organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-nitro­benzoic acid

aDepartment of Textile Engineering, Faculty of Engineering, Pamukkale University, TR-20070 Kınıklı Denizli, Turkey, bDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and cDepartment of Chemical Technonolgy, Pamukkale University, TR-20070 Kınıklı Denizli, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 12 January 2012; accepted 19 January 2012; online 25 January 2012)

In the title compound, C7H6N2O4, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds then link the dimers, generating R33(16)R21(6) motifs. The whole mol­ecule is essentially planar, with the greatest deviation from the mean plane being 0.065 (2) Å.

Related literature

For related structures of carb­oxy­lic acides, see: Mrozek & Glowiak (2004[Mrozek, R. & Glowiak, T. (2004). J. Chem. Crystallogr. 34, 153-157.]); Raza et al. (2010[Raza, A. R., Rubab, S. L. & Tahir, M. N. (2010). Acta Cryst. E66, o1484.]); Grabowski & Krygowski (1985[Grabowski, S. J. & Krygowski, T. M. (1985). Acta Cryst. C41, 1224-1226.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For general background to o-amino­carb­oxy­lic acids, see: Fierz et al. (1949[Fierz, H. E., Blangey, D. & Blangey, L. (1949). Fundmental Processes of Dye Chemistry, translated from the fifth Austrian edition by P. W. Vittum, p. 323. Rochester, New York: Eastman Kodak Company.]); Shore (2002[Shore, J. (2002). Colorants and Auxiliaries, 2nd ed., Vol. 1, pp. 132, 216, 234, 296. Hampshire, England: Society of Dyers and Colourists.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N2O4

  • Mr = 182.14

  • Monoclinic, P 21 /c

  • a = 3.7026 (3) Å

  • b = 17.4638 (16) Å

  • c = 11.6953 (10) Å

  • β = 92.210 (7)°

  • V = 755.67 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.55 × 0.23 × 0.06 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.964, Tmax = 0.992

  • 5176 measured reflections

  • 1567 independent reflections

  • 884 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.127

  • S = 0.99

  • 1567 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H7⋯O1 0.86 2.06 2.694 (3) 130
N1—H7⋯O4i 0.86 2.47 3.030 (3) 123
N1—H8⋯O3ii 0.86 2.39 3.192 (4) 155
O2—H2⋯O1iii 0.82 1.81 2.631 (3) 174
C6—H6⋯O3ii 0.93 2.54 3.347 (4) 145 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+2.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Most dyes contain groups known as auxochromes (colour helpers), examples of which are carboxylic acid, sulfonic acid, amino, and hydroxyl groups. While these groups are not responsible for colour, their presence can shift the colour of a colourant and they are most often used to influence dye solubility. Aminocarboxylic acids dissolve as easily in carbonate solution as does benzoic acid, and as easily in aqueous hydrochloric acid as does aniline. o-Aminocarboxylic acids are used for synthesis of azo dyes and indigo dyes (Fierz et al., 1949; Shore, 2002). Functional groups such as carboxylic acids are completely inert in the reaction conditions for the azo coupling reaction. Taking into account these important features of the o-aminocarboxylic acids for the dye synthesis, we have undertaken the X-ray diffraction study of the 2-amino-5-nitrobenzoic acid, (I) (Fig. 1), in order to understand the molecular features which stabilize its observed conformation.

In previous works, 5-amino-2-nitrobenzoic acid (Mrozek & Glowiak, 2004), 2-Methylamino-5-nitrobenzoic acid (Raza et al., 2010), 2,5-dinitrobenzoic acid (Grabowski & Krygowski, 1985) have been published whose molecular structures are similar to the title compound.

(I) is essentially planar, the largest deviation from the mean plane being -0.065 (2) Å for atom O1. The crystal packing is stabilized by N-H···O, O-H···O and C-H···O hydrogen bonds. There exists an S(6) ring motif (Bernstein et al., 1995) due to the N-H···O intramolecular bond. Molecules are connected by intermolecular O-H···O hydrogen bonds to form centrosymmetric dimers with R22(8) ring motifs. Other hydrogen bonds generate R33(16)R21(6) motifs (Fig. 2 and Table 1).

Related literature top

For related structures of carboxylic acides, see: Mrozek & Glowiak (2004); Raza et al. (2010); Grabowski & Krygowski (1985). For hydrogen-bond motifs, see: Bernstein et al. (1995). For general background to o-aminocarboxylic acids, see: Fierz et al. (1949); Shore (2002).

Experimental top

Yellow needles of 2-amino-5-nitrobenzoic acid were obtained by slow evaporation of the analytical reagent (Alfa Aesar) from ethyl alcohol solution (m.p. 543 K).

Refinement top

The H(O) position was derived from Fourier maps (HFIX 147), other H atoms were positioned geometrically and all were constrained to ride on their parent atoms, with 0.86 Å for N—H, 0.93 Å for aromatic C-H and 0.82 Å for O-H. The Uiso(H) = xUeq(C/N), where x = 1.2 for H(N,C) and x = 1.5 for H(O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Anisotropic displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Crystal packing of (I), with hydrogen bonds drawn as dashed lines. [Symmetry codes: (i)x + 1/2, 1 - y, 2 - z; (ii)x - 1/2, y + 1/2, 3/2 - z; (iii)1/2 - x, 1/2 - y, z - 1/2].
2-Amino-5-nitrobenzoic acid top
Crystal data top
C7H6N2O4F(000) = 376
Mr = 182.14Dx = 1.601 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4323 reflections
a = 3.7026 (3) Åθ = 1.7–28.0°
b = 17.4638 (16) ŵ = 0.13 mm1
c = 11.6953 (10) ÅT = 296 K
β = 92.210 (7)°Needle, orange
V = 755.67 (11) Å30.55 × 0.23 × 0.06 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
1567 independent reflections
Radiation source: fine-focus sealed tube884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
rotation method scansh = 44
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2121
Tmin = 0.964, Tmax = 0.992l = 1314
5176 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: geom and difmap
wR(F2) = 0.127H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
1567 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C7H6N2O4V = 755.67 (11) Å3
Mr = 182.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7026 (3) ŵ = 0.13 mm1
b = 17.4638 (16) ÅT = 296 K
c = 11.6953 (10) Å0.55 × 0.23 × 0.06 mm
β = 92.210 (7)°
Data collection top
Stoe IPDS II
diffractometer
1567 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
884 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.992Rint = 0.077
5176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
1567 reflectionsΔρmin = 0.15 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6059 (8)0.35123 (17)0.7289 (3)0.0393 (7)
C20.7771 (8)0.34418 (16)0.8394 (2)0.0346 (7)
C30.8661 (8)0.27231 (16)0.8809 (3)0.0370 (7)
H30.98100.26780.95270.044*
C40.7890 (8)0.20744 (16)0.8187 (3)0.0380 (7)
C50.6210 (9)0.21311 (18)0.7098 (3)0.0444 (8)
H50.56880.16920.66730.053*
C60.5351 (9)0.28294 (17)0.6667 (3)0.0431 (8)
H60.42610.28620.59390.052*
C70.8660 (8)0.41190 (17)0.9097 (2)0.0383 (7)
N10.5107 (8)0.41812 (15)0.6824 (2)0.0548 (8)
H80.40740.41960.61540.066*
H70.55260.45990.71950.066*
N20.8912 (8)0.13354 (14)0.8636 (2)0.0502 (7)
O10.7787 (6)0.47709 (12)0.88101 (17)0.0513 (6)
O21.0433 (6)0.39701 (12)1.00684 (18)0.0528 (7)
H21.08370.43711.04150.079*
O31.0514 (7)0.12980 (13)0.9571 (2)0.0681 (8)
O40.8171 (9)0.07683 (14)0.8068 (2)0.0845 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (18)0.0391 (17)0.0415 (17)0.0007 (14)0.0015 (13)0.0015 (13)
C20.0378 (17)0.0336 (16)0.0325 (15)0.0016 (14)0.0002 (12)0.0043 (13)
C30.0391 (18)0.0395 (16)0.0321 (16)0.0021 (14)0.0016 (13)0.0019 (12)
C40.0395 (18)0.0330 (16)0.0416 (18)0.0020 (13)0.0014 (13)0.0032 (13)
C50.048 (2)0.0421 (19)0.0429 (18)0.0067 (15)0.0033 (14)0.0124 (14)
C60.0469 (19)0.047 (2)0.0346 (17)0.0021 (15)0.0062 (14)0.0048 (13)
C70.0434 (19)0.0348 (18)0.0365 (16)0.0006 (14)0.0019 (14)0.0014 (13)
N10.080 (2)0.0407 (15)0.0426 (15)0.0062 (15)0.0147 (14)0.0012 (12)
N20.0641 (19)0.0336 (15)0.0525 (17)0.0013 (14)0.0031 (14)0.0037 (13)
O10.0766 (17)0.0322 (12)0.0440 (12)0.0002 (11)0.0120 (11)0.0020 (10)
O20.0786 (17)0.0343 (11)0.0440 (13)0.0030 (11)0.0187 (12)0.0061 (9)
O30.101 (2)0.0436 (14)0.0573 (15)0.0040 (13)0.0228 (15)0.0032 (11)
O40.134 (3)0.0334 (14)0.084 (2)0.0019 (15)0.0263 (18)0.0118 (13)
Geometric parameters (Å, º) top
C1—N11.330 (4)C5—H50.9300
C1—C61.416 (4)C6—H60.9300
C1—C21.423 (4)C7—O11.227 (3)
C2—C31.381 (4)C7—O21.316 (3)
C2—C71.470 (4)N1—H80.8600
C3—C41.370 (4)N1—H70.8600
C3—H30.9300N2—O41.218 (3)
C4—C51.399 (4)N2—O31.226 (3)
C4—N21.439 (4)O2—H20.8200
C5—C61.353 (4)
N1—C1—C6119.3 (3)C4—C5—H5120.2
N1—C1—C2123.3 (3)C5—C6—C1122.1 (3)
C6—C1—C2117.4 (3)C5—C6—H6118.9
C3—C2—C1119.3 (3)C1—C6—H6118.9
C3—C2—C7119.3 (3)O1—C7—O2122.5 (3)
C1—C2—C7121.4 (3)O1—C7—C2122.9 (3)
C4—C3—C2121.5 (3)O2—C7—C2114.7 (3)
C4—C3—H3119.2C1—N1—H8120.0
C2—C3—H3119.2C1—N1—H7120.0
C3—C4—C5120.1 (3)H8—N1—H7120.0
C3—C4—N2120.1 (3)O4—N2—O3122.3 (3)
C5—C4—N2119.8 (3)O4—N2—C4118.7 (3)
C6—C5—C4119.5 (3)O3—N2—C4119.0 (3)
C6—C5—H5120.2C7—O2—H2109.5
N1—C1—C2—C3179.9 (3)N1—C1—C6—C5179.1 (3)
C6—C1—C2—C30.1 (4)C2—C1—C6—C50.8 (4)
N1—C1—C2—C71.0 (4)C3—C2—C7—O1176.2 (3)
C6—C1—C2—C7179.1 (3)C1—C2—C7—O14.8 (5)
C1—C2—C3—C40.9 (4)C3—C2—C7—O23.1 (4)
C7—C2—C3—C4180.0 (3)C1—C2—C7—O2176.0 (3)
C2—C3—C4—C51.0 (5)C3—C4—N2—O4179.5 (3)
C2—C3—C4—N2178.9 (3)C5—C4—N2—O42.5 (5)
C3—C4—C5—C60.1 (5)C3—C4—N2—O30.9 (5)
N2—C4—C5—C6178.1 (3)C5—C4—N2—O3177.0 (3)
C4—C5—C6—C10.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···O10.862.062.694 (3)130
N1—H7···O4i0.862.473.030 (3)123
N1—H8···O3ii0.862.393.192 (4)155
O2—H2···O1iii0.821.812.631 (3)174
C6—H6···O3ii0.932.543.347 (4)145 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y+1/2, z1/2; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC7H6N2O4
Mr182.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)3.7026 (3), 17.4638 (16), 11.6953 (10)
β (°) 92.210 (7)
V3)755.67 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.55 × 0.23 × 0.06
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.964, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5176, 1567, 884
Rint0.077
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.127, 0.99
No. of reflections1567
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···O10.862.062.694 (3)130.2
N1—H7···O4i0.862.473.030 (3)123.4
N1—H8···O3ii0.862.393.192 (4)155.2
O2—H2···O1iii0.821.812.631 (3)174.1
C6—H6···O3ii0.932.543.347 (4)145 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y+1/2, z1/2; (iii) x+2, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFierz, H. E., Blangey, D. & Blangey, L. (1949). Fundmental Processes of Dye Chemistry, translated from the fifth Austrian edition by P. W. Vittum, p. 323. Rochester, New York: Eastman Kodak Company.  Google Scholar
First citationGrabowski, S. J. & Krygowski, T. M. (1985). Acta Cryst. C41, 1224–1226.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMrozek, R. & Glowiak, T. (2004). J. Chem. Crystallogr. 34, 153–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaza, A. R., Rubab, S. L. & Tahir, M. N. (2010). Acta Cryst. E66, o1484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShore, J. (2002). Colorants and Auxiliaries, 2nd ed., Vol. 1, pp. 132, 216, 234, 296. Hampshire, England: Society of Dyers and Colourists.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds