organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-[(6-chloro­pyridin-3-yl)meth­yl]-2-oxoimidazolidine-1-carboxyl­ate

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 9 January 2012; accepted 16 January 2012; online 21 January 2012)

In the title compound, C12H14ClN3O3, the imidazole ring adopts a half-chair conformation. The dihedral angle between the pyridine and imidazole rings is 70.0 (1)°. In the crystal, the molecules are linked by C—H⋯O inter­actions, forming chains parallel to the c axis.

Related literature

For background to the insecticidal applications of imidacloprid [systematic name: N-[1-[(6-chloro-3-pyrid­yl)meth­yl]-4,5-dihydro­imidazol-2-yl]nitramide], see: Samaritoni et al. (2003[Samaritoni, J. G., Demeter, D. A., Gifford, J. M., Watson, G. B., Kempe, M. S. & Bruce, T. J. (2003). J. Agric. Food Chem. 51, 3035-3042.]); Kagabu et al. (1997[Kagabu, S. & Matsuno, H. (1997). J. Agric. Food Chem. 45, 276-281.], 2007[Kagabu, S., Ishihara, R., Hieda, Y., Nishimura, K. & Naruse, Y. (2007). J. Agric. Food Chem. 55, 812-818.]); Zhao et al. (2010[Zhao, Y., Wang, G., Li, Y. Q., Wang, S.-H. & Li, Z. M. (2010). Chem. Res. Chin. Univ. 26, 380-383.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]). For related structures, see: Kapoor et al. (2011[Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Structure Analysis Online, 27, 55-56.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClN3O3

  • Mr = 283.71

  • Monoclinic, P 21 /c

  • a = 13.3926 (14) Å

  • b = 8.4991 (8) Å

  • c = 12.3361 (12) Å

  • β = 106.538 (10)°

  • V = 1346.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.941, Tmax = 1.000

  • 6112 measured reflections

  • 2645 independent reflections

  • 1537 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.191

  • S = 1.05

  • 2645 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.53 3.366 (5) 150
C9—H9B⋯O2i 0.97 2.50 3.395 (4) 152
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Since the advent of imidacloprid, the search for new neonicotinoid insecticides has been intense with competitive efforts by several research groups within the agrochemical industry (Samaritoni et al., 2003). From the crystallographic study of imidacloprid and related insecticides, precise three-dimensional structural information and characteristic molecular features gave an insight of the binding mode of these insecticides to nAChRs (Kagabu et al., 1997). The biological profile of imidacloprid provides an impulse in the development of new products by modifying the structural features of the prototype (Kagabu et al., 2007). Therefore, in a search for new neonicotinoid insecticide with improved profiles, neonicotinoid derivatives containing N-oxalyl groups were designed and synthesized. (Zhao et al., 2010). The bond lengths and angles observed in (I) show normal values and are comparable with related structures (Kapoor et al., 2011; Kant et al., 2012). The imidazole ring adopts a half-chair conformation with asymmetry parameter: ΔC2(C9—C10)=1.51 (Duax et al., 1975). The dihedral angle between the pyridine and imidazole rings is 70.0 (1)°. Molecules in the unit cell are packed together to form well defined chainss (Fig. 2). Within the chains, the molecules are linked by two different intermolecular C—H···O interactions (Table 1).

Related literature top

For background to the insecticidal applications of imidacloprid [systematic name: N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl]nitramide], see: Samaritoni et al. (2003); Kagabu et al. (1997, 2007); Zhao et al. (2010). For ring conformations, see: Duax & Norton (1975). For related structures, see: Kapoor et al. (2011); Kant et al. (2012).

Experimental top

Imidacloprid (10.20 g, 0.04 mol) was dissolved in 30 ml acetone, ethyl chloroformate (6.482 g, 0.06 mol) in the presence of 10 g K2CO3. The mixture was refluxed for 24 hrs with the progress of the reaction monitored by TLC. After completion of the reaction, the mixture was filtered to remove the K2CO3, by a process of slow evaporation. White crystalline compound was separated out with 80% yield.

m.p. 362–363 K; IR (KBr) cm-1: 2980, 2903, 1764; 1H-NMR (300 MHz, CDCl3) δ: 1.28 (t, J=7.5 Hz, CH3), 3.27(t, J=7.5 Hz, CH2), 3.74(t, J=7.5 Hz,CH2), 4.20(q, J=7.5 Hz, OCH2), 4.35(s, CH2), 7.25(d, J=8.2 Hz, py, 1H), 7.61(dd, J=7.5 Hz, J=2.5 Hz, py, 1H), 8.21(s, py, 1H) p.p.m.; 13C-NMR (300 MHz, CDCl3) δ: 153.71, 151.72, 151.15, 149.20, 138.93, 130.69, 124.50, 96.05, 62.39, 44.50, 40.52, 14.39 p.p.m.; LCMS/MS (ESI): 284 [M+], (m/z).240, 256, 212, 172, 126.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methylC). Due to large value of the displacement parameter for C16 and consequent librational motion, the C15—C16 bond length was constrained.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed in the b axis direction. The dashed lines show the intermolecular C—H···O interactions.
Ethyl 3-[(6-chloropyridin-3-yl)methyl]-2-oxoimidazolidine-1-carboxylate top
Crystal data top
C12H14ClN3O3F(000) = 592
Mr = 283.71Dx = 1.400 Mg m3
Monoclinic, P21/cMelting point: 362 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.3926 (14) ÅCell parameters from 1920 reflections
b = 8.4991 (8) Åθ = 3.4–29.0°
c = 12.3361 (12) ŵ = 0.29 mm1
β = 106.538 (10)°T = 293 K
V = 1346.1 (2) Å3Plate, white
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2645 independent reflections
Radiation source: fine-focus sealed tube1537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 109
Tmin = 0.941, Tmax = 1.000l = 1515
6112 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0878P)2 + 0.0871P]
where P = (Fo2 + 2Fc2)/3
2645 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C12H14ClN3O3V = 1346.1 (2) Å3
Mr = 283.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3926 (14) ŵ = 0.29 mm1
b = 8.4991 (8) ÅT = 293 K
c = 12.3361 (12) Å0.3 × 0.2 × 0.2 mm
β = 106.538 (10)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2645 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1537 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 1.000Rint = 0.035
6112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0651 restraint
wR(F2) = 0.191H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
2645 reflectionsΔρmin = 0.21 e Å3
173 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37380 (8)0.08507 (14)0.01623 (10)0.0948 (5)
O10.06757 (17)0.2327 (3)0.42795 (18)0.0656 (7)
O20.22097 (18)0.0437 (3)0.57542 (18)0.0692 (7)
N10.2183 (2)0.0963 (4)0.0205 (2)0.0647 (8)
C20.1521 (3)0.1394 (4)0.2107 (3)0.0606 (9)
H20.13030.15400.28870.073*
C30.0976 (2)0.2097 (3)0.1434 (2)0.0488 (8)
C40.1347 (3)0.1827 (4)0.0290 (3)0.0597 (9)
H40.09870.22820.01730.072*
