organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl-6-methyl­sulfanyl-4-phenyl­benzene-1,3-dicarbo­nitrile

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and bCollege of Chemical Engineering, Huaqiao University, Xiamen Fujian 362021, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 8 September 2011; accepted 22 December 2011; online 18 January 2012)

The dihedral angle between the planes of the two aromatic rings of the title compound, C16H13N3S, is 56.7 (3)°. The crystal packing is stabilized by inter­molecular N—H⋯N hydrogen bonds, which link the mol­ecules into chains along [11[\overline{1}]].

Related literature

For medicinal and biological properities of aromatic o-amino dinitrile derivatives, see Singh et al. (2009[Singh, F. V., Parihar, A., Chaurasia, S., Singh, A. B., Singh, S. P., Tamrakar, A. K., Srivastava, A. K. & Goel, A. (2009). Bioorg. Med. Chem. Lett. 19, 2158-2161.]); Goel & Singh (2005[Goel, A. & Singh, F. V. (2005). Tetrahedron Lett. 46, 5585-5587.]); Pratap & Ramb (2008[Pratap, R. & Ramb, V. J. (2008). Tetrahedron Lett. 49, 3011-3014.]). For a related structure, see Singh et al. (2006[Singh, F. V., Vatsyayan, R., Royb, U. & Goel, A. (2006). Bioorg. Med. Chem. Lett. 16, 2734-2737.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3S

  • Mr = 279.35

  • Triclinic, [P \overline 1]

  • a = 8.959 (2) Å

  • b = 9.123 (2) Å

  • c = 10.1240 (19) Å

  • α = 65.843 (7)°

  • β = 68.362 (8)°

  • γ = 88.754 (10)°

  • V = 693.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 153 K

  • 0.50 × 0.18 × 0.07 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.896, Tmax = 0.985

  • 7468 measured reflections

  • 3601 independent reflections

  • 2825 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.00

  • 3601 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.849 (17) 2.305 (17) 3.1360 (17) 166.2 (14)
N2—H2A⋯N3ii 0.872 (17) 2.253 (18) 3.0993 (17) 163.4 (15)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was synthesized directly from the reation of 6-phenyl-5-methyl-4-methylsulfanyl-3-nitrile-2H-pyran-2-one and malononitrile. Its single-ctystal structure analysis was undertaken to comfirm its molecular structure and to determine the correlation of structural features with medical activity.

The molecular structure of (I) is shown in Fig. 1. The strong N—H···N intermolecular hydrogen-bonds are shown in Fig. 2. These hydrogen-bonds link the molecules into infinite chains along [1 1 -1].

Related literature top

For medicinal and biological properities of aromatic o-amino dinitrile derivatives, see Singh et al. (2009); Goel & Singh (2005); Pratap & Ramb (2008). For a related structure, see Singh et al. (2006).

Experimental top

The synthesis was based on the method of Singh et al. (2006). A mixture of 6-phenyl-5-methyl-4-methylsulfanyl-3-nitrile-2H-pyran-2-one (1 mmol), malononitrile (1.2 mmol), and powdered KOH (1.2 mmol) in dry DMF (5 ml) was stirred at room temperature for 5 h. At the end, the reaction mixture was poured into ice water with vigorous stirring for 4 h,and then filtered to give the title compound. The product was recrystallizated from ethanol to give yellow crystalline powder (m.p. 501–503 K).

50 mg of the product was dissolved in a mixed solvent (ethanol:petroleum ether 1:3) and was kept at room temperature for 4 days to give pale yellow single crystals.

Spectral data: IR (KBr): 3393, 3344, 2217, 1656, 1544, 1432, 1284, 836, 770, 698 cm-1; 1H-NMR(DMSO, p.p.m.): 1.47 (3H, s, CH3), 2.57 (3H, s, SCH3), 7.50–7.61 (5H, m, ArH), 8.29 (2H, s, NH2); ESI-MS m/z: [M+H]+ 280.1; C16H13N3S: calcd. C 68.79, H 4.69, N 15.04; found C 68.68, H 4.62, N 15.27.

Refinement top

Carbon-bound H atoms were included in the riding model approximation with C—H distances of 0.95–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl groups. H atoms that are bonded to N2 were located by the difference Fourier method and were refined independently with isotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of (I) with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonds in the crystal structure of (I).
2-Amino-5-methyl-6-methylsulfanyl-4-phenylbenzene-1,3-dicarbonitrile top
Crystal data top
C16H13N3SF(000) = 292
Mr = 279.35Dx = 1.338 Mg m3
Triclinic, P1Melting point: 502 K
a = 8.959 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.123 (2) ÅCell parameters from 2338 reflections
c = 10.1240 (19) Åθ = 2.4–29.1°
α = 65.843 (7)°µ = 0.23 mm1
β = 68.362 (8)°T = 153 K
γ = 88.754 (10)°Chunk, colourless
V = 693.6 (3) Å30.50 × 0.18 × 0.07 mm
Z = 2
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3601 independent reflections
Radiation source: rotating anode2825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.5°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1211
Tmin = 0.896, Tmax = 0.985l = 1213
7468 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.060P]
where P = (Fo2 + 2Fc2)/3
3601 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13N3Sγ = 88.754 (10)°
Mr = 279.35V = 693.6 (3) Å3
Triclinic, P1Z = 2
a = 8.959 (2) ÅMo Kα radiation
b = 9.123 (2) ŵ = 0.23 mm1
c = 10.1240 (19) ÅT = 153 K
α = 65.843 (7)°0.50 × 0.18 × 0.07 mm
β = 68.362 (8)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3601 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2825 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.985Rint = 0.023
7468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.42 e Å3
3601 reflectionsΔρmin = 0.22 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29042 (4)0.05634 (4)0.85224 (4)0.02678 (11)
N10.60522 (14)0.56001 (14)0.06550 (13)0.0283 (3)
N20.29233 (14)0.23632 (15)0.29819 (14)0.0249 (3)
N30.01854 (14)0.04570 (15)0.65642 (14)0.0303 (3)
C10.51849 (14)0.31928 (15)0.34085 (14)0.0172 (3)
C20.37070 (14)0.21875 (15)0.39343 (14)0.0177 (3)
C30.30635 (14)0.10607 (15)0.55414 (14)0.0181 (3)
C40.38693 (15)0.09060 (15)0.65317 (14)0.0189 (3)
C50.53818 (15)0.18480 (15)0.59641 (14)0.0192 (3)
C60.60130 (14)0.30197 (15)0.43875 (14)0.0174 (2)
C70.75896 (14)0.41104 (15)0.36946 (14)0.0182 (3)
C80.78192 (16)0.51184 (16)0.43512 (16)0.0235 (3)
H80.69650.51230.52490.028*
C90.92966 (17)0.61171 (16)0.36943 (17)0.0272 (3)
H90.94480.68050.41440.033*
C101.05420 (16)0.61142 (17)0.23934 (17)0.0296 (3)
H101.15520.67940.19540.035*
C111.03249 (16)0.51254 (18)0.17277 (16)0.0289 (3)
H111.11840.51270.08290.035*
C120.88490 (15)0.41272 (16)0.23729 (15)0.0225 (3)
H120.87000.34530.19090.027*
C130.57249 (14)0.45223 (15)0.18627 (14)0.0194 (3)
C140.14689 (15)0.01656 (15)0.61603 (14)0.0213 (3)
C150.63082 (17)0.15707 (17)0.70024 (16)0.0271 (3)
H15A0.74770.18320.63540.033*
H15B0.60430.04300.77770.033*
H15C0.60060.22700.75510.033*
C160.2306 (2)0.0743 (2)0.95114 (17)0.0398 (4)
H16A0.32770.13100.94270.048*
H16B0.16180.00861.06250.048*
H16C0.16990.15410.90190.048*
H2A0.205 (2)0.169 (2)0.330 (2)0.039 (5)*
H2B0.333 (2)0.301 (2)0.201 (2)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03045 (19)0.02449 (19)0.01632 (16)0.00576 (13)0.00669 (13)0.00220 (13)
N10.0253 (6)0.0297 (7)0.0223 (6)0.0050 (5)0.0090 (5)0.0039 (5)
N20.0217 (5)0.0272 (6)0.0187 (6)0.0074 (5)0.0089 (5)0.0020 (5)
N30.0267 (6)0.0311 (7)0.0247 (6)0.0071 (5)0.0085 (5)0.0050 (5)
C10.0158 (5)0.0164 (6)0.0158 (6)0.0001 (4)0.0033 (4)0.0061 (5)
C20.0173 (6)0.0166 (6)0.0179 (6)0.0012 (5)0.0058 (5)0.0073 (5)
C30.0167 (5)0.0167 (6)0.0176 (6)0.0012 (4)0.0043 (5)0.0065 (5)
C40.0204 (6)0.0170 (6)0.0148 (6)0.0006 (5)0.0050 (5)0.0044 (5)
C50.0188 (6)0.0185 (6)0.0196 (6)0.0016 (5)0.0076 (5)0.0076 (5)
C60.0152 (5)0.0169 (6)0.0190 (6)0.0014 (4)0.0044 (5)0.0087 (5)
C70.0153 (5)0.0170 (6)0.0199 (6)0.0018 (4)0.0075 (5)0.0053 (5)
C80.0205 (6)0.0237 (7)0.0272 (7)0.0036 (5)0.0086 (5)0.0126 (6)
C90.0278 (7)0.0197 (7)0.0382 (8)0.0016 (5)0.0191 (6)0.0107 (6)
C100.0211 (6)0.0280 (8)0.0297 (7)0.0061 (5)0.0133 (6)0.0002 (6)
C110.0172 (6)0.0395 (8)0.0192 (6)0.0005 (6)0.0036 (5)0.0055 (6)
C120.0201 (6)0.0262 (7)0.0192 (6)0.0025 (5)0.0073 (5)0.0084 (5)
C130.0156 (5)0.0222 (7)0.0205 (6)0.0007 (5)0.0068 (5)0.0094 (5)
C140.0232 (6)0.0193 (7)0.0172 (6)0.0013 (5)0.0070 (5)0.0046 (5)
C150.0262 (7)0.0279 (8)0.0243 (7)0.0018 (6)0.0132 (6)0.0054 (6)
C160.0481 (10)0.0412 (10)0.0213 (7)0.0046 (7)0.0064 (7)0.0119 (7)
Geometric parameters (Å, º) top
S1—C41.7778 (13)C7—C121.3908 (18)
S1—C161.8064 (16)C7—C81.3926 (18)
N1—C131.1453 (16)C8—C91.3898 (17)
N2—C21.3477 (16)C8—H80.9500
N2—H2A0.872 (17)C9—C101.378 (2)
N2—H2B0.849 (17)C9—H90.9500
N3—C141.1417 (16)C10—C111.381 (2)
C1—C61.4025 (17)C10—H100.9500
C1—C21.4181 (15)C11—C121.3904 (17)
C1—C131.4380 (16)C11—H110.9500
C2—C31.4147 (16)C12—H120.9500
C3—C41.3999 (17)C15—H15A0.9800
C3—C141.4395 (16)C15—H15B0.9800
C4—C51.4062 (16)C15—H15C0.9800
C5—C61.4051 (17)C16—H16A0.9800
C5—C151.5082 (18)C16—H16B0.9800
C6—C71.4955 (16)C16—H16C0.9800
C4—S1—C16100.64 (7)C7—C8—H8120.0
C2—N2—H2A120.8 (11)C10—C9—C8120.28 (13)
C2—N2—H2B122.4 (11)C10—C9—H9119.9
H2A—N2—H2B116.0 (15)C8—C9—H9119.9
C6—C1—C2122.37 (11)C9—C10—C11120.13 (12)
C6—C1—C13120.51 (10)C9—C10—H10119.9
C2—C1—C13116.82 (11)C11—C10—H10119.9
N2—C2—C3122.31 (11)C10—C11—C12120.00 (13)
N2—C2—C1121.85 (11)C10—C11—H11120.0
C3—C2—C1115.74 (11)C12—C11—H11120.0
C4—C3—C2122.01 (11)C11—C12—C7120.30 (13)
C4—C3—C14120.70 (11)C11—C12—H12119.8
C2—C3—C14117.08 (11)C7—C12—H12119.8
C3—C4—C5121.35 (11)N1—C13—C1175.53 (13)
C3—C4—S1116.68 (9)N3—C14—C3175.06 (14)
C5—C4—S1121.96 (10)C5—C15—H15A109.5
C6—C5—C4117.56 (11)C5—C15—H15B109.5
C6—C5—C15121.49 (11)H15A—C15—H15B109.5
C4—C5—C15120.93 (11)C5—C15—H15C109.5
C1—C6—C5120.81 (10)H15A—C15—H15C109.5
C1—C6—C7117.86 (11)H15B—C15—H15C109.5
C5—C6—C7121.33 (11)S1—C16—H16A109.5
C12—C7—C8119.20 (11)S1—C16—H16B109.5
C12—C7—C6119.83 (11)H16A—C16—H16B109.5
C8—C7—C6120.97 (11)S1—C16—H16C109.5
C9—C8—C7120.08 (13)H16A—C16—H16C109.5
C9—C8—H8120.0H16B—C16—H16C109.5
C6—C1—C2—N2179.89 (13)C13—C1—C6—C5172.08 (12)
C13—C1—C2—N26.36 (19)C2—C1—C6—C7178.04 (12)
C6—C1—C2—C33.76 (19)C13—C1—C6—C78.43 (18)
C13—C1—C2—C3169.99 (11)C4—C5—C6—C12.33 (19)
N2—C2—C3—C4178.76 (13)C15—C5—C6—C1175.93 (12)
C1—C2—C3—C42.42 (19)C4—C5—C6—C7178.20 (12)
N2—C2—C3—C143.88 (19)C15—C5—C6—C73.54 (19)
C1—C2—C3—C14172.45 (12)C1—C6—C7—C1257.24 (17)
C2—C3—C4—C51.3 (2)C5—C6—C7—C12122.25 (14)
C14—C3—C4—C5175.95 (12)C1—C6—C7—C8122.61 (14)
C2—C3—C4—S1179.95 (10)C5—C6—C7—C857.90 (17)
C14—C3—C4—S15.26 (17)C12—C7—C8—C90.5 (2)
C16—S1—C4—C3109.99 (12)C6—C7—C8—C9179.67 (13)
C16—S1—C4—C571.23 (13)C7—C8—C9—C100.1 (2)
C3—C4—C5—C63.7 (2)C8—C9—C10—C110.4 (2)
S1—C4—C5—C6177.62 (10)C9—C10—C11—C120.2 (2)
C3—C4—C5—C15174.62 (13)C10—C11—C12—C70.4 (2)
S1—C4—C5—C154.11 (18)C8—C7—C12—C110.7 (2)
C2—C1—C6—C51.4 (2)C6—C7—C12—C11179.41 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.849 (17)2.305 (17)3.1360 (17)166.2 (14)
N2—H2A···N3ii0.872 (17)2.253 (18)3.0993 (17)163.4 (15)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13N3S
Mr279.35
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.959 (2), 9.123 (2), 10.1240 (19)
α, β, γ (°)65.843 (7), 68.362 (8), 88.754 (10)
V3)693.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.50 × 0.18 × 0.07
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.896, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7468, 3601, 2825
Rint0.023
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.00
No. of reflections3601
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.22

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.849 (17)2.305 (17)3.1360 (17)166.2 (14)
N2—H2A···N3ii0.872 (17)2.253 (18)3.0993 (17)163.4 (15)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
 

Acknowledgements

The authors thank Beijing Institute of Technology for the X-ray diffraction analysis.

References

First citationGoel, A. & Singh, F. V. (2005). Tetrahedron Lett. 46, 5585–5587.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPratap, R. & Ramb, V. J. (2008). Tetrahedron Lett. 49, 3011–3014.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, F. V., Parihar, A., Chaurasia, S., Singh, A. B., Singh, S. P., Tamrakar, A. K., Srivastava, A. K. & Goel, A. (2009). Bioorg. Med. Chem. Lett. 19, 2158–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, F. V., Vatsyayan, R., Royb, U. & Goel, A. (2006). Bioorg. Med. Chem. Lett. 16, 2734–2737.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds