organic compounds
Ethyl 3-[(6-chloropyridin-3-yl)methyl]-2-oxoimidazolidine-1-carboxylate
aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com
In the title compound, C12H14ClN3O3, the imidazole ring adopts a half-chair conformation. The dihedral angle between the pyridine and imidazole rings is 70.0 (1)°. In the crystal, the molecules are linked by C—H⋯O interactions, forming chains parallel to the c axis.
Related literature
For background to the insecticidal applications of imidacloprid [systematic name: N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl]nitramide], see: Samaritoni et al. (2003); Kagabu et al. (1997, 2007); Zhao et al. (2010). For ring conformations, see: Duax & Norton (1975). For related structures, see: Kapoor et al. (2011); Kant et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812001948/gg2073sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812001948/gg2073Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812001948/gg2073Isup3.cml
Imidacloprid (10.20 g, 0.04 mol) was dissolved in 30 ml acetone, ethyl chloroformate (6.482 g, 0.06 mol) in the presence of 10 g K2CO3. The mixture was refluxed for 24 hrs with the progress of the reaction monitored by TLC. After completion of the reaction, the mixture was filtered to remove the K2CO3, by a process of slow evaporation. White crystalline compound was separated out with 80% yield.
m.p. 362–363 K; IR (KBr) cm-1: 2980, 2903, 1764; 1H-NMR (300 MHz, CDCl3) δ: 1.28 (t, J=7.5 Hz, CH3), 3.27(t, J=7.5 Hz, CH2), 3.74(t, J=7.5 Hz,CH2), 4.20(q, J=7.5 Hz, OCH2), 4.35(s, CH2), 7.25(d, J=8.2 Hz, py, 1H), 7.61(dd, J=7.5 Hz, J=2.5 Hz, py, 1H), 8.21(s, py, 1H) p.p.m.; 13C-NMR (300 MHz, CDCl3) δ: 153.71, 151.72, 151.15, 149.20, 138.93, 130.69, 124.50, 96.05, 62.39, 44.50, 40.52, 14.39 p.p.m.; LCMS/MS (ESI): 284 [M+], (m/z).240, 256, 212, 172, 126.
All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methylC). Due to large value of the displacement parameter for C16 and consequent librational motion, the C15—C16 bond length was constrained.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C12H14ClN3O3 | F(000) = 592 |
Mr = 283.71 | Dx = 1.400 Mg m−3 |
Monoclinic, P21/c | Melting point: 362 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3926 (14) Å | Cell parameters from 1920 reflections |
b = 8.4991 (8) Å | θ = 3.4–29.0° |
c = 12.3361 (12) Å | µ = 0.29 mm−1 |
β = 106.538 (10)° | T = 293 K |
V = 1346.1 (2) Å3 | Plate, white |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2645 independent reflections |
Radiation source: fine-focus sealed tube | 1537 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −15→16 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −10→9 |
Tmin = 0.941, Tmax = 1.000 | l = −15→15 |
6112 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.191 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0878P)2 + 0.0871P] where P = (Fo2 + 2Fc2)/3 |
2645 reflections | (Δ/σ)max = 0.001 |
173 parameters | Δρmax = 0.42 e Å−3 |
1 restraint | Δρmin = −0.21 e Å−3 |
C12H14ClN3O3 | V = 1346.1 (2) Å3 |
Mr = 283.71 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.3926 (14) Å | µ = 0.29 mm−1 |
b = 8.4991 (8) Å | T = 293 K |
c = 12.3361 (12) Å | 0.3 × 0.2 × 0.2 mm |
β = 106.538 (10)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2645 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1537 reflections with I > 2σ(I) |
Tmin = 0.941, Tmax = 1.000 | Rint = 0.035 |
6112 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 1 restraint |
wR(F2) = 0.191 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.42 e Å−3 |
2645 reflections | Δρmin = −0.21 e Å−3 |
173 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.37380 (8) | 0.08507 (14) | −0.01623 (10) | 0.0948 (5) | |
O1 | 0.06757 (17) | −0.2327 (3) | 0.42795 (18) | 0.0656 (7) | |
O2 | 0.22097 (18) | −0.0437 (3) | 0.57542 (18) | 0.0692 (7) | |
N1 | −0.2183 (2) | −0.0963 (4) | −0.0205 (2) | 0.0647 (8) | |
C2 | −0.1521 (3) | −0.1394 (4) | 0.2107 (3) | 0.0606 (9) | |
H2 | −0.1303 | −0.1540 | 0.2887 | 0.073* | |
C3 | −0.0976 (2) | −0.2097 (3) | 0.1434 (2) | 0.0488 (8) | |
C4 | −0.1347 (3) | −0.1827 (4) | 0.0290 (3) | 0.0597 (9) | |
H4 | −0.0987 | −0.2282 | −0.0173 | 0.072* | |
C5 | −0.2373 (3) | −0.0491 (4) | 0.1629 (3) | 0.0626 (9) | |
H5 | −0.2745 | −0.0006 | 0.2070 | 0.075* | |
C6 | −0.2664 (2) | −0.0322 (4) | 0.0476 (3) | 0.0585 (9) | |
C7 | −0.0017 (2) | −0.3089 (4) | 0.1925 (3) | 0.0588 (9) | |
H7A | −0.0165 | −0.3841 | 0.2451 | 0.071* | |
H7B | 0.0140 | −0.3677 | 0.1320 | 0.071* | |
N8 | 0.0890 (2) | −0.2170 (3) | 0.2508 (2) | 0.0515 (7) | |
C9 | 0.1498 (2) | −0.1287 (4) | 0.1924 (2) | 0.0552 (8) | |
H9A | 0.1105 | −0.0411 | 0.1509 | 0.066* | |
H9B | 0.1735 | −0.1950 | 0.1406 | 0.066* | |
C10 | 0.2408 (3) | −0.0717 (4) | 0.2892 (3) | 0.0537 (8) | |
H10A | 0.3021 | −0.1365 | 0.2968 | 0.064* | |
H10B | 0.2579 | 0.0370 | 0.2782 | 0.064* | |
N11 | 0.20128 (18) | −0.0880 (3) | 0.3875 (2) | 0.0475 (6) | |
C12 | 0.1124 (2) | −0.1855 (3) | 0.3619 (2) | 0.0471 (7) | |
C13 | 0.2523 (3) | −0.0357 (4) | 0.4938 (3) | 0.0538 (8) | |
O14 | 0.34333 (19) | 0.0302 (3) | 0.4922 (2) | 0.0733 (7) | |
C15 | 0.4057 (3) | 0.0951 (5) | 0.5990 (4) | 0.0937 (14) | |
H15A | 0.3606 | 0.1450 | 0.6379 | 0.112* | |
H15B | 0.4527 | 0.1742 | 0.5850 | 0.112* | |
C16 | 0.4668 (3) | −0.0327 (6) | 0.6709 (4) | 0.1119 (17) | |
H16A | 0.4200 | −0.1055 | 0.6906 | 0.168* | |
H16B | 0.5122 | 0.0120 | 0.7386 | 0.168* | |
H16C | 0.5075 | −0.0869 | 0.6299 | 0.168* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0669 (7) | 0.1178 (9) | 0.0857 (9) | 0.0107 (6) | −0.0010 (6) | 0.0055 (6) |
O1 | 0.0580 (15) | 0.0992 (17) | 0.0429 (13) | −0.0119 (13) | 0.0197 (11) | 0.0150 (12) |
O2 | 0.0746 (17) | 0.1006 (17) | 0.0353 (13) | −0.0080 (13) | 0.0204 (12) | −0.0088 (12) |
N1 | 0.0613 (19) | 0.094 (2) | 0.0381 (16) | −0.0072 (16) | 0.0124 (14) | 0.0020 (14) |
C2 | 0.065 (2) | 0.088 (2) | 0.0290 (17) | −0.0102 (19) | 0.0121 (15) | −0.0066 (16) |
C3 | 0.0470 (18) | 0.0610 (18) | 0.0385 (17) | −0.0136 (15) | 0.0122 (14) | −0.0050 (14) |
C4 | 0.062 (2) | 0.081 (2) | 0.0403 (19) | −0.0085 (19) | 0.0225 (17) | −0.0091 (17) |
C5 | 0.057 (2) | 0.089 (2) | 0.045 (2) | −0.0033 (18) | 0.0180 (16) | −0.0080 (18) |
C6 | 0.0461 (19) | 0.075 (2) | 0.051 (2) | −0.0093 (16) | 0.0088 (16) | −0.0010 (17) |
C7 | 0.062 (2) | 0.063 (2) | 0.050 (2) | −0.0107 (17) | 0.0131 (17) | −0.0077 (16) |
N8 | 0.0525 (16) | 0.0653 (16) | 0.0366 (15) | −0.0100 (13) | 0.0122 (12) | −0.0006 (12) |
C9 | 0.059 (2) | 0.076 (2) | 0.0357 (18) | −0.0088 (16) | 0.0213 (15) | −0.0047 (15) |
C10 | 0.0527 (19) | 0.076 (2) | 0.0366 (17) | −0.0077 (16) | 0.0200 (14) | −0.0029 (15) |
N11 | 0.0430 (14) | 0.0696 (16) | 0.0304 (14) | −0.0031 (12) | 0.0115 (11) | 0.0012 (11) |
C12 | 0.0425 (17) | 0.0619 (19) | 0.0367 (17) | 0.0062 (14) | 0.0113 (14) | 0.0110 (14) |
C13 | 0.054 (2) | 0.071 (2) | 0.0355 (18) | −0.0015 (17) | 0.0117 (15) | 0.0011 (16) |
O14 | 0.0653 (16) | 0.1055 (19) | 0.0469 (15) | −0.0273 (14) | 0.0124 (12) | −0.0147 (13) |
C15 | 0.085 (3) | 0.130 (4) | 0.058 (3) | −0.035 (3) | 0.006 (2) | −0.020 (3) |
C16 | 0.073 (3) | 0.174 (5) | 0.075 (3) | −0.019 (3) | 0.000 (3) | −0.024 (3) |
Cl1—C6 | 1.743 (3) | N8—C9 | 1.443 (3) |
O1—C12 | 1.209 (3) | C9—C10 | 1.522 (4) |
O2—C13 | 1.198 (3) | C9—H9A | 0.9700 |
N1—C6 | 1.315 (4) | C9—H9B | 0.9700 |
N1—C4 | 1.333 (4) | C10—N11 | 1.462 (3) |
C2—C5 | 1.364 (5) | C10—H10A | 0.9700 |
C2—C3 | 1.387 (4) | C10—H10B | 0.9700 |
C2—H2 | 0.9300 | N11—C13 | 1.368 (4) |
C3—C4 | 1.375 (4) | N11—C12 | 1.411 (4) |
C3—C7 | 1.512 (4) | C13—O14 | 1.347 (4) |
C4—H4 | 0.9300 | O14—C15 | 1.452 (4) |
C5—C6 | 1.371 (5) | C15—C16 | 1.491 (5) |
C5—H5 | 0.9300 | C15—H15A | 0.9700 |
C7—N8 | 1.451 (4) | C15—H15B | 0.9700 |
C7—H7A | 0.9700 | C16—H16A | 0.9600 |
C7—H7B | 0.9700 | C16—H16B | 0.9600 |
N8—C12 | 1.343 (4) | C16—H16C | 0.9600 |
C6—N1—C4 | 115.8 (3) | H9A—C9—H9B | 109.2 |
C5—C2—C3 | 120.1 (3) | N11—C10—C9 | 102.9 (2) |
C5—C2—H2 | 119.9 | N11—C10—H10A | 111.2 |
C3—C2—H2 | 119.9 | C9—C10—H10A | 111.2 |
C4—C3—C2 | 116.4 (3) | N11—C10—H10B | 111.2 |
C4—C3—C7 | 121.5 (3) | C9—C10—H10B | 111.2 |
C2—C3—C7 | 122.1 (3) | H10A—C10—H10B | 109.1 |
N1—C4—C3 | 125.0 (3) | C13—N11—C12 | 124.4 (2) |
N1—C4—H4 | 117.5 | C13—N11—C10 | 124.3 (2) |
C3—C4—H4 | 117.5 | C12—N11—C10 | 110.6 (2) |
C2—C5—C6 | 117.6 (3) | O1—C12—N8 | 127.2 (3) |
C2—C5—H5 | 121.2 | O1—C12—N11 | 126.4 (3) |
C6—C5—H5 | 121.2 | N8—C12—N11 | 106.4 (2) |
N1—C6—C5 | 125.0 (3) | O2—C13—O14 | 124.8 (3) |
N1—C6—Cl1 | 116.1 (3) | O2—C13—N11 | 126.0 (3) |
C5—C6—Cl1 | 118.9 (3) | O14—C13—N11 | 109.2 (3) |
N8—C7—C3 | 113.2 (2) | C13—O14—C15 | 115.8 (3) |
N8—C7—H7A | 108.9 | O14—C15—C16 | 109.9 (3) |
C3—C7—H7A | 108.9 | O14—C15—H15A | 109.7 |
N8—C7—H7B | 108.9 | C16—C15—H15A | 109.7 |
C3—C7—H7B | 108.9 | O14—C15—H15B | 109.7 |
H7A—C7—H7B | 107.7 | C16—C15—H15B | 109.7 |
C12—N8—C9 | 113.9 (2) | H15A—C15—H15B | 108.2 |
C12—N8—C7 | 122.2 (2) | C15—C16—H16A | 109.5 |
C9—N8—C7 | 123.0 (3) | C15—C16—H16B | 109.5 |
N8—C9—C10 | 102.3 (2) | H16A—C16—H16B | 109.5 |
N8—C9—H9A | 111.3 | C15—C16—H16C | 109.5 |
C10—C9—H9A | 111.3 | H16A—C16—H16C | 109.5 |
N8—C9—H9B | 111.3 | H16B—C16—H16C | 109.5 |
C10—C9—H9B | 111.3 | ||
C5—C2—C3—C4 | −0.1 (5) | C9—C10—N11—C13 | −173.1 (3) |
C5—C2—C3—C7 | 179.1 (3) | C9—C10—N11—C12 | 16.0 (3) |
C6—N1—C4—C3 | 0.8 (5) | C9—N8—C12—O1 | 173.2 (3) |
C2—C3—C4—N1 | −0.6 (5) | C7—N8—C12—O1 | 4.0 (5) |
C7—C3—C4—N1 | −179.8 (3) | C9—N8—C12—N11 | −7.7 (3) |
C3—C2—C5—C6 | 0.4 (5) | C7—N8—C12—N11 | −177.0 (2) |
C4—N1—C6—C5 | −0.5 (5) | C13—N11—C12—O1 | 2.1 (5) |
C4—N1—C6—Cl1 | 178.4 (2) | C10—N11—C12—O1 | 173.0 (3) |
C2—C5—C6—N1 | −0.1 (5) | C13—N11—C12—N8 | −177.0 (3) |
C2—C5—C6—Cl1 | −179.0 (2) | C10—N11—C12—N8 | −6.1 (3) |
C4—C3—C7—N8 | 106.3 (3) | C12—N11—C13—O2 | −12.3 (5) |
C2—C3—C7—N8 | −72.9 (4) | C10—N11—C13—O2 | 178.0 (3) |
C3—C7—N8—C12 | 91.0 (3) | C12—N11—C13—O14 | 169.1 (3) |
C3—C7—N8—C9 | −77.3 (4) | C10—N11—C13—O14 | −0.6 (4) |
C12—N8—C9—C10 | 17.3 (3) | O2—C13—O14—C15 | −0.1 (5) |
C7—N8—C9—C10 | −173.5 (3) | N11—C13—O14—C15 | 178.6 (3) |
N8—C9—C10—N11 | −18.9 (3) | C13—O14—C15—C16 | 82.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.93 | 2.53 | 3.366 (5) | 150 |
C9—H9B···O2i | 0.97 | 2.50 | 3.395 (4) | 152 |
Symmetry code: (i) x, −y−1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H14ClN3O3 |
Mr | 283.71 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 13.3926 (14), 8.4991 (8), 12.3361 (12) |
β (°) | 106.538 (10) |
V (Å3) | 1346.1 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.941, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6112, 2645, 1537 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.191, 1.05 |
No. of reflections | 2645 |
No. of parameters | 173 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.21 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.93 | 2.53 | 3.366 (5) | 150 |
C9—H9B···O2i | 0.97 | 2.50 | 3.395 (4) | 152 |
Symmetry code: (i) x, −y−1/2, z−1/2. |
Acknowledgements
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He also thanks the University of Jammu, Jammu, India for financial support.
References
Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kagabu, S., Ishihara, R., Hieda, Y., Nishimura, K. & Naruse, Y. (2007). J. Agric. Food Chem. 55, 812–818. Web of Science CrossRef PubMed CAS Google Scholar
Kagabu, S. & Matsuno, H. (1997). J. Agric. Food Chem. 45, 276–281. CrossRef CAS Web of Science Google Scholar
Kant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Structure Analysis Online, 27, 55–56. CSD CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Samaritoni, J. G., Demeter, D. A., Gifford, J. M., Watson, G. B., Kempe, M. S. & Bruce, T. J. (2003). J. Agric. Food Chem. 51, 3035–3042. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Y., Wang, G., Li, Y. Q., Wang, S.-H. & Li, Z. M. (2010). Chem. Res. Chin. Univ. 26, 380–383. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since the advent of imidacloprid, the search for new neonicotinoid insecticides has been intense with competitive efforts by several research groups within the agrochemical industry (Samaritoni et al., 2003). From the crystallographic study of imidacloprid and related insecticides, precise three-dimensional structural information and characteristic molecular features gave an insight of the binding mode of these insecticides to nAChRs (Kagabu et al., 1997). The biological profile of imidacloprid provides an impulse in the development of new products by modifying the structural features of the prototype (Kagabu et al., 2007). Therefore, in a search for new neonicotinoid insecticide with improved profiles, neonicotinoid derivatives containing N-oxalyl groups were designed and synthesized. (Zhao et al., 2010). The bond lengths and angles observed in (I) show normal values and are comparable with related structures (Kapoor et al., 2011; Kant et al., 2012). The imidazole ring adopts a half-chair conformation with asymmetry parameter: ΔC2(C9—C10)=1.51 (Duax et al., 1975). The dihedral angle between the pyridine and imidazole rings is 70.0 (1)°. Molecules in the unit cell are packed together to form well defined chainss (Fig. 2). Within the chains, the molecules are linked by two different intermolecular C—H···O interactions (Table 1).