C50.2373 (3)0.0491 (4)0.1629 (3)0.0626 (9)
H50.27450.00060.20700.075*
C60.2664 (2)0.0322 (4)0.0476 (3)0.0585 (9)
C70.0017 (2)0.3089 (4)0.1925 (3)0.0588 (9)
H7A0.01650.38410.24510.071*
H7B0.01400.36770.13200.071*
N80.0890 (2)0.2170 (3)0.2508 (2)0.0515 (7)
C90.1498 (2)0.1287 (4)0.1924 (2)0.0552 (8)
H9A0.11050.04110.15090.066*
H9B0.17350.19500.14060.066*
C100.2408 (3)0.0717 (4)0.2892 (3)0.0537 (8)
H10A0.30210.13650.29680.064*
H10B0.25790.03700.27820.064*
N110.20128 (18)0.0880 (3)0.3875 (2)0.0475 (6)
C120.1124 (2)0.1855 (3)0.3619 (2)0.0471 (7)
C130.2523 (3)0.0357 (4)0.4938 (3)0.0538 (8)
O140.34333 (19)0.0302 (3)0.4922 (2)0.0733 (7)
C150.4057 (3)0.0951 (5)0.5990 (4)0.0937 (14)
H15A0.36060.14500.63790.112*
H15B0.45270.17420.58500.112*
C160.4668 (3)0.0327 (6)0.6709 (4)0.1119 (17)
H16A0.42000.10550.69060.168*
H16B0.51220.01200.73860.168*
H16C0.50750.08690.62990.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0669 (7)0.1178 (9)0.0857 (9)0.0107 (6)0.0010 (6)0.0055 (6)
O10.0580 (15)0.0992 (17)0.0429 (13)0.0119 (13)0.0197 (11)0.0150 (12)
O20.0746 (17)0.1006 (17)0.0353 (13)0.0080 (13)0.0204 (12)0.0088 (12)
N10.0613 (19)0.094 (2)0.0381 (16)0.0072 (16)0.0124 (14)0.0020 (14)
C20.065 (2)0.088 (2)0.0290 (17)0.0102 (19)0.0121 (15)0.0066 (16)
C30.0470 (18)0.0610 (18)0.0385 (17)0.0136 (15)0.0122 (14)0.0050 (14)
C40.062 (2)0.081 (2)0.0403 (19)0.0085 (19)0.0225 (17)0.0091 (17)
C50.057 (2)0.089 (2)0.045 (2)0.0033 (18)0.0180 (16)0.0080 (18)
C60.0461 (19)0.075 (2)0.051 (2)0.0093 (16)0.0088 (16)0.0010 (17)
C70.062 (2)0.063 (2)0.050 (2)0.0107 (17)0.0131 (17)0.0077 (16)
N80.0525 (16)0.0653 (16)0.0366 (15)0.0100 (13)0.0122 (12)0.0006 (12)
C90.059 (2)0.076 (2)0.0357 (18)0.0088 (16)0.0213 (15)0.0047 (15)
C100.0527 (19)0.076 (2)0.0366 (17)0.0077 (16)0.0200 (14)0.0029 (15)
N110.0430 (14)0.0696 (16)0.0304 (14)0.0031 (12)0.0115 (11)0.0012 (11)
C120.0425 (17)0.0619 (19)0.0367 (17)0.0062 (14)0.0113 (14)0.0110 (14)
C130.054 (2)0.071 (2)0.0355 (18)0.0015 (17)0.0117 (15)0.0011 (16)
O140.0653 (16)0.1055 (19)0.0469 (15)0.0273 (14)0.0124 (12)0.0147 (13)
C150.085 (3)0.130 (4)0.058 (3)0.035 (3)0.006 (2)0.020 (3)
C160.073 (3)0.174 (5)0.075 (3)0.019 (3)0.000 (3)0.024 (3)
Geometric parameters (Å, º) top
Cl1—C61.743 (3)N8—C91.443 (3)
O1—C121.209 (3)C9—C101.522 (4)
O2—C131.198 (3)C9—H9A0.9700
N1—C61.315 (4)C9—H9B0.9700
N1—C41.333 (4)C10—N111.462 (3)
C2—C51.364 (5)C10—H10A0.9700
C2—C31.387 (4)C10—H10B0.9700
C2—H20.9300N11—C131.368 (4)
C3—C41.375 (4)N11—C121.411 (4)
C3—C71.512 (4)C13—O141.347 (4)
C4—H40.9300O14—C151.452 (4)
C5—C61.371 (5)C15—C161.491 (5)
C5—H50.9300C15—H15A0.9700
C7—N81.451 (4)C15—H15B0.9700
C7—H7A0.9700C16—H16A0.9600
C7—H7B0.9700C16—H16B0.9600
N8—C121.343 (4)C16—H16C0.9600
C6—N1—C4115.8 (3)H9A—C9—H9B109.2
C5—C2—C3120.1 (3)N11—C10—C9102.9 (2)
C5—C2—H2119.9N11—C10—H10A111.2
C3—C2—H2119.9C9—C10—H10A111.2
C4—C3—C2116.4 (3)N11—C10—H10B111.2
C4—C3—C7121.5 (3)C9—C10—H10B111.2
C2—C3—C7122.1 (3)H10A—C10—H10B109.1
N1—C4—C3125.0 (3)C13—N11—C12124.4 (2)
N1—C4—H4117.5C13—N11—C10124.3 (2)
C3—C4—H4117.5C12—N11—C10110.6 (2)
C2—C5—C6117.6 (3)O1—C12—N8127.2 (3)
C2—C5—H5121.2O1—C12—N11126.4 (3)
C6—C5—H5121.2N8—C12—N11106.4 (2)
N1—C6—C5125.0 (3)O2—C13—O14124.8 (3)
N1—C6—Cl1116.1 (3)O2—C13—N11126.0 (3)
C5—C6—Cl1118.9 (3)O14—C13—N11109.2 (3)
N8—C7—C3113.2 (2)C13—O14—C15115.8 (3)
N8—C7—H7A108.9O14—C15—C16109.9 (3)
C3—C7—H7A108.9O14—C15—H15A109.7
N8—C7—H7B108.9C16—C15—H15A109.7
C3—C7—H7B108.9O14—C15—H15B109.7
H7A—C7—H7B107.7C16—C15—H15B109.7
C12—N8—C9113.9 (2)H15A—C15—H15B108.2
C12—N8—C7122.2 (2)C15—C16—H16A109.5
C9—N8—C7123.0 (3)C15—C16—H16B109.5
N8—C9—C10102.3 (2)H16A—C16—H16B109.5
N8—C9—H9A111.3C15—C16—H16C109.5
C10—C9—H9A111.3H16A—C16—H16C109.5
N8—C9—H9B111.3H16B—C16—H16C109.5
C10—C9—H9B111.3
C5—C2—C3—C40.1 (5)C9—C10—N11—C13173.1 (3)
C5—C2—C3—C7179.1 (3)C9—C10—N11—C1216.0 (3)
C6—N1—C4—C30.8 (5)C9—N8—C12—O1173.2 (3)
C2—C3—C4—N10.6 (5)C7—N8—C12—O14.0 (5)
C7—C3—C4—N1179.8 (3)C9—N8—C12—N117.7 (3)
C3—C2—C5—C60.4 (5)C7—N8—C12—N11177.0 (2)
C4—N1—C6—C50.5 (5)C13—N11—C12—O12.1 (5)
C4—N1—C6—Cl1178.4 (2)C10—N11—C12—O1173.0 (3)
C2—C5—C6—N10.1 (5)C13—N11—C12—N8177.0 (3)
C2—C5—C6—Cl1179.0 (2)C10—N11—C12—N86.1 (3)
C4—C3—C7—N8106.3 (3)C12—N11—C13—O212.3 (5)
C2—C3—C7—N872.9 (4)C10—N11—C13—O2178.0 (3)
C3—C7—N8—C1291.0 (3)C12—N11—C13—O14169.1 (3)
C3—C7—N8—C977.3 (4)C10—N11—C13—O140.6 (4)
C12—N8—C9—C1017.3 (3)O2—C13—O14—C150.1 (5)
C7—N8—C9—C10173.5 (3)N11—C13—O14—C15178.6 (3)
N8—C9—C10—N1118.9 (3)C13—O14—C15—C1682.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.533.366 (5)150
C9—H9B···O2i0.972.503.395 (4)152
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H14ClN3O3
Mr283.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.3926 (14), 8.4991 (8), 12.3361 (12)
β (°) 106.538 (10)
V3)1346.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.941, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6112, 2645, 1537
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.191, 1.05
No. of reflections2645
No. of parameters173
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.533.366 (5)150
C9—H9B···O2i0.972.503.395 (4)152
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He also thanks the University of Jammu, Jammu, India for financial support.

References

First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKagabu, S., Ishihara, R., Hieda, Y., Nishimura, K. & Naruse, Y. (2007). J. Agric. Food Chem. 55, 812–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKagabu, S. & Matsuno, H. (1997). J. Agric. Food Chem. 45, 276–281.  CrossRef CAS Web of Science Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Structure Analysis Online, 27, 55–56.  CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSamaritoni, J. G., Demeter, D. A., Gifford, J. M., Watson, G. B., Kempe, M. S. & Bruce, T. J. (2003). J. Agric. Food Chem. 51, 3035–3042.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Wang, G., Li, Y. Q., Wang, S.-H. & Li, Z. M. (2010). Chem. Res. Chin. Univ. 26, 380–383.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds