organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(4S,5S)-2,2-Di­methyl-1,3-dioxolane-4,5-di­yl]bis­­[N-(thio­phen-2-yl­methyl­­idene)methanamine]

aKey Laboratory of Fine Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: chemsxq@yahoo.com.cn

(Received 8 December 2011; accepted 11 January 2012; online 18 January 2012)

In the title compound, C17H20N2O2S2, the five-membered heterocycle exhibits an envelope conformation and the mol­ecular chirality and configuration are well preserved from L-tartaric acid. The dihedral angle between the two thio­phene rings is 17.0 (2)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯S hydrogen inter­actions, which are effective in the stabilization of the crystal structure.

Related literature

For general background to spiranes, see: Takashi et al. (2011[Takashi, T., Yuki, Y., Tohru, T. & Tracy, K. S. (2011). J. Org. Chem. 76, 4669-4674.]); Yong (2001[Yong, H. K. (2001). Acc. Chem. Res. 34, 955-962.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O2S2

  • Mr = 348.47

  • Monoclinic, P 21

  • a = 10.475 (2) Å

  • b = 7.4792 (15) Å

  • c = 11.533 (2) Å

  • β = 92.339 (4)°

  • V = 902.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.956

  • 5249 measured reflections

  • 3140 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.02

  • 3140 reflections

  • 211 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1322 Friedel pairs

  • Flack parameter: 0.00 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.56 3.431 (4) 155
C8—H8⋯S2i 0.93 2.94 3.793 (3) 153
C12—H12⋯O1ii 0.93 2.68 3.466 (4) 143
Symmetry codes: (i) [-x+3, y+{\script{1\over 2}}, -z+2]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate and chiral C2-symmetric ligands have attracted considerable interest, however, the number of chiral precursors available from nature is seriously limited (Yong, 2001). The L-(+)-tartaric acid is a well known chiral pool possessing two useful chiral centers which is an important chiral material in synthesis (Takashi et al., 2011). Herein, we synthesized ((4S,5S)-2,2-dimethyl-1,3- dioxolane-4,5-diyl)bis(N-(thiophen-2-ylmethylene)methanamine) based on L-tartaric acid and present the structure of it. The five-membered heterocycle (Fig. 1) adopts envelope conformation, the molecular chirality and configuration are well preserved from L-tartaric acid. The dihedral angle between the two thiofuran rings is 17.0 (2)°. Molecules are linked by intermolecular weak hydrogen interactions (C—H···O and C—H···S) and probabely C—H···π interactions which are effective in the stabilization of the crystal structure. Fig. 2 shows the crystal packing of the title compound along the c axis.

Related literature top

For general background to spiranes, see: Takashi et al. (2011); Yong (2001).

Experimental top

To a solution of 2-thiophenealdehyde (0.9 g, 8.04 mmol) in ethanol (10 ml), ((4S,5S)-2,2-dimethyl-1,3-dioxolane-4,5-diyl)dimethanamine (0.6 g, 3.75 mmol) dissolved in ethanol (10 ml) was added. The mixture was refluxed for 2 h to complete the reaction and then cooled to room temperature. The compound was recrystallized from ethanol to afford a yellow solid (1 g, 76% yield, m.p. 361.5–363.4 K). Single crystals suitable for X-ray diffraction were also obtained by evaporation of an ethanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). As the Flack parameter was not unambiguous the data were refined using TWIN and BASF.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along the c axis. Dashed lines indicate C—H···O and C—H···S interactions.
[(4S,5S)-2,2-Dimethyl-1,3-dioxolane-4,5-diyl]bis[N- (thiophen-2-ylmethylidene)methanamine] top
Crystal data top
C17H20N2O2S2F(000) = 368
Mr = 348.47Dx = 1.282 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1762 reflections
a = 10.475 (2) Åθ = 2.6–24.3°
b = 7.4792 (15) ŵ = 0.31 mm1
c = 11.533 (2) ÅT = 296 K
β = 92.339 (4)°Block, colourless
V = 902.8 (3) Å30.20 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3140 independent reflections
Radiation source: fine-focus sealed tube2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 812
Tmin = 0.942, Tmax = 0.956k = 98
5249 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0442P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3140 reflectionsΔρmax = 0.14 e Å3
211 parametersΔρmin = 0.18 e Å3
19 restraintsAbsolute structure: Flack (1983), 1322 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (8)
Crystal data top
C17H20N2O2S2V = 902.8 (3) Å3
Mr = 348.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.475 (2) ŵ = 0.31 mm1
b = 7.4792 (15) ÅT = 296 K
c = 11.533 (2) Å0.20 × 0.18 × 0.15 mm
β = 92.339 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3140 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2575 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.956Rint = 0.043
5249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.14 e Å3
S = 1.02Δρmin = 0.18 e Å3
3140 reflectionsAbsolute structure: Flack (1983), 1322 Friedel pairs
211 parametersAbsolute structure parameter: 0.00 (8)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51034 (7)0.34500 (12)0.54421 (6)0.0557 (2)
S21.38990 (7)0.13103 (10)1.18352 (6)0.0563 (2)
C10.5853 (2)0.1387 (4)0.7331 (2)0.0410 (6)
H10.56790.05690.79110.049*
C20.4830 (2)0.1972 (4)0.6549 (2)0.0401 (6)
N10.6976 (2)0.1954 (3)0.72485 (19)0.0479 (6)
C31.4097 (2)0.2230 (4)1.0493 (2)0.0437 (6)
O11.10405 (16)0.0651 (3)0.77918 (17)0.0565 (5)
C41.3054 (3)0.2405 (4)0.9630 (2)0.0471 (7)
H41.32100.30270.89530.056*
N21.1964 (2)0.1774 (4)0.97401 (19)0.0530 (6)
C51.0211 (3)0.1649 (4)0.7025 (2)0.0537 (7)
C61.1023 (3)0.2134 (4)0.8812 (3)0.0531 (7)
H6A1.14560.26090.81510.064*
H6B1.04400.30460.90690.064*
C70.7933 (3)0.1333 (5)0.8120 (2)0.0567 (8)
H7A0.76280.02560.84870.068*
H7B0.80610.22400.87150.068*
C81.5345 (3)0.2735 (4)1.0366 (2)0.0495 (7)
H81.56440.32570.96980.059*
C91.6117 (3)0.2371 (5)1.1363 (3)0.0608 (8)
H91.69840.26381.14300.073*
C100.3523 (3)0.3486 (6)0.5036 (3)0.0653 (8)
H100.31800.41580.44190.078*
C110.9188 (2)0.0949 (4)0.7565 (2)0.0457 (7)
H110.94260.19710.70880.055*
O20.90851 (19)0.0604 (3)0.6865 (2)0.0779 (7)
C120.3575 (3)0.1538 (5)0.6571 (2)0.0538 (7)
H120.32420.07390.70970.065*
C130.2831 (3)0.2434 (5)0.5706 (3)0.0670 (9)
H130.19490.23060.56120.080*
C141.5472 (3)0.1603 (5)1.2200 (3)0.0615 (9)
H141.58450.12621.29120.074*
C151.0267 (2)0.0527 (4)0.8430 (2)0.0453 (7)
H150.99370.00920.91050.054*
C160.9858 (4)0.3401 (5)0.7552 (4)0.0851 (11)
H16A0.95360.31990.83080.128*
H16B1.05990.41550.76170.128*
H16C0.92120.39720.70670.128*
C171.0853 (3)0.1869 (6)0.5889 (3)0.0855 (12)
H17A1.03030.25290.53580.128*
H17B1.16420.25040.60160.128*
H17C1.10220.07120.55680.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0541 (4)0.0605 (5)0.0525 (4)0.0002 (4)0.0023 (3)0.0154 (4)
S20.0611 (5)0.0610 (5)0.0466 (4)0.0102 (4)0.0018 (3)0.0023 (4)
C10.0447 (15)0.0404 (15)0.0378 (13)0.0071 (13)0.0013 (11)0.0003 (13)
C20.0392 (14)0.0417 (15)0.0394 (13)0.0054 (12)0.0011 (11)0.0008 (12)
N10.0394 (13)0.0531 (16)0.0507 (13)0.0081 (11)0.0034 (10)0.0050 (11)
C30.0493 (16)0.0386 (15)0.0428 (14)0.0064 (13)0.0028 (12)0.0072 (12)
O10.0404 (10)0.0560 (13)0.0717 (12)0.0093 (9)0.0144 (9)0.0117 (11)
C40.0574 (18)0.0430 (16)0.0401 (14)0.0056 (14)0.0061 (13)0.0031 (13)
N20.0486 (13)0.0649 (18)0.0445 (12)0.0056 (12)0.0102 (10)0.0034 (12)
C50.0486 (15)0.0469 (17)0.0646 (17)0.0053 (15)0.0102 (13)0.0117 (16)
C60.0515 (16)0.0516 (19)0.0553 (17)0.0053 (14)0.0082 (14)0.0019 (15)
C70.0461 (16)0.072 (2)0.0519 (16)0.0054 (16)0.0050 (13)0.0108 (17)
C80.0515 (18)0.0472 (17)0.0497 (16)0.0113 (13)0.0018 (14)0.0049 (14)
C90.0450 (16)0.062 (2)0.075 (2)0.0085 (15)0.0073 (16)0.0150 (18)
C100.0618 (19)0.077 (2)0.0566 (17)0.008 (2)0.0081 (15)0.020 (2)
C110.0415 (14)0.0458 (17)0.0489 (14)0.0037 (12)0.0092 (12)0.0010 (12)
O20.0607 (13)0.0720 (16)0.0975 (16)0.0196 (12)0.0402 (12)0.0357 (14)
C120.0469 (15)0.063 (2)0.0516 (16)0.0044 (15)0.0005 (13)0.0115 (16)
C130.0433 (17)0.084 (3)0.072 (2)0.0022 (17)0.0138 (16)0.015 (2)
C140.0631 (19)0.061 (2)0.0581 (18)0.0014 (17)0.0218 (15)0.0003 (17)
C150.0390 (14)0.0486 (16)0.0476 (15)0.0041 (13)0.0089 (12)0.0022 (14)
C160.086 (2)0.061 (2)0.108 (3)0.010 (2)0.003 (2)0.004 (2)
C170.073 (2)0.106 (4)0.077 (2)0.012 (2)0.0019 (19)0.017 (2)
Geometric parameters (Å, º) top
S1—C101.703 (3)C7—H7A0.9700
S1—C21.721 (3)C7—H7B0.9700
S2—C141.699 (3)C8—C91.404 (4)
S2—C31.714 (3)C8—H80.9300
C1—N11.258 (3)C9—C141.331 (5)
C1—C21.440 (3)C9—H90.9300
C1—H10.9300C10—C131.337 (5)
C2—C121.355 (4)C10—H100.9300
N1—C71.466 (3)C11—O21.417 (3)
C3—C81.375 (4)C11—C151.510 (3)
C3—C41.453 (3)C11—H110.9800
O1—C151.422 (3)C12—C131.410 (4)
O1—C51.425 (3)C12—H120.9300
C4—N21.247 (4)C13—H130.9300
C4—H40.9300C14—H140.9300
N2—C61.450 (3)C15—H150.9800
C5—O21.421 (3)C16—H16A0.9600
C5—C161.497 (5)C16—H16B0.9600
C5—C171.505 (4)C16—H16C0.9600
C6—C151.496 (4)C17—H17A0.9600
C6—H6A0.9700C17—H17B0.9600
C6—H6B0.9700C17—H17C0.9600
C7—C111.513 (4)
C10—S1—C291.42 (15)C14—C9—H9123.7
C14—S2—C391.17 (15)C8—C9—H9123.7
N1—C1—C2121.6 (3)C13—C10—S1112.0 (2)
N1—C1—H1119.2C13—C10—H10124.0
C2—C1—H1119.2S1—C10—H10124.0
C12—C2—C1127.8 (3)O2—C11—C15104.0 (2)
C12—C2—S1111.0 (2)O2—C11—C7110.4 (2)
C1—C2—S1121.2 (2)C15—C11—C7113.6 (2)
C1—N1—C7117.2 (2)O2—C11—H11109.5
C8—C3—C4126.4 (3)C15—C11—H11109.5
C8—C3—S2110.9 (2)C7—C11—H11109.5
C4—C3—S2122.6 (2)C11—O2—C5109.5 (2)
C15—O1—C5107.45 (19)C2—C12—C13112.4 (3)
N2—C4—C3124.2 (3)C2—C12—H12123.8
N2—C4—H4117.9C13—C12—H12123.8
C3—C4—H4117.9C10—C13—C12113.1 (3)
C4—N2—C6116.9 (2)C10—C13—H13123.5
O2—C5—O1105.9 (2)C12—C13—H13123.5
O2—C5—C16108.4 (3)C9—C14—S2113.0 (2)
O1—C5—C16111.2 (3)C9—C14—H14123.5
O2—C5—C17110.2 (3)S2—C14—H14123.5
O1—C5—C17108.3 (3)O1—C15—C6110.1 (2)
C16—C5—C17112.6 (3)O1—C15—C11102.4 (2)
N2—C6—C15113.8 (2)C6—C15—C11113.5 (2)
N2—C6—H6A108.8O1—C15—H15110.2
C15—C6—H6A108.8C6—C15—H15110.2
N2—C6—H6B108.8C11—C15—H15110.2
C15—C6—H6B108.8C5—C16—H16A109.5
H6A—C6—H6B107.7C5—C16—H16B109.5
N1—C7—C11110.6 (2)H16A—C16—H16B109.5
N1—C7—H7A109.5C5—C16—H16C109.5
C11—C7—H7A109.5H16A—C16—H16C109.5
N1—C7—H7B109.5H16B—C16—H16C109.5
C11—C7—H7B109.5C5—C17—H17A109.5
H7A—C7—H7B108.1C5—C17—H17B109.5
C3—C8—C9112.2 (3)H17A—C17—H17B109.5
C3—C8—H8123.9C5—C17—H17C109.5
C9—C8—H8123.9H17A—C17—H17C109.5
C14—C9—C8112.7 (3)H17B—C17—H17C109.5
N1—C1—C2—C12176.7 (3)N1—C7—C11—C15172.7 (3)
N1—C1—C2—S11.3 (4)C15—C11—O2—C516.5 (3)
C10—S1—C2—C120.7 (3)C7—C11—O2—C5138.8 (3)
C10—S1—C2—C1177.6 (2)O1—C5—O2—C113.2 (3)
C2—C1—N1—C7177.3 (2)C16—C5—O2—C11116.2 (3)
C14—S2—C3—C80.2 (2)C17—C5—O2—C11120.1 (3)
C14—S2—C3—C4179.2 (3)C1—C2—C12—C13176.8 (3)
C8—C3—C4—N2172.8 (3)S1—C2—C12—C131.3 (4)
S2—C3—C4—N26.5 (4)S1—C10—C13—C120.8 (4)
C3—C4—N2—C6177.7 (3)C2—C12—C13—C101.4 (5)
C15—O1—C5—O223.2 (3)C8—C9—C14—S20.9 (4)
C15—O1—C5—C1694.4 (3)C3—S2—C14—C90.6 (3)
C15—O1—C5—C17141.4 (3)C5—O1—C15—C6153.6 (2)
C4—N2—C6—C15134.1 (3)C5—O1—C15—C1132.6 (3)
C1—N1—C7—C11140.1 (3)N2—C6—C15—O172.7 (3)
C4—C3—C8—C9179.6 (3)N2—C6—C15—C11173.2 (2)
S2—C3—C8—C90.2 (3)O2—C11—C15—O129.7 (3)
C3—C8—C9—C140.7 (4)C7—C11—C15—O1149.8 (3)
C2—S1—C10—C130.1 (3)O2—C11—C15—C6148.3 (2)
N1—C7—C11—O270.8 (3)C7—C11—C15—C691.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.563.431 (4)155
C8—H8···S2i0.932.943.793 (3)153
C12—H12···O1ii0.932.683.466 (4)143
Symmetry codes: (i) x+3, y+1/2, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H20N2O2S2
Mr348.47
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.475 (2), 7.4792 (15), 11.533 (2)
β (°) 92.339 (4)
V3)902.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.942, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
5249, 3140, 2575
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.02
No. of reflections3140
No. of parameters211
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18
Absolute structureFlack (1983), 1322 Friedel pairs
Absolute structure parameter0.00 (8)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.563.431 (4)155.2
C8—H8···S2i0.932.943.793 (3)153.3
C12—H12···O1ii0.932.683.466 (4)142.6
Symmetry codes: (i) x+3, y+1/2, z+2; (ii) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the Natural Science Foundation of China (No. 20872051).

References

First citationBruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakashi, T., Yuki, Y., Tohru, T. & Tracy, K. S. (2011). J. Org. Chem. 76, 4669–4674.  Web of Science PubMed Google Scholar
First citationYong, H. K. (2001). Acc. Chem. Res. 34, 955–962.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds