organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o476-o477

2,2′-(Disulfanedi­yl)bis­­[4,6-(4-fluoro­phen­yl)pyrimidine]

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, and cP. A. College of Engineering, Department of Chemistry, Nadupadavu, Mangalore 574 199, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 31 October 2011; accepted 16 January 2012; online 21 January 2012)

The title compound, C32H18F4N4S2, is a disulfide symmetric­ally substituted with two diaza-meta-terphenyl groups. In the crystal, the mol­ecule adopts a twisted conformation with a C—S—S—C torsion angle of −91.82 (7)°. One of the 4,6-(4-fluoro­phen­yl)pyrimidine groups is virtually planar, with dihedral angles between the pyrimidine and benzene groups of 4.00 (8) and 5.44 (8)°, wheares the other is non-planar with analogues dihedral angles of 18.69 (8) and 26.60 (8)°. The planar 4,6-(4-fluoro­phen­yl)pyrimidine groups are involved in ππ stacking inter­actions via their 4-fluoro­phenyl groups [centroid–centroid distances of 3.8556 (11) and 3.9284 (11) Å] that assemble the mol­ecules into columns extended along the a axis. In addition, the structure is stabilized by C—F⋯π [F⋯centroid = 3.4017 (16) Å], C—H⋯F and C—H⋯π inter­actions.

Related literature

For our work on the synthesis of different derivatives of chalcones, see: Samshuddin et al. (2011[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o1954-o1955.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262-o1263.]). For the graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Metrical parameters of similar compounds were retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C32H18F4N4S2

  • Mr = 598.62

  • Triclinic, [P \overline 1]

  • a = 9.3371 (2) Å

  • b = 11.3093 (3) Å

  • c = 13.1984 (3) Å

  • α = 102.364 (1)°

  • β = 93.094 (1)°

  • γ = 94.010 (1)°

  • V = 1354.64 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 200 K

  • 0.50 × 0.42 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 1.000

  • 22345 measured reflections

  • 6451 independent reflections

  • 5761 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.08

  • 6451 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg5 are the centroids of the N3/N4/C5–C8 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯F2i 0.95 2.49 3.204 (2) 132
C15—H15⋯Cg5ii 0.95 2.92 3.751 (2) 147
C23—H23⋯Cg2iii 0.95 2.98 3.7690 (19) 141
Symmetry codes: (i) x-1, y+1, z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of the biological importance of pyrimidines and in continuation of our work on the synthesis of various derivatives of 4,4'-difluorochalcone (Samshuddin et al., 2011; Fun et al., 2010; Jasinski et al., 2010; Baktır et al., 2011), we have treated the 4,4'-difluorochalcone with thiourea. Instead of obtaining the expected thio pyrimidine, its dimerization product was obtained whose molecular and crystal structure is reported herein.

The S–S bond length was found at 2.0156 (6) Å and the S–S–Car bond angles were measured at 104.74 (6)° and 105.41 (5). These metrical parameters are in good agreement with values observed for comparable structures whose crystallographic data has been deposited with the Cambridge Structural Database (Allen, 2002): for 311 comparable structures, a distance range of 2.007–2.237 Å (e.s.d. = 0.021 Å) and an angle range of 96.89–107.54 ° (e.s.d. = 2.1 °) is apparent. The least-squares planes defined by the carbon atoms of the para-fluorophenyl groups enclose angles of 4.00 (8)° and 5.44 (8)° as well as 18.69 (8)° and 26.60 (8)°, respectively, with the plane of the aromatic moiety they are bonded to (Fig. 1–3).

In the crystal, C–H···F contacts can be observed whose range falls by more than 0.1 Å below the sum of van der Waals radii of the H and F atoms. These are supported by one of the hydrogen atoms of a para-fluorophenyl moiety and connect the molecules to chains along [1 -1 -1]. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), these contacts necessitate a C(17) descriptor on the unitary level. In addition, there are C–H···π as well as C–F···π interactions (Table 1). The planar 4,6-(4-fluorophenyl)pyrimidine groups are involved in ππ stacking interactions via their fluorophenyl groups [centrod-centroid distances of 3.8556 (11) and 3.9284 (11) Å] that assemble the molecules into columns exteded along the x axis (Fig. 4).

The packing of the title compound in the crystal structure is shown in Figure 5.

Related literature top

For our work on the synthesis of different derivatives of chalcones, see: Samshuddin et al. (2011); Fun et al. (2010); Jasinski et al. (2010); Baktır et al. (2011). For the graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). Metrical parameters of similar compounds were retrieved from the Cambridge Structural Database (Allen, 2002).

Experimental top

A mixture of 4,4'-difluorochalcone (2.44 g, 0.01 mol) and thiourea (0.76 g, 0.01 mol) was refluxed for 22 h in 25 ml of ethanolic KOH solution. The reaction mixture was cooled to room temperature and kept overnight. The solid product obtained on acidification with acetic acid was filtered and recrystallized from ethanol to obtain a yellow crystalline solid (yield: 51%). Single crystals suitable for the X-ray diffraction study were grown from DMF by slow evaporation at room temperature.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Observed distribution of S–S bond lengths in disulfides featuring sulfur-bonded phenyl-derived aromatic systems (data based on CSD search including all deposited crystal structures up to August 2011).
[Figure 3] Fig. 3. Observed distribution of S–S–Car angles in disulfides featuring sulfur-bonded phenyl-derived aromatic systems (data based on CSD search including all deposited crystal structures up to August 2011).
[Figure 4] Fig. 4. Intermolecular contacts, viewed along [0 1 0]. Symmetry operators: i x-1, y+1, z+1; ii x+1, y-1, z-1.
[Figure 5] Fig. 5. Molecular packing of the title compound, viewed along [-1 0 0] anisotropic displacement ellipsoids drawn at the 50% probability level).
2,2'-(Disulfanediyl)bis[4,6-(4-fluorophenyl)pyrimidine] top
Crystal data top
C32H18F4N4S2Z = 2
Mr = 598.62F(000) = 612
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Melting point: 473 K
a = 9.3371 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3093 (3) ÅCell parameters from 9335 reflections
c = 13.1984 (3) Åθ = 2.7–28.3°
α = 102.364 (1)°µ = 0.26 mm1
β = 93.094 (1)°T = 200 K
γ = 94.010 (1)°Block, colourless
V = 1354.64 (6) Å30.50 × 0.42 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
6451 independent reflections
Radiation source: fine-focus sealed tube5761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.899, Tmax = 1.000k = 1414
22345 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.9028P]
where P = (Fo2 + 2Fc2)/3
6451 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C32H18F4N4S2γ = 94.010 (1)°
Mr = 598.62V = 1354.64 (6) Å3
Triclinic, P1Z = 2
a = 9.3371 (2) ÅMo Kα radiation
b = 11.3093 (3) ŵ = 0.26 mm1
c = 13.1984 (3) ÅT = 200 K
α = 102.364 (1)°0.50 × 0.42 × 0.29 mm
β = 93.094 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6451 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5761 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 1.000Rint = 0.019
22345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
6451 reflectionsΔρmin = 0.32 e Å3
379 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37731 (5)0.31376 (4)0.26342 (3)0.03759 (11)
S20.23667 (4)0.41454 (4)0.34681 (3)0.03494 (10)
F10.06380 (17)0.81314 (12)0.05425 (12)0.0723 (4)
F20.73521 (13)0.01865 (10)0.30804 (9)0.0521 (3)
F30.02419 (15)1.00874 (11)0.83195 (11)0.0637 (3)
F41.10058 (14)0.77983 (16)0.33546 (12)0.0774 (4)
N10.29556 (14)0.44408 (12)0.12393 (10)0.0311 (3)
N20.44257 (14)0.27892 (12)0.07397 (10)0.0320 (3)
N30.26650 (14)0.61506 (12)0.48428 (10)0.0320 (3)
N40.47390 (14)0.57227 (13)0.38773 (10)0.0334 (3)
C10.36867 (17)0.35313 (14)0.13960 (11)0.0309 (3)
C20.29035 (16)0.46115 (13)0.02575 (12)0.0292 (3)
C30.36157 (17)0.38768 (15)0.05031 (12)0.0334 (3)
H30.35660.39890.11970.040*
C40.44010 (16)0.29759 (14)0.02361 (11)0.0294 (3)
C50.34108 (16)0.54935 (14)0.41297 (11)0.0308 (3)
C60.33586 (17)0.71875 (14)0.54009 (12)0.0318 (3)
C70.47672 (17)0.75261 (15)0.52079 (12)0.0349 (3)
H70.52640.82570.56000.042*
C80.54258 (17)0.67698 (15)0.44294 (12)0.0331 (3)
C110.20270 (17)0.55857 (14)0.00478 (12)0.0320 (3)
C120.12508 (18)0.62160 (15)0.08269 (14)0.0370 (3)
H120.13290.60460.15010.044*
C130.0366 (2)0.70877 (16)0.06379 (16)0.0440 (4)
H130.01620.75190.11730.053*
C140.0272 (2)0.73108 (16)0.03430 (17)0.0499 (5)
C150.1043 (3)0.67359 (18)0.11258 (16)0.0552 (5)
H150.09690.69250.17930.066*
C160.1936 (2)0.58729 (17)0.09272 (14)0.0459 (4)
H160.24900.54730.14600.055*
C210.52169 (16)0.21607 (14)0.09826 (12)0.0300 (3)
C220.53314 (18)0.23192 (16)0.19960 (13)0.0371 (3)
H220.49020.29730.22070.045*
C230.60651 (18)0.15328 (17)0.26961 (13)0.0393 (4)
H230.61390.16370.33870.047*
C240.66812 (18)0.06038 (15)0.23720 (13)0.0373 (3)
C250.6638 (2)0.04285 (16)0.13765 (14)0.0425 (4)
H250.71020.02120.11700.051*
C260.58958 (19)0.12172 (15)0.06828 (13)0.0378 (3)
H260.58480.11130.00100.045*
C310.25489 (17)0.79344 (14)0.61996 (12)0.0327 (3)
C320.10495 (17)0.77498 (15)0.61593 (13)0.0346 (3)
H320.05600.71190.56370.042*
C330.02688 (19)0.84753 (16)0.68718 (14)0.0393 (4)
H330.07520.83600.68350.047*
C340.1000 (2)0.93649 (16)0.76335 (15)0.0435 (4)
C350.2474 (2)0.95525 (17)0.77240 (17)0.0512 (5)
H350.29541.01610.82700.061*
C360.3244 (2)0.88330 (17)0.69998 (15)0.0460 (4)
H360.42650.89540.70490.055*
C410.69065 (17)0.70585 (16)0.41465 (12)0.0360 (3)
C420.7498 (2)0.82591 (19)0.43150 (15)0.0453 (4)
H420.69550.89050.46210.054*
C430.8882 (2)0.8507 (2)0.40345 (16)0.0530 (5)
H430.92900.93210.41370.064*
C440.9643 (2)0.7556 (2)0.36075 (15)0.0528 (5)
C450.9107 (2)0.6363 (2)0.34300 (16)0.0518 (5)
H450.96680.57250.31340.062*
C460.77154 (19)0.61228 (18)0.36986 (14)0.0421 (4)
H460.73100.53060.35740.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0500 (2)0.0384 (2)0.02800 (19)0.01296 (17)0.00568 (16)0.01157 (15)
S20.0364 (2)0.0365 (2)0.03120 (19)0.00018 (15)0.00548 (15)0.00601 (15)
F10.0848 (10)0.0544 (7)0.0823 (10)0.0325 (7)0.0139 (8)0.0213 (7)
F20.0581 (7)0.0488 (6)0.0472 (6)0.0148 (5)0.0151 (5)0.0004 (5)
F30.0668 (8)0.0465 (7)0.0701 (8)0.0144 (6)0.0177 (6)0.0103 (6)
F40.0405 (7)0.1182 (13)0.0760 (9)0.0167 (7)0.0180 (6)0.0305 (9)
N10.0334 (6)0.0321 (6)0.0283 (6)0.0045 (5)0.0021 (5)0.0074 (5)
N20.0335 (6)0.0352 (7)0.0287 (6)0.0058 (5)0.0026 (5)0.0087 (5)
N30.0300 (6)0.0357 (7)0.0307 (6)0.0016 (5)0.0020 (5)0.0085 (5)
N40.0315 (6)0.0414 (7)0.0298 (6)0.0033 (5)0.0047 (5)0.0126 (5)
C10.0336 (7)0.0332 (7)0.0267 (7)0.0024 (6)0.0014 (6)0.0085 (6)
C20.0282 (7)0.0297 (7)0.0297 (7)0.0012 (5)0.0011 (5)0.0086 (6)
C30.0373 (8)0.0370 (8)0.0278 (7)0.0049 (6)0.0021 (6)0.0110 (6)
C40.0281 (7)0.0318 (7)0.0282 (7)0.0007 (5)0.0018 (5)0.0077 (6)
C50.0315 (7)0.0366 (8)0.0264 (7)0.0017 (6)0.0012 (6)0.0119 (6)
C60.0321 (7)0.0348 (8)0.0302 (7)0.0016 (6)0.0001 (6)0.0115 (6)
C70.0336 (8)0.0393 (8)0.0321 (8)0.0025 (6)0.0010 (6)0.0113 (6)
C80.0309 (7)0.0427 (8)0.0290 (7)0.0010 (6)0.0000 (6)0.0159 (6)
C110.0323 (7)0.0285 (7)0.0349 (8)0.0006 (6)0.0031 (6)0.0082 (6)
C120.0379 (8)0.0344 (8)0.0395 (8)0.0035 (6)0.0015 (7)0.0100 (7)
C130.0433 (9)0.0357 (8)0.0522 (10)0.0084 (7)0.0016 (8)0.0070 (7)
C140.0538 (11)0.0323 (9)0.0634 (12)0.0092 (8)0.0146 (9)0.0130 (8)
C150.0795 (15)0.0446 (10)0.0440 (10)0.0137 (10)0.0101 (10)0.0165 (8)
C160.0620 (12)0.0413 (9)0.0364 (9)0.0113 (8)0.0000 (8)0.0117 (7)
C210.0273 (7)0.0323 (7)0.0291 (7)0.0008 (6)0.0020 (5)0.0048 (6)
C220.0368 (8)0.0445 (9)0.0323 (8)0.0084 (7)0.0035 (6)0.0117 (7)
C230.0363 (8)0.0521 (10)0.0296 (8)0.0060 (7)0.0055 (6)0.0080 (7)
C240.0320 (8)0.0382 (8)0.0376 (8)0.0009 (6)0.0064 (6)0.0010 (7)
C250.0489 (10)0.0362 (8)0.0443 (9)0.0113 (7)0.0067 (8)0.0095 (7)
C260.0438 (9)0.0376 (8)0.0341 (8)0.0058 (7)0.0057 (7)0.0106 (7)
C310.0340 (8)0.0318 (7)0.0330 (8)0.0026 (6)0.0017 (6)0.0083 (6)
C320.0344 (8)0.0355 (8)0.0335 (8)0.0019 (6)0.0001 (6)0.0074 (6)
C330.0369 (8)0.0378 (8)0.0441 (9)0.0063 (7)0.0058 (7)0.0096 (7)
C340.0531 (10)0.0313 (8)0.0460 (10)0.0104 (7)0.0092 (8)0.0046 (7)
C350.0538 (11)0.0379 (9)0.0529 (11)0.0000 (8)0.0012 (9)0.0077 (8)
C360.0384 (9)0.0421 (9)0.0515 (11)0.0013 (7)0.0011 (8)0.0004 (8)
C410.0311 (7)0.0506 (9)0.0291 (7)0.0020 (7)0.0003 (6)0.0171 (7)
C420.0414 (9)0.0535 (11)0.0431 (9)0.0045 (8)0.0022 (7)0.0183 (8)
C430.0474 (10)0.0652 (13)0.0479 (11)0.0160 (9)0.0002 (8)0.0233 (9)
C440.0336 (9)0.0871 (15)0.0401 (10)0.0092 (9)0.0050 (7)0.0229 (10)
C450.0390 (9)0.0746 (14)0.0452 (10)0.0052 (9)0.0113 (8)0.0184 (10)
C460.0360 (8)0.0555 (10)0.0373 (9)0.0002 (7)0.0069 (7)0.0161 (8)
Geometric parameters (Å, º) top
S1—C11.7827 (15)C15—H150.9500
S1—S22.0156 (6)C16—H160.9500
S2—C51.7798 (16)C21—C261.395 (2)
F1—C141.357 (2)C21—C221.396 (2)
F2—C241.3598 (18)C22—C231.384 (2)
F3—C341.350 (2)C22—H220.9500
F4—C441.357 (2)C23—C241.367 (3)
N1—C11.319 (2)C23—H230.9500
N1—C21.3492 (19)C24—C251.372 (3)
N2—C11.329 (2)C25—C261.386 (2)
N2—C41.3482 (19)C25—H250.9500
N3—C51.329 (2)C26—H260.9500
N3—C61.345 (2)C31—C361.394 (2)
N4—C51.324 (2)C31—C321.397 (2)
N4—C81.349 (2)C32—C331.384 (2)
C2—C31.390 (2)C32—H320.9500
C2—C111.481 (2)C33—C341.373 (3)
C3—C41.389 (2)C33—H330.9500
C3—H30.9500C34—C351.373 (3)
C4—C211.480 (2)C35—C361.384 (3)
C6—C71.396 (2)C35—H350.9500
C6—C311.480 (2)C36—H360.9500
C7—C81.389 (2)C41—C461.390 (3)
C7—H70.9500C41—C421.397 (3)
C8—C411.484 (2)C42—C431.389 (3)
C11—C121.389 (2)C42—H420.9500
C11—C161.393 (2)C43—C441.368 (3)
C12—C131.383 (2)C43—H430.9500
C12—H120.9500C44—C451.372 (3)
C13—C141.371 (3)C45—C461.389 (2)
C13—H130.9500C45—H450.9500
C14—C151.367 (3)C46—H460.9500
C15—C161.384 (3)
C1—S1—S2105.41 (5)C23—C22—C21120.60 (16)
C5—S2—S1104.74 (6)C23—C22—H22119.7
C1—N1—C2115.20 (13)C21—C22—H22119.7
C1—N2—C4115.30 (13)C24—C23—C22118.61 (15)
C5—N3—C6115.81 (13)C24—C23—H23120.7
C5—N4—C8114.91 (14)C22—C23—H23120.7
N1—C1—N2129.52 (14)F2—C24—C23117.82 (15)
N1—C1—S1120.58 (12)F2—C24—C25119.01 (16)
N2—C1—S1109.89 (11)C23—C24—C25123.17 (15)
N1—C2—C3120.47 (14)C24—C25—C26117.77 (16)
N1—C2—C11116.29 (13)C24—C25—H25121.1
C3—C2—C11123.22 (14)C26—C25—H25121.1
C4—C3—C2119.16 (14)C25—C26—C21121.27 (15)
C4—C3—H3120.4C25—C26—H26119.4
C2—C3—H3120.4C21—C26—H26119.4
N2—C4—C3120.26 (14)C36—C31—C32118.43 (15)
N2—C4—C21116.35 (13)C36—C31—C6121.64 (15)
C3—C4—C21123.37 (13)C32—C31—C6119.93 (14)
N4—C5—N3129.16 (15)C33—C32—C31120.76 (15)
N4—C5—S2120.13 (12)C33—C32—H32119.6
N3—C5—S2110.71 (11)C31—C32—H32119.6
N3—C6—C7120.32 (15)C34—C33—C32118.64 (16)
N3—C6—C31116.76 (14)C34—C33—H33120.7
C7—C6—C31122.91 (14)C32—C33—H33120.7
C8—C7—C6118.45 (15)F3—C34—C35118.55 (17)
C8—C7—H7120.8F3—C34—C33118.85 (17)
C6—C7—H7120.8C35—C34—C33122.60 (17)
N4—C8—C7121.34 (14)C34—C35—C36118.30 (17)
N4—C8—C41115.90 (15)C34—C35—H35120.8
C7—C8—C41122.76 (15)C36—C35—H35120.8
C12—C11—C16118.72 (15)C35—C36—C31121.21 (17)
C12—C11—C2119.89 (14)C35—C36—H36119.4
C16—C11—C2121.37 (15)C31—C36—H36119.4
C13—C12—C11121.13 (16)C46—C41—C42119.34 (16)
C13—C12—H12119.4C46—C41—C8119.66 (16)
C11—C12—H12119.4C42—C41—C8121.00 (16)
C14—C13—C12118.09 (18)C43—C42—C41120.0 (2)
C14—C13—H13121.0C43—C42—H42120.0
C12—C13—H13121.0C41—C42—H42120.0
F1—C14—C15118.92 (19)C44—C43—C42118.61 (19)
F1—C14—C13118.28 (19)C44—C43—H43120.7
C15—C14—C13122.80 (17)C42—C43—H43120.7
C14—C15—C16118.70 (18)F4—C44—C43118.6 (2)
C14—C15—H15120.7F4—C44—C45118.0 (2)
C16—C15—H15120.7C43—C44—C45123.44 (18)
C15—C16—C11120.50 (18)C44—C45—C46117.6 (2)
C15—C16—H16119.8C44—C45—H45121.2
C11—C16—H16119.8C46—C45—H45121.2
C26—C21—C22118.54 (15)C45—C46—C41121.01 (18)
C26—C21—C4120.41 (14)C45—C46—H46119.5
C22—C21—C4121.05 (14)C41—C46—H46119.5
C1—S1—S2—C591.82 (7)N2—C4—C21—C263.4 (2)
C2—N1—C1—N22.9 (2)C3—C4—C21—C26175.27 (15)
C2—N1—C1—S1176.59 (11)N2—C4—C21—C22176.28 (14)
C4—N2—C1—N11.5 (2)C3—C4—C21—C225.1 (2)
C4—N2—C1—S1178.03 (11)C26—C21—C22—C232.0 (2)
S2—S1—C1—N18.39 (14)C4—C21—C22—C23178.31 (15)
S2—S1—C1—N2171.23 (10)C21—C22—C23—C240.4 (3)
C1—N1—C2—C31.5 (2)C22—C23—C24—F2177.63 (15)
C1—N1—C2—C11176.95 (13)C22—C23—C24—C251.6 (3)
N1—C2—C3—C41.0 (2)F2—C24—C25—C26177.34 (15)
C11—C2—C3—C4179.30 (14)C23—C24—C25—C261.9 (3)
C1—N2—C4—C31.3 (2)C24—C25—C26—C210.2 (3)
C1—N2—C4—C21179.99 (13)C22—C21—C26—C251.7 (3)
C2—C3—C4—N22.5 (2)C4—C21—C26—C25178.59 (15)
C2—C3—C4—C21178.93 (14)N3—C6—C31—C36162.50 (16)
C8—N4—C5—N30.4 (2)C7—C6—C31—C3618.4 (2)
C8—N4—C5—S2179.94 (11)N3—C6—C31—C3217.8 (2)
C6—N3—C5—N41.1 (2)C7—C6—C31—C32161.33 (15)
C6—N3—C5—S2179.26 (11)C36—C31—C32—C332.6 (2)
S1—S2—C5—N410.80 (13)C6—C31—C32—C33177.10 (15)
S1—S2—C5—N3169.55 (9)C31—C32—C33—C341.3 (3)
C5—N3—C6—C70.8 (2)C32—C33—C34—F3178.93 (16)
C5—N3—C6—C31179.98 (13)C32—C33—C34—C350.9 (3)
N3—C6—C7—C80.1 (2)F3—C34—C35—C36178.10 (18)
C31—C6—C7—C8179.02 (14)C33—C34—C35—C361.7 (3)
C5—N4—C8—C70.7 (2)C34—C35—C36—C310.3 (3)
C5—N4—C8—C41178.85 (13)C32—C31—C36—C351.8 (3)
C6—C7—C8—N40.9 (2)C6—C31—C36—C35177.95 (17)
C6—C7—C8—C41178.62 (14)N4—C8—C41—C4626.2 (2)
N1—C2—C11—C123.7 (2)C7—C8—C41—C46154.22 (16)
C3—C2—C11—C12174.69 (15)N4—C8—C41—C42153.20 (15)
N1—C2—C11—C16177.69 (15)C7—C8—C41—C4226.3 (2)
C3—C2—C11—C163.9 (2)C46—C41—C42—C430.1 (3)
C16—C11—C12—C132.0 (3)C8—C41—C42—C43179.39 (16)
C2—C11—C12—C13176.68 (15)C41—C42—C43—C440.8 (3)
C11—C12—C13—C140.2 (3)C42—C43—C44—F4178.60 (17)
C12—C13—C14—F1177.49 (17)C42—C43—C44—C450.7 (3)
C12—C13—C14—C151.9 (3)F4—C44—C45—C46179.51 (17)
F1—C14—C15—C16178.03 (19)C43—C44—C45—C460.2 (3)
C13—C14—C15—C161.4 (3)C44—C45—C46—C411.0 (3)
C14—C15—C16—C110.9 (3)C42—C41—C46—C450.9 (3)
C12—C11—C16—C152.5 (3)C8—C41—C46—C45179.67 (16)
C2—C11—C16—C15176.11 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg5 are the centroids of the N3/N4/C5–C8 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C33—H33···F2i0.952.493.204 (2)132
C15—H15···Cg5ii0.952.923.751 (2)147
C23—H23···Cg2iii0.952.983.7690 (19)141
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H18F4N4S2
Mr598.62
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.3371 (2), 11.3093 (3), 13.1984 (3)
α, β, γ (°)102.364 (1), 93.094 (1), 94.010 (1)
V3)1354.64 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.42 × 0.29
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.899, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22345, 6451, 5761
Rint0.019
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.08
No. of reflections6451
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg5 are the centroids of the N3/N4/C5–C8 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C33—H33···F2i0.952.493.204 (2)132
C15—H15···Cg5ii0.952.923.751 (2)147
C23—H23···Cg2iii0.952.983.7690 (19)141
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z.
 

Acknowledgements

BN thanks the UGC for financial assistance through the SAP and BSR one-time grants for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o1954–o1955.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o476-o477
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds