metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m158-m159

[2-Butyl-4-(4-tert-butyl­benz­yl)-1,2,4-triazol-3-yl­­idene]chlorido[(1,2,5,6-η)-cyclo­octa-1,5-diene]iridium(I)

aDepartment of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85716, USA, and bDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA
*Correspondence e-mail: gsnichol@email.arizona.edu

(Received 5 December 2011; accepted 9 January 2012; online 14 January 2012)

In the title compound, [IrCl(C8H12)(C17H25N3)], the IrI ion has a distorted square-planar coordination geometry. The N-heterocyclic carbene ligand has an extended S-shaped conformation. The butyl group was refined using a two-part 1:1 disorder model. In the crystal, three unique weak C—H⋯Cl contacts are present. Two of these form a motif described as R21(6) in graph-set notation, while a third forms an R22(8) motif about a crystallographic inversion center. The result is a chain structure which extends parallel to the crystallographic a axis.

Related literature

For steric and electronic effects in related N-heterocyclic carbene (NHC) ligands, see: Gusev (2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). For the synthesis, structures and dynamics of related NHC rhodium and iridium complexes, see: Köcher & Herrmann (1997[Köcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261-265.]); Wang & Lin (1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]); Chianese et al. (2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]); Herrmann et al. (2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]); Nichol et al. (2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.]); Lu et al. (2011[Lu, W. Y., Cavell, K. J., Wixey, J. S. & Kariuki, B. (2011). Organometallics, 30, 5649-5655.]); Huttenstine et al. (2011[Huttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274-m1275.]). For the catalytic activity of related complexes, see: Hillier et al. (2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]); Albrecht et al. (2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]); Gnanamgari et al. (2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]).

[Scheme 1]

Experimental

Crystal data
  • [IrCl(C8H12)(C17H25N3)]

  • Mr = 607.23

  • Triclinic, [P \overline 1]

  • a = 10.2485 (3) Å

  • b = 11.2843 (3) Å

  • c = 11.9237 (4) Å

  • α = 65.213 (2)°

  • β = 75.170 (2)°

  • γ = 76.052 (2)°

  • V = 1196.07 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.71 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.06 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.277, Tmax = 0.744

  • 23768 measured reflections

  • 6993 independent reflections

  • 6168 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.03

  • 6993 reflections

  • 313 parameters

  • 106 restraints

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −1.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.95 2.84 3.568 (3) 135
C7—H7A⋯Cl1i 0.99 2.77 3.641 (3) 147
C18—H18⋯Cl1ii 1.00 2.74 3.617 (3) 147
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was prepared as part of our ongoing research into complexes of rhodium and iridium with N-heterocyclic carbene (NHC) ligands derived from 1,2,3-triazole (Nichol et al., 2009, 2010, 2011). The Ir center has an expected square planar conformation (Figure 1). The butyl group of the NHC ligand was refined using a two part disorder model, and both disorder components adopt an extended conformation. Three weak C–H···Cl contacts are present (Figure 2, Table 1). Two of these, involving H2 and H7A, combine to form a motif described in graph-set notion as R12(6), while the third involves H18 and a symmetry related molecule to form an R22(8) motif, about an inversion center. The combination of these two motifs is a chain structure, connected by weak C–H···Cl contacts, which extends parallel to the crystallographic a axis.

Related literature top

For steric and electronic effects in related N-heterocyclic carbene (NHC) ligands, see: Gusev (2009). For the synthesis, structures and dynamics of related NHC rhodium and iridium complexes, see: Köcher & Herrmann (1997); Wang & Lin (1998); Chianese et al. (2004); Herrmann et al. (2006); Nichol et al. (2009, 2010, 2011); Lu et al. (2011); Huttenstine et al. (2011). For the catalytic activity of related complexes, see: Hillier et al. (2001); Albrecht et al. (2002); Gnanamgari et al. (2007).

Experimental top

Unless otherwise stated, all chemicals were purchased from Sigma Aldrich and Strem and used without further purification, in the dark, and under a nitrogen atmosphere. 1-Butyl-1,2,4-triazole (2.0 g, 16 mmol) and 4-tert-butylbenzyl bromide (4.10 g, 18.0 mmol) were refluxed in toluene (15 ml) for 3 d. After cooling, ether (50 ml) was added and the white solid that formed was filtered, washed with ether and air dried (79%). Transmetalation in CH2Cl12 (10 ml) with 1-butyl-4-(4-tert-butylbenzyl)-1,2,4-triazolium bromide (0.166 g, 0.471 mmol), Ag2O (0.0565 g, 0.244 mmol), and [Ir(cod)Cl1]2 (0.1585 g, 0.236 mmol), gave a bright yellow solid (95%). X-ray quality crystals were grown from CH2Cl12/Pentanes by slow diffusion.

Refinement top

H atoms were initially located in a difference Fourier map and then refined with constrained C–H distances and Uiso(H)=1.5Ueq(C) for methyl H atoms, and Uiso(H)=1.2Ueq(C) for all other H atoms. C atoms C3 to C6 of the butyl chain were refined using a two-part disorder model with a refined major:minor occupancy ratio of approximately 1:1. Similarity restraints were used on the displacement ellipsoids of the disordered components.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., (2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids at the 50% probability level. The minor disorder component is omitted.
[Figure 2] Fig. 2. C–H···Cl contacts in (I), shown by blue dotted lines.
[2-Butyl-4-(4-tert-butylbenzyl)-1,2,4-triazol-3- ylidene]chlorido[(1,2,5,6-η)-cycloocta-1,5-diene]iridium(I) top
Crystal data top
[IrCl(C8H12)(C17H25N3)]Z = 2
Mr = 607.23F(000) = 604
Triclinic, P1Dx = 1.686 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2485 (3) ÅCell parameters from 9406 reflections
b = 11.2843 (3) Åθ = 2.5–30.5°
c = 11.9237 (4) ŵ = 5.71 mm1
α = 65.213 (2)°T = 100 K
β = 75.170 (2)°Blade, yellow
γ = 76.052 (2)°0.30 × 0.10 × 0.06 mm
V = 1196.07 (6) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6993 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics6168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
thin–slice ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.277, Tmax = 0.744k = 1515
23768 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0323P)2]
where P = (Fo2 + 2Fc2)/3
6993 reflections(Δ/σ)max = 0.002
313 parametersΔρmax = 1.33 e Å3
106 restraintsΔρmin = 1.83 e Å3
Crystal data top
[IrCl(C8H12)(C17H25N3)]γ = 76.052 (2)°
Mr = 607.23V = 1196.07 (6) Å3
Triclinic, P1Z = 2
a = 10.2485 (3) ÅMo Kα radiation
b = 11.2843 (3) ŵ = 5.71 mm1
c = 11.9237 (4) ÅT = 100 K
α = 65.213 (2)°0.30 × 0.10 × 0.06 mm
β = 75.170 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6993 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
6168 reflections with I > 2σ(I)
Tmin = 0.277, Tmax = 0.744Rint = 0.039
23768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025106 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.03Δρmax = 1.33 e Å3
6993 reflectionsΔρmin = 1.83 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.761759 (10)0.744995 (10)0.533869 (10)0.01659 (4)
Cl10.69986 (7)0.94124 (7)0.57356 (8)0.02660 (16)
N11.0046 (2)0.6417 (2)0.6693 (2)0.0195 (5)
N21.1331 (3)0.6607 (3)0.6683 (3)0.0229 (5)
N31.0507 (2)0.8038 (2)0.4997 (2)0.0175 (5)
C10.9505 (3)0.7272 (3)0.5684 (3)0.0173 (5)
C21.1573 (3)0.7598 (3)0.5638 (3)0.0217 (6)
H21.23910.79740.53490.026*
C30.939 (3)0.547 (2)0.792 (3)0.022 (3)0.496 (11)
H3A1.00920.49310.84410.026*0.496 (11)
H3B0.89610.48730.77610.026*0.496 (11)
C40.8313 (8)0.6212 (7)0.8622 (6)0.0241 (17)0.496 (11)
H4A0.78920.55610.94140.029*0.496 (11)
H4B0.75890.67080.81120.029*0.496 (11)
C50.8829 (10)0.7172 (8)0.8936 (8)0.0272 (16)0.496 (11)
H5A0.92220.78470.81480.033*0.496 (11)
H5B0.95650.66870.94350.033*0.496 (11)
C60.770 (2)0.7856 (18)0.9672 (19)0.035 (4)0.496 (11)
H6A0.69380.82800.92120.053*0.496 (11)
H6B0.80560.85260.97810.053*0.496 (11)
H6C0.73830.72031.04960.053*0.496 (11)
C3'0.933 (3)0.551 (3)0.776 (3)0.023 (4)0.504 (11)
H3'10.98670.46120.79640.028*0.504 (11)
H3'20.84470.54810.75800.028*0.504 (11)
C4'0.9051 (8)0.5896 (7)0.8904 (6)0.0251 (17)0.504 (11)
H4'10.85520.52390.96320.030*0.504 (11)
H4'20.99360.58630.91150.030*0.504 (11)
C5'0.8240 (11)0.7245 (8)0.8698 (8)0.0318 (18)0.504 (11)
H5'10.74000.73170.83950.038*0.504 (11)
H5'20.87840.79150.80400.038*0.504 (11)
C6'0.785 (2)0.7534 (17)0.9910 (18)0.031 (3)0.504 (11)
H6'10.72870.68871.05570.047*0.504 (11)
H6'20.73240.84240.97340.047*0.504 (11)
H6'30.86750.74761.02070.047*0.504 (11)
C71.0412 (3)0.9194 (3)0.3815 (3)0.0192 (5)
H7A1.08070.99030.38330.023*
H7B0.94370.95270.37480.023*
C81.1136 (3)0.8893 (3)0.2679 (3)0.0187 (5)
C91.0406 (3)0.8707 (3)0.1949 (3)0.0249 (6)
H90.94400.87730.21720.030*
C101.1065 (3)0.8425 (3)0.0896 (3)0.0251 (6)
H101.05410.82950.04170.030*
C111.2472 (3)0.8329 (3)0.0530 (3)0.0209 (6)
C121.3200 (3)0.8524 (3)0.1274 (3)0.0224 (6)
H121.41670.84570.10550.027*
C131.2544 (3)0.8812 (3)0.2317 (3)0.0219 (6)
H131.30630.89560.27920.026*
C141.3230 (4)0.8040 (3)0.0626 (3)0.0255 (6)
C151.4246 (4)0.6764 (4)0.0236 (3)0.0339 (8)
H15A1.48650.68410.02260.051*
H15B1.47760.66100.09860.051*
H15C1.37490.60220.03020.051*
C161.2278 (4)0.7869 (4)0.1330 (4)0.0402 (9)
H16A1.17740.71390.07690.060*
H16B1.28190.76750.20560.060*
H16C1.16330.86850.16160.060*
C171.3998 (5)0.9196 (4)0.1525 (3)0.0412 (10)
H17A1.33461.00160.17530.062*
H17B1.44730.90320.22840.062*
H17C1.46660.92770.11110.062*
C180.5782 (3)0.7866 (3)0.4531 (3)0.0234 (6)
H180.53570.88160.42440.028*
C190.5492 (3)0.7181 (3)0.5821 (3)0.0221 (6)
H190.48860.77270.62870.027*
C200.5410 (3)0.5724 (3)0.6472 (3)0.0262 (6)
H20A0.45370.55630.63890.031*
H20B0.54100.54470.73770.031*
C210.6599 (3)0.4876 (3)0.5934 (3)0.0255 (6)
H21A0.67560.39810.65880.031*
H21B0.63550.47880.52240.031*
C220.7903 (3)0.5482 (3)0.5485 (3)0.0207 (6)
H220.86810.49000.59110.025*
C230.8308 (3)0.6334 (3)0.4216 (3)0.0201 (6)
H230.93190.62350.39190.024*
C240.7486 (3)0.6750 (3)0.3190 (3)0.0232 (6)
H24A0.75450.59890.29600.028*
H24B0.78870.74570.24370.028*
C250.5969 (3)0.7254 (3)0.3581 (3)0.0242 (6)
H25A0.56020.79180.28290.029*
H25B0.54430.65080.39430.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01197 (5)0.01520 (5)0.02372 (6)0.00339 (3)0.00016 (4)0.00966 (4)
Cl10.0150 (3)0.0200 (3)0.0505 (5)0.0050 (2)0.0037 (3)0.0230 (3)
N10.0157 (11)0.0181 (11)0.0243 (13)0.0058 (9)0.0000 (9)0.0078 (10)
N20.0194 (12)0.0250 (13)0.0261 (13)0.0042 (10)0.0061 (10)0.0098 (11)
N30.0147 (11)0.0171 (11)0.0194 (12)0.0035 (9)0.0006 (9)0.0072 (9)
C10.0164 (13)0.0159 (12)0.0191 (13)0.0011 (10)0.0006 (10)0.0085 (10)
C20.0171 (13)0.0241 (14)0.0262 (15)0.0048 (11)0.0042 (11)0.0107 (12)
C30.028 (6)0.017 (5)0.015 (7)0.014 (4)0.003 (4)0.004 (4)
C40.024 (4)0.022 (3)0.022 (3)0.006 (3)0.004 (3)0.002 (2)
C50.026 (4)0.024 (3)0.029 (4)0.008 (3)0.004 (3)0.006 (3)
C60.045 (8)0.030 (8)0.019 (7)0.014 (6)0.007 (5)0.002 (5)
C3'0.031 (6)0.020 (6)0.017 (7)0.003 (4)0.006 (4)0.005 (5)
C4'0.027 (4)0.027 (3)0.017 (3)0.007 (3)0.005 (3)0.001 (2)
C5'0.039 (5)0.028 (3)0.024 (4)0.003 (3)0.002 (3)0.008 (3)
C6'0.044 (6)0.030 (8)0.018 (7)0.006 (6)0.007 (5)0.008 (6)
C70.0166 (13)0.0160 (12)0.0207 (14)0.0037 (10)0.0011 (10)0.0048 (10)
C80.0163 (13)0.0170 (13)0.0205 (13)0.0040 (10)0.0007 (10)0.0058 (11)
C90.0160 (13)0.0308 (16)0.0264 (15)0.0095 (12)0.0019 (11)0.0074 (13)
C100.0227 (15)0.0305 (16)0.0272 (16)0.0087 (12)0.0042 (12)0.0136 (13)
C110.0248 (15)0.0174 (13)0.0189 (13)0.0062 (11)0.0021 (11)0.0049 (11)
C120.0151 (13)0.0266 (15)0.0242 (15)0.0039 (11)0.0002 (11)0.0100 (12)
C130.0177 (13)0.0264 (15)0.0230 (14)0.0061 (11)0.0012 (11)0.0106 (12)
C140.0337 (17)0.0228 (14)0.0200 (14)0.0059 (13)0.0013 (12)0.0093 (12)
C150.039 (2)0.0299 (17)0.0320 (18)0.0018 (15)0.0023 (15)0.0154 (15)
C160.049 (2)0.046 (2)0.036 (2)0.0002 (18)0.0140 (18)0.0261 (18)
C170.063 (3)0.0307 (18)0.0233 (17)0.0152 (18)0.0110 (17)0.0101 (14)
C180.0156 (13)0.0170 (13)0.0337 (17)0.0020 (10)0.0051 (12)0.0058 (12)
C190.0112 (12)0.0230 (14)0.0330 (16)0.0047 (10)0.0016 (11)0.0135 (12)
C200.0234 (15)0.0273 (16)0.0294 (16)0.0127 (12)0.0016 (12)0.0112 (13)
C210.0300 (16)0.0169 (13)0.0290 (16)0.0079 (12)0.0072 (13)0.0047 (12)
C220.0202 (14)0.0150 (12)0.0293 (15)0.0014 (10)0.0062 (11)0.0119 (11)
C230.0150 (13)0.0207 (13)0.0280 (15)0.0010 (10)0.0036 (11)0.0134 (12)
C240.0228 (15)0.0251 (15)0.0271 (15)0.0068 (12)0.0046 (12)0.0133 (12)
C250.0176 (14)0.0244 (15)0.0326 (17)0.0060 (11)0.0075 (12)0.0096 (13)
Geometric parameters (Å, º) top
Ir1—Cl12.3618 (7)C8—C131.389 (4)
Ir1—C182.193 (3)C9—H90.950
Ir1—C192.168 (3)C9—C101.389 (5)
Ir1—C222.106 (3)C10—H100.950
Ir1—C232.092 (3)C10—C111.387 (4)
N1—N21.381 (3)C11—C121.405 (4)
N1—C11.340 (4)C11—C141.522 (4)
N1—C31.51 (3)C12—H120.950
N1—C3'1.42 (3)C12—C131.382 (4)
N2—C21.293 (4)C13—H130.950
N3—C11.369 (3)C14—C151.529 (5)
N3—C21.367 (4)C14—C161.529 (5)
N3—C71.471 (4)C14—C171.536 (5)
C2—H20.950C15—H15A0.980
C3—H3A0.990C15—H15B0.980
C3—H3B0.990C15—H15C0.980
C3—C41.51 (3)C16—H16A0.980
C4—H4A0.990C16—H16B0.980
C4—H4B0.990C16—H16C0.980
C4—C51.519 (11)C17—H17A0.980
C5—H5A0.990C17—H17B0.980
C5—H5B0.990C17—H17C0.980
C5—C61.52 (3)C18—H181.000
C6—H6A0.980C18—C191.390 (5)
C6—H6B0.980C18—C251.509 (5)
C6—H6C0.980C19—H191.000
C3'—H3'10.990C19—C201.509 (4)
C3'—H3'20.990C20—H20A0.990
C3'—C4'1.54 (3)C20—H20B0.990
C4'—H4'10.990C20—C211.537 (5)
C4'—H4'20.990C21—H21A0.990
C4'—C5'1.499 (12)C21—H21B0.990
C5'—H5'10.990C21—C221.519 (4)
C5'—H5'20.990C22—H221.000
C5'—C6'1.55 (2)C22—C231.426 (4)
C6'—H6'10.980C23—H231.000
C6'—H6'20.980C23—C241.512 (4)
C6'—H6'30.980C24—H24A0.990
C7—H7A0.990C24—H24B0.990
C7—H7B0.990C24—C251.544 (4)
C7—C81.500 (4)C25—H25A0.990
C8—C91.387 (4)C25—H25B0.990
Cl1—Ir1—C188.85 (8)C9—C10—H10119.3
Cl1—Ir1—C1891.89 (8)C9—C10—C11121.4 (3)
Cl1—Ir1—C1990.20 (8)H10—C10—C11119.3
Cl1—Ir1—C22164.65 (9)C10—C11—C12117.0 (3)
Cl1—Ir1—C23155.34 (9)C10—C11—C14123.1 (3)
C1—Ir1—C18167.26 (11)C12—C11—C14119.9 (3)
C1—Ir1—C19155.58 (12)C11—C12—H12119.2
C1—Ir1—C2293.31 (11)C11—C12—C13121.5 (3)
C1—Ir1—C2393.28 (11)H12—C12—C13119.2
C18—Ir1—C1937.16 (12)C8—C13—C12120.8 (3)
C18—Ir1—C2289.33 (11)C8—C13—H13119.6
C18—Ir1—C2380.82 (12)C12—C13—H13119.6
C19—Ir1—C2281.58 (11)C11—C14—C15109.6 (3)
C19—Ir1—C2397.63 (11)C11—C14—C16112.9 (3)
C22—Ir1—C2339.73 (12)C11—C14—C17108.7 (3)
N2—N1—C1113.8 (2)C15—C14—C16107.7 (3)
N2—N1—C3114.9 (12)C15—C14—C17109.8 (3)
N2—N1—C3'121.3 (13)C16—C14—C17108.3 (3)
C1—N1—C3130.1 (12)C14—C15—H15A109.5
C1—N1—C3'124.4 (13)C14—C15—H15B109.5
N1—N2—C2103.3 (2)C14—C15—H15C109.5
C1—N3—C2108.4 (2)H15A—C15—H15B109.5
C1—N3—C7125.7 (2)H15A—C15—H15C109.5
C2—N3—C7125.9 (2)H15B—C15—H15C109.5
Ir1—C1—N1128.0 (2)C14—C16—H16A109.5
Ir1—C1—N3129.1 (2)C14—C16—H16B109.5
N1—C1—N3102.8 (2)C14—C16—H16C109.5
N2—C2—N3111.7 (3)H16A—C16—H16B109.5
N2—C2—H2124.1H16A—C16—H16C109.5
N3—C2—H2124.1H16B—C16—H16C109.5
N1—C3—H3A109.5C14—C17—H17A109.5
N1—C3—H3B109.5C14—C17—H17B109.5
N1—C3—C4110.9 (16)C14—C17—H17C109.5
H3A—C3—H3B108.1H17A—C17—H17B109.5
H3A—C3—C4109.5H17A—C17—H17C109.5
H3B—C3—C4109.5H17B—C17—H17C109.5
C3—C4—H4A108.5Ir1—C18—H18114.0
C3—C4—H4B108.5Ir1—C18—C1970.47 (17)
C3—C4—C5115.1 (12)Ir1—C18—C25113.0 (2)
H4A—C4—H4B107.5H18—C18—C19114.0
H4A—C4—C5108.5H18—C18—C25114.0
H4B—C4—C5108.5C19—C18—C25123.8 (3)
C4—C5—H5A109.1Ir1—C19—C1872.37 (17)
C4—C5—H5B109.1Ir1—C19—H19114.0
C4—C5—C6112.3 (11)Ir1—C19—C20108.9 (2)
H5A—C5—H5B107.9C18—C19—H19114.0
H5A—C5—C6109.1C18—C19—C20125.5 (3)
H5B—C5—C6109.1H19—C19—C20114.0
N1—C3'—H3'1109.4C19—C20—H20A109.0
N1—C3'—H3'2109.4C19—C20—H20B109.0
N1—C3'—C4'111.1 (17)C19—C20—C21112.7 (2)
H3'1—C3'—H3'2108.0H20A—C20—H20B107.8
H3'1—C3'—C4'109.4H20A—C20—C21109.0
H3'2—C3'—C4'109.4H20B—C20—C21109.0
C3'—C4'—H4'1108.8C20—C21—H21A109.3
C3'—C4'—H4'2108.8C20—C21—H21B109.3
C3'—C4'—C5'113.8 (12)C20—C21—C22111.5 (2)
H4'1—C4'—H4'2107.7H21A—C21—H21B108.0
H4'1—C4'—C5'108.8H21A—C21—C22109.3
H4'2—C4'—C5'108.8H21B—C21—C22109.3
C4'—C5'—H5'1109.2Ir1—C22—C21114.4 (2)
C4'—C5'—H5'2109.2Ir1—C22—H22114.1
C4'—C5'—C6'112.1 (10)Ir1—C22—C2369.62 (16)
H5'1—C5'—H5'2107.9C21—C22—H22114.1
H5'1—C5'—C6'109.2C21—C22—C23122.9 (3)
H5'2—C5'—C6'109.2H22—C22—C23114.1
C5'—C6'—H6'1109.5Ir1—C23—C2270.66 (16)
C5'—C6'—H6'2109.5Ir1—C23—H23113.9
C5'—C6'—H6'3109.5Ir1—C23—C24113.0 (2)
H6'1—C6'—H6'2109.5C22—C23—H23113.9
H6'1—C6'—H6'3109.5C22—C23—C24124.1 (3)
H6'2—C6'—H6'3109.5H23—C23—C24113.9
N3—C7—H7A109.0C23—C24—H24A109.1
N3—C7—H7B109.0C23—C24—H24B109.1
N3—C7—C8113.0 (2)C23—C24—C25112.7 (3)
H7A—C7—H7B107.8H24A—C24—H24B107.8
H7A—C7—C8109.0H24A—C24—C25109.1
H7B—C7—C8109.0H24B—C24—C25109.1
C7—C8—C9120.5 (3)C18—C25—C24111.8 (2)
C7—C8—C13121.4 (3)C18—C25—H25A109.2
C9—C8—C13118.1 (3)C18—C25—H25B109.2
C8—C9—H9119.5C24—C25—H25A109.2
C8—C9—C10121.1 (3)C24—C25—H25B109.2
H9—C9—C10119.5H25A—C25—H25B107.9
C1—N1—N2—C20.3 (3)C12—C11—C14—C1759.3 (4)
C3—N1—N2—C2169.4 (11)Cl1—Ir1—C18—C1987.83 (17)
C3'—N1—N2—C2172.6 (12)Cl1—Ir1—C18—C25152.7 (2)
N2—N1—C1—Ir1175.89 (19)C1—Ir1—C18—C19179.0 (4)
N2—N1—C1—N30.3 (3)C1—Ir1—C18—C2559.6 (6)
C3—N1—C1—Ir18.8 (13)C19—Ir1—C18—C25119.4 (3)
C3—N1—C1—N3167.3 (13)C22—Ir1—C18—C1976.87 (19)
C3'—N1—C1—Ir13.9 (13)C22—Ir1—C18—C2542.6 (2)
C3'—N1—C1—N3172.3 (12)C23—Ir1—C18—C19115.85 (19)
C2—N3—C1—Ir1175.9 (2)C23—Ir1—C18—C253.6 (2)
C2—N3—C1—N10.2 (3)Ir1—C18—C19—C20100.9 (3)
C7—N3—C1—Ir10.2 (4)C25—C18—C19—Ir1105.2 (3)
C7—N3—C1—N1176.3 (2)C25—C18—C19—C204.3 (5)
Cl1—Ir1—C1—N1106.7 (2)Cl1—Ir1—C19—C1892.87 (17)
Cl1—Ir1—C1—N368.5 (2)Cl1—Ir1—C19—C20144.7 (2)
C18—Ir1—C1—N1159.8 (4)C1—Ir1—C19—C18179.5 (2)
C18—Ir1—C1—N325.0 (6)C1—Ir1—C19—C2057.0 (4)
C19—Ir1—C1—N118.7 (4)C18—Ir1—C19—C20122.4 (3)
C19—Ir1—C1—N3156.5 (2)C22—Ir1—C19—C18100.14 (19)
C22—Ir1—C1—N158.1 (3)C22—Ir1—C19—C2022.3 (2)
C22—Ir1—C1—N3126.7 (3)C23—Ir1—C19—C1863.68 (19)
C23—Ir1—C1—N197.9 (3)C23—Ir1—C19—C2058.7 (2)
C23—Ir1—C1—N386.9 (3)Ir1—C19—C20—C2136.1 (3)
N1—N2—C2—N30.2 (3)C18—C19—C20—C2145.3 (4)
C1—N3—C2—N20.0 (3)C19—C20—C21—C2232.9 (4)
C7—N3—C2—N2176.2 (3)C20—C21—C22—Ir113.2 (3)
N2—N1—C3—C4103.3 (17)C20—C21—C22—C2393.8 (3)
C1—N1—C3—C464 (2)Cl1—Ir1—C22—C2153.2 (4)
N1—C3—C4—C559 (2)Cl1—Ir1—C22—C23171.1 (2)
C3—C4—C5—C6178.5 (15)C1—Ir1—C22—C21151.0 (2)
N2—N1—C3'—C4'62 (2)C1—Ir1—C22—C2391.16 (18)
C1—N1—C3'—C4'109.9 (17)C18—Ir1—C22—C2141.5 (2)
C3—N1—C3'—C4'37 (16)C18—Ir1—C22—C2376.37 (18)
N1—C3'—C4'—C5'59 (2)C19—Ir1—C22—C215.0 (2)
C3'—C4'—C5'—C6'173.5 (16)C19—Ir1—C22—C23112.85 (18)
C1—N3—C7—C8101.1 (3)C23—Ir1—C22—C21117.9 (3)
C2—N3—C7—C883.4 (3)Ir1—C22—C23—C24105.2 (3)
N3—C7—C8—C9101.8 (3)C21—C22—C23—Ir1106.5 (3)
N3—C7—C8—C1379.1 (3)C21—C22—C23—C241.3 (4)
C7—C8—C9—C10179.9 (3)Cl1—Ir1—C23—C22174.37 (15)
C13—C8—C9—C101.1 (5)Cl1—Ir1—C23—C2454.6 (3)
C8—C9—C10—C110.5 (5)C1—Ir1—C23—C2291.22 (18)
C9—C10—C11—C120.3 (5)C1—Ir1—C23—C24149.0 (2)
C9—C10—C11—C14179.2 (3)C18—Ir1—C23—C22100.14 (18)
C10—C11—C12—C130.7 (5)C18—Ir1—C23—C2419.7 (2)
C14—C11—C12—C13178.8 (3)C19—Ir1—C23—C2266.89 (18)
C11—C12—C13—C81.3 (5)C19—Ir1—C23—C2452.9 (2)
C7—C8—C13—C12179.5 (3)C22—Ir1—C23—C24119.8 (3)
C9—C8—C13—C121.4 (5)Ir1—C23—C24—C2532.7 (3)
C10—C11—C14—C15119.9 (3)C22—C23—C24—C2548.9 (4)
C10—C11—C14—C160.0 (4)Ir1—C18—C25—C2412.7 (3)
C10—C11—C14—C17120.1 (4)C19—C18—C25—C2494.0 (3)
C12—C11—C14—C1560.6 (4)C23—C24—C25—C1829.2 (4)
C12—C11—C14—C16179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.952.843.568 (3)135
C7—H7A···Cl1i0.992.773.641 (3)147
C18—H18···Cl1ii1.002.743.617 (3)147
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[IrCl(C8H12)(C17H25N3)]
Mr607.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.2485 (3), 11.2843 (3), 11.9237 (4)
α, β, γ (°)65.213 (2), 75.170 (2), 76.052 (2)
V3)1196.07 (6)
Z2
Radiation typeMo Kα
µ (mm1)5.71
Crystal size (mm)0.30 × 0.10 × 0.06
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.277, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
23768, 6993, 6168
Rint0.039
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.03
No. of reflections6993
No. of parameters313
No. of restraints106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.83

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., (2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.952.843.568 (3)135
C7—H7A···Cl1i0.992.773.641 (3)147
C18—H18···Cl1ii1.002.743.617 (3)147
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

DPW thanks the Neimeyer–Hodgson research grant and Millersville University's student research grant. The diffractometer was purchased with funding from NSF grant CHE-0741837.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274–m1275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKöcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261–265.  Google Scholar
First citationLu, W. Y., Cavell, K. J., Wixey, J. S. & Kariuki, B. (2011). Organometallics, 30, 5649–5655.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m158-m159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds