinc and lithium atoms in intermetallic compounds it can be concluded that nothing prevents their mutual substitution.

Related literature top

For general background, see: Andersen et al. (1986); Pavlyuk et al. (2009). For related structures, see: Pavlyuk & Bodak (1992a,b); Pavlyuk et al. (1991, 1993). For isostructural/isotypic structures, see: Pavlyuk et al. (1989).

Experimental top

Terbium, lithium, zinc and tin, all with a nominal purity more than 99.9 wt. %, were used as starting elements. First, the pieces of the pure metals with a stoichiometry Tb25Li20Zn5Sn50 were pressed into pellets, enclosed in a tantalum crucible and placed in a resistance furnace with a thermocouple controller. The sample was heated to 670 K at a rate of 5 K/min, maintained over a period of 48 h and then temperature was increased to 1070 K over a period of 10 h. The alloy was annealed at 670 K for 120 h and cooled slowly to room temperature. Small, good-quality single-crystals of the title compound were isolated from an alloy by mechanical fragmentation.

Refinement top

The Li position (Wyckoff sites 4c) showed displacement parameters considerably smaller than it should be for the lithium, suggesting that this position is partially occupied by the heavier Zn atom. The refinement of the occupancy of this statistically mixed position showed, that it contains 80% of Li and 20% of Zn atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Unit cell projection and coordination polyhedra of atoms in the TbLi1–xZnxSn2 compound. Thermal ellipsoids are drawn at a 95% probability level.
[Figure 2] Fig. 2. The results of electron localization function calculations for ordered structure models of REZnSn2 (a) and RELiSn2 (b). ELF map drawn at z = 0.
terbium (lithium zinc) distannide top
Crystal data top
TbLi0.8Zn0.2Sn2F(000) = 693.6
Mr = 414.85Dx = 7.956 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 261 reflections
a = 4.4495 (7) Åθ = 4.6–28.0°
b = 17.699 (3) ŵ = 35.55 mm1
c = 4.3978 (7) ÅT = 293 K
V = 346.33 (9) Å3Prism, metallic dark grey
Z = 40.08 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
261 independent reflections
Radiation source: fine-focus sealed tube190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0 pixels mm-1θmax = 28.0°, θmin = 4.6°
ω scansh = 55
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1723
Tmin = 0.344, Tmax = 0.658l = 55
1198 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0272P)2 + 2.6711P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.19Δρmax = 2.15 e Å3
261 reflectionsΔρmin = 2.64 e Å3
20 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0039 (4)
Crystal data top
TbLi0.8Zn0.2Sn2V = 346.33 (9) Å3
Mr = 414.85Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 4.4495 (7) ŵ = 35.55 mm1
b = 17.699 (3) ÅT = 293 K
c = 4.3978 (7) Å0.08 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
261 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
190 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 0.658Rint = 0.041
1198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02720 parameters
wR(F2) = 0.0660 restraints
S = 1.19Δρmax = 2.15 e Å3
261 reflectionsΔρmin = 2.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.00000.39911 (5)0.25000.0156 (4)
Sn10.00000.06101 (10)0.25000.0296 (6)
Sn20.00000.75076 (8)0.25000.0274 (6)
Zn0.00000.1960 (5)0.25000.022 (3)0.198 (11)
Li0.00000.1960 (5)0.25000.022 (3)0.80
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.0152 (5)0.0167 (5)0.0149 (6)0.0000.0000.000
Sn10.0132 (8)0.0638 (16)0.0119 (9)0.0000.0000.000
Sn20.0180 (8)0.0423 (14)0.0220 (10)0.0000.0000.000
Zn0.019 (5)0.024 (5)0.022 (6)0.0000.0000.000
Li0.019 (5)0.024 (5)0.022 (6)0.0000.0000.000
Geometric parameters (Å, º) top
Tb1—Sn1i3.2067 (6)Sn2—Liviii2.392 (4)
Tb1—Sn1ii3.2067 (6)Sn2—Znviii2.392 (4)
Tb1—Sn1iii3.2067 (6)Sn2—Livii2.392 (4)
Tb1—Sn1iv3.2067 (6)Sn2—Znvii2.392 (4)
Tb1—Sn2v3.4414 (13)Sn2—Lixi2.427 (4)
Tb1—Sn2vi3.4414 (13)Sn2—Znxi2.427 (4)
Tb1—Sn2vii3.4454 (14)Sn2—Lixii2.427 (4)
Tb1—Sn2viii3.4454 (14)Sn2—Znxii2.427 (4)
Tb1—Liii3.552 (4)Sn2—Sn2xiii3.1282 (4)
Tb1—Znii3.552 (4)Sn2—Sn2xiv3.1282 (4)
Tb1—Lii3.552 (4)Sn2—Sn2xv3.1282 (4)
Tb1—Zni3.552 (4)Sn2—Sn2xvi3.1282 (4)
Sn1—Zn2.389 (9)Zn—Sn2viii2.392 (4)
Sn1—Sn1ix3.082 (3)Zn—Sn2vii2.392 (4)
Sn1—Sn1x3.082 (3)Zn—Sn2vi2.427 (4)
Sn1—Tb1i3.2067 (6)Zn—Sn2v2.427 (4)
Sn1—Tb1ii3.2067 (6)Zn—Tb1ii3.552 (4)
Sn1—Tb1iv3.2067 (6)Zn—Tb1i3.552 (4)
Sn1—Tb1iii3.2067 (6)Zn—Tb1iii3.552 (4)
Sn1—Tb1v3.6277 (15)Zn—Tb1iv3.552 (4)
Sn1—Tb1vi3.6277 (15)
Sn1i—Tb1—Sn1ii154.57 (8)Liviii—Sn2—Znviii0.0
Sn1i—Tb1—Sn1iii87.86 (2)Liviii—Sn2—Livii133.6 (4)
Sn1ii—Tb1—Sn1iii86.59 (2)Znviii—Sn2—Livii133.6 (4)
Sn1i—Tb1—Sn1iv86.59 (2)Liviii—Sn2—Znvii133.6 (4)
Sn1ii—Tb1—Sn1iv87.86 (2)Znviii—Sn2—Znvii133.6 (4)
Sn1iii—Tb1—Sn1iv154.57 (8)Livii—Sn2—Znvii0.0 (4)
Sn1i—Tb1—Sn2v128.06 (4)Liviii—Sn2—Lixi99.05 (15)
Sn1ii—Tb1—Sn2v73.71 (3)Znviii—Sn2—Lixi99.05 (15)
Sn1iii—Tb1—Sn2v73.71 (3)Livii—Sn2—Lixi99.05 (15)
Sn1iv—Tb1—Sn2v128.06 (4)Znvii—Sn2—Lixi99.05 (15)
Sn1i—Tb1—Sn2vi73.71 (3)Liviii—Sn2—Znxi99.05 (15)
Sn1ii—Tb1—Sn2vi128.06 (4)Znviii—Sn2—Znxi99.05 (15)
Sn1iii—Tb1—Sn2vi128.06 (4)Livii—Sn2—Znxi99.05 (15)
Sn1iv—Tb1—Sn2vi73.71 (3)Znvii—Sn2—Znxi99.05 (15)
Sn2v—Tb1—Sn2vi80.55 (4)Lixi—Sn2—Znxi0.0
Sn1i—Tb1—Sn2vii127.38 (4)Liviii—Sn2—Lixii99.05 (15)
Sn1ii—Tb1—Sn2vii74.44 (3)Znviii—Sn2—Lixii99.05 (15)
Sn1iii—Tb1—Sn2vii127.38 (4)Livii—Sn2—Lixii99.05 (15)
Sn1iv—Tb1—Sn2vii74.44 (3)Znvii—Sn2—Lixii99.05 (15)
Sn2v—Tb1—Sn2vii54.030 (13)Lixi—Sn2—Lixii132.9 (4)
Sn2vi—Tb1—Sn2vii54.030 (13)Znxi—Sn2—Lixii132.9 (4)
Sn1i—Tb1—Sn2viii74.44 (3)Liviii—Sn2—Znxii99.05 (15)
Sn1ii—Tb1—Sn2viii127.38 (4)Znviii—Sn2—Znxii99.05 (15)
Sn1iii—Tb1—Sn2viii74.44 (3)Livii—Sn2—Znxii99.05 (15)
Sn1iv—Tb1—Sn2viii127.38 (4)Znvii—Sn2—Znxii99.05 (15)
Sn2v—Tb1—Sn2viii54.030 (13)Lixi—Sn2—Znxii132.9 (4)
Sn2vi—Tb1—Sn2viii54.030 (13)Znxi—Sn2—Znxii132.9 (4)
Sn2vii—Tb1—Sn2viii79.32 (4)Lixii—Sn2—Znxii0.0 (4)
Sn1i—Tb1—Liii164.43 (14)Liviii—Sn2—Sn2xiii130.50 (8)
Sn1ii—Tb1—Liii41.00 (13)Znviii—Sn2—Sn2xiii130.50 (8)
Sn1iii—Tb1—Liii95.41 (3)Livii—Sn2—Sn2xiii50.01 (8)
Sn1iv—Tb1—Liii96.57 (3)Znvii—Sn2—Sn2xiii50.01 (8)
Sn2v—Tb1—Liii39.97 (9)Lixi—Sn2—Sn2xiii49.05 (7)
Sn2vi—Tb1—Liii92.49 (12)Znxi—Sn2—Sn2xiii49.05 (7)
Sn2vii—Tb1—Liii40.55 (9)Lixii—Sn2—Sn2xiii130.43 (9)
Sn2viii—Tb1—Liii91.74 (12)Znxii—Sn2—Sn2xiii130.43 (9)
Sn1i—Tb1—Znii164.43 (14)Liviii—Sn2—Sn2xiv50.01 (8)
Sn1ii—Tb1—Znii41.00 (13)Znviii—Sn2—Sn2xiv50.01 (8)
Sn1iii—Tb1—Znii95.41 (3)Livii—Sn2—Sn2xiv130.50 (8)
Sn1iv—Tb1—Znii96.57 (3)Znvii—Sn2—Sn2xiv130.50 (8)
Sn2v—Tb1—Znii39.97 (9)Lixi—Sn2—Sn2xiv130.43 (9)
Sn2vi—Tb1—Znii92.49 (12)Znxi—Sn2—Sn2xiv130.43 (9)
Sn2vii—Tb1—Znii40.55 (9)Lixii—Sn2—Sn2xiv49.05 (7)
Sn2viii—Tb1—Znii91.74 (12)Znxii—Sn2—Sn2xiv49.05 (7)
Liii—Tb1—Znii0.0 (3)Sn2xiii—Sn2—Sn2xiv179.01 (11)
Sn1i—Tb1—Lii41.00 (13)Liviii—Sn2—Sn2xv50.01 (8)
Sn1ii—Tb1—Lii164.43 (14)Znviii—Sn2—Sn2xv50.01 (8)
Sn1iii—Tb1—Lii96.57 (3)Livii—Sn2—Sn2xv130.50 (8)
Sn1iv—Tb1—Lii95.41 (3)Znvii—Sn2—Sn2xv130.50 (8)
Sn2v—Tb1—Lii92.49 (12)Lixi—Sn2—Sn2xv49.05 (7)
Sn2vi—Tb1—Lii39.97 (9)Znxi—Sn2—Sn2xv49.05 (7)
Sn2vii—Tb1—Lii91.74 (12)Lixii—Sn2—Sn2xv130.43 (9)
Sn2viii—Tb1—Lii40.55 (9)Znxii—Sn2—Sn2xv130.43 (9)
Liii—Tb1—Lii123.4 (3)Sn2xiii—Sn2—Sn2xv89.326 (13)
Znii—Tb1—Lii123.4 (3)Sn2xiv—Sn2—Sn2xv90.665 (13)
Sn1i—Tb1—Zni41.00 (13)Liviii—Sn2—Sn2xvi130.50 (8)
Sn1ii—Tb1—Zni164.43 (14)Znviii—Sn2—Sn2xvi130.50 (8)
Sn1iii—Tb1—Zni96.57 (3)Livii—Sn2—Sn2xvi50.01 (8)
Sn1iv—Tb1—Zni95.41 (3)Znvii—Sn2—Sn2xvi50.01 (8)
Sn2v—Tb1—Zni92.49 (12)Lixi—Sn2—Sn2xvi130.43 (9)
Sn2vi—Tb1—Zni39.97 (9)Znxi—Sn2—Sn2xvi130.43 (9)
Sn2vii—Tb1—Zni91.74 (12)Lixii—Sn2—Sn2xvi49.05 (7)
Sn2viii—Tb1—Zni40.55 (9)Znxii—Sn2—Sn2xvi49.05 (7)
Liii—Tb1—Zni123.4 (3)Sn2xiii—Sn2—Sn2xvi90.665 (13)
Znii—Tb1—Zni123.4 (3)Sn2xiv—Sn2—Sn2xvi89.326 (13)
Lii—Tb1—Zni0.0 (3)Sn2xv—Sn2—Sn2xvi179.01 (11)
Zn—Sn1—Sn1ix134.48 (5)Sn1—Zn—Sn2viii113.2 (2)
Zn—Sn1—Sn1x134.48 (5)Sn1—Zn—Sn2vii113.2 (2)
Sn1ix—Sn1—Sn1x91.03 (10)Sn2viii—Zn—Sn2vii133.6 (4)
Zn—Sn1—Tb1i77.28 (4)Sn1—Zn—Sn2vi113.5 (2)
Sn1ix—Sn1—Tb1i130.05 (5)Sn2viii—Zn—Sn2vi80.95 (15)
Sn1x—Sn1—Tb1i70.427 (15)Sn2vii—Zn—Sn2vi80.95 (15)
Zn—Sn1—Tb1ii77.28 (4)Sn1—Zn—Sn2v113.5 (2)
Sn1ix—Sn1—Tb1ii70.427 (15)Sn2viii—Zn—Sn2v80.95 (15)
Sn1x—Sn1—Tb1ii130.05 (5)Sn2vii—Zn—Sn2v80.95 (15)
Tb1i—Sn1—Tb1ii154.57 (8)Sn2vi—Zn—Sn2v132.9 (4)
Zn—Sn1—Tb1iv77.28 (4)Sn1—Zn—Tb1ii61.72 (13)
Sn1ix—Sn1—Tb1iv70.427 (15)Sn2viii—Zn—Tb1ii139.08 (5)
Sn1x—Sn1—Tb1iv130.05 (5)Sn2vii—Zn—Tb1ii67.52 (6)
Tb1i—Sn1—Tb1iv86.59 (2)Sn2vi—Zn—Tb1ii139.77 (5)
Tb1ii—Sn1—Tb1iv87.86 (2)Sn2v—Zn—Tb1ii67.36 (6)
Zn—Sn1—Tb1iii77.28 (4)Sn1—Zn—Tb1i61.72 (13)
Sn1ix—Sn1—Tb1iii130.05 (5)Sn2viii—Zn—Tb1i67.52 (6)
Sn1x—Sn1—Tb1iii70.427 (15)Sn2vii—Zn—Tb1i139.08 (5)
Tb1i—Sn1—Tb1iii87.86 (2)Sn2vi—Zn—Tb1i67.36 (6)
Tb1ii—Sn1—Tb1iii86.59 (2)Sn2v—Zn—Tb1i139.77 (5)
Tb1iv—Sn1—Tb1iii154.57 (8)Tb1ii—Zn—Tb1i123.4 (3)
Zn—Sn1—Tb1v142.173 (19)Sn1—Zn—Tb1iii61.72 (13)
Sn1ix—Sn1—Tb1v56.40 (4)Sn2viii—Zn—Tb1iii67.52 (6)
Sn1x—Sn1—Tb1v56.40 (4)Sn2vii—Zn—Tb1iii139.08 (5)
Tb1i—Sn1—Tb1v126.82 (4)Sn2vi—Zn—Tb1iii139.77 (5)
Tb1ii—Sn1—Tb1v75.43 (3)Sn2v—Zn—Tb1iii67.36 (6)
Tb1iv—Sn1—Tb1v126.82 (4)Tb1ii—Zn—Tb1iii76.49 (11)
Tb1iii—Sn1—Tb1v75.43 (3)Tb1i—Zn—Tb1iii77.56 (11)
Zn—Sn1—Tb1vi142.173 (19)Sn1—Zn—Tb1iv61.72 (13)
Sn1ix—Sn1—Tb1vi56.40 (4)Sn2viii—Zn—Tb1iv139.08 (5)
Sn1x—Sn1—Tb1vi56.40 (4)Sn2vii—Zn—Tb1iv67.52 (6)
Tb1i—Sn1—Tb1vi75.43 (3)Sn2vi—Zn—Tb1iv67.36 (6)
Tb1ii—Sn1—Tb1vi126.82 (4)Sn2v—Zn—Tb1iv139.77 (5)
Tb1iv—Sn1—Tb1vi75.43 (3)Tb1ii—Zn—Tb1iv77.56 (11)
Tb1iii—Sn1—Tb1vi126.82 (4)Tb1i—Zn—Tb1iv76.49 (11)
Tb1v—Sn1—Tb1vi75.65 (4)Tb1iii—Zn—Tb1iv123.4 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x1/2, y1/2, z; (vi) x+1/2, y1/2, z; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x, y, z; (x) x, y, z+1; (xi) x1/2, y+1/2, z; (xii) x+1/2, y+1/2, z; (xiii) x1/2, y+3/2, z; (xiv) x+1/2, y+3/2, z+1; (xv) x1/2, y+3/2, z+1; (xvi) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaTbLi0.8Zn0.2Sn2
Mr414.85
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)293
a, b, c (Å)4.4495 (7), 17.699 (3), 4.3978 (7)
V3)346.33 (9)
Z4
Radiation typeMo Kα
µ (mm1)35.55
Crystal size (mm)0.08 × 0.04 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.344, 0.658
No. of measured, independent and
observed [I > 2σ(I)] reflections
1198, 261, 190
Rint0.041
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.19
No. of reflections261
No. of parameters20
Δρmax, Δρmin (e Å3)2.15, 2.64

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Acknowledgements

Financial support from the Ministry of Education and Science, Youth and Sport of Ukraine (No. 0111U001089) is gratefully acknowledged.

References

First citationAndersen, K., Povlovska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 51–53.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPavlyuk, V. & Bodak, O. (1992a). Inorg. Mater. 28, 877–879.  Google Scholar
First citationPavlyuk, V. & Bodak, O. (1992b). Akad. Nauk SSSR Izvest. Metally. 6, 207-210.  Google Scholar
First citationPavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dopov. Akad. Nauk Ukr., 1, 112–114.  Google Scholar
First citationPavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dopov. Akad. Nauk Ukr., 9, 84–87.  Google Scholar
First citationPavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989). Inorg. Mater. 25, 962–965.  Google Scholar
First citationPavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145–148.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds