organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o367-o368

(E)-4-{2-[(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene]hydrazinecarbon­yl}pyridinium nitrate

aYoung Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bDepartment of Chemistry, University of Zanjan, 45195-313, Zanjan, Iran, and cFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
*Correspondence e-mail: bikas_r@yahoo.com

(Received 20 December 2011; accepted 6 January 2012; online 11 January 2012)

The title compound, C17H14N3O2+·NO3, is an aroylhydrazone-based material consisting of a 4-(hydrazinecarbon­yl)pyridinium cation and a nitrate anion. In the cation, the dihedral angle between the benzene ring and the naphthalene ring system is 2.20 (7)°. In the cation, the configuration about the C=N bond is E. There is an intra­molecular O—H⋯N hydrogen bond in the cation, and the supra­molecular structure is stabilized by inter­molecular N—H⋯O hydrogen bonds and weak C—H⋯O contacts between the cation and the nitrate anion.

Related literature

For historical background to aroylhydrazones, see: Craliz et al. (1955[Craliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.]). For related structures see: Bikas et al. (2010a[Bikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010a). Acta Cryst. E66, o2073.],b[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010b). Acta Cryst. E66, o2015.]); Hosseini Monfared et al. (2010a[Hosseini Monfared, H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236-o237.]); Abdel-Aziz et al. (2011[Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2317-o2318.]). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008[Carvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538-541.]). For catalytic applications of aroylhydrazones, see: Hosseini Monfared et al. (2010b[Hosseini Monfared, H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574-2583.]). The overall structure of the cation is very similar to that found for free ligand, see: Richardson & Bernhardt (1999[Richardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266-273.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N3O2+·NO3

  • Mr = 354.32

  • Monoclinic, P 21 /c

  • a = 8.695 (3) Å

  • b = 6.375 (2) Å

  • c = 28.955 (9) Å

  • β = 98.19 (4)°

  • V = 1588.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur PX kappa-geometry diffractometer with an Onyx CCD camera

  • 12608 measured reflections

  • 5046 independent reflections

  • 3368 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.03

  • 5046 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.82 2.5519 (15) 145
N2—H2⋯O3A 0.88 2.21 3.0332 (19) 155
N3—H3A⋯O1Ai 0.88 1.80 2.6794 (14) 174
C14—H14⋯O3A 0.95 2.26 3.1528 (16) 156
C8—H8⋯O2ii 0.95 2.60 3.2449 (19) 125
C15—H15⋯O2Aiii 0.95 2.61 3.3089 (19) 130
C16—H16⋯O1Aiv 0.95 2.28 3.1923 (16) 160
C16—H16⋯O2Aiv 0.95 2.62 3.4553 (19) 147
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y-1, z; (iii) x, y+1, z; (iv) x+1, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazone ligands, a class of Schiff base, derived from the condensation of acid hydrazides (R–CO–NH–NH2) with aromatic 2-hydroxy carbonyl compounds are important tridentate O, N, O-donor ligands. As biologically active compounds, hydrazones find application in the treatment of diseases such as anti-tumor, tuberculosis, leprosy and mental disorder. Hydrazone ligands create environment similar to biological systems by usually making coordination through oxygen and nitrogen atoms. Furthermore hydrazones have wide spread applications in fields such as coordination chemistry, bioinorganic chemistry, in magnetic, electronic, nonlinear optically active and fluorescent compounds. Aroylhydrazone complexes seem to be a good candidate for catalytic oxidation studies because of their resist to oxidation (Hosseini Monfared et al., 2010b).

As part of our studies on the synthesis and characterization of hydrazone derivatives, we report here the crystal structure of (E)-4-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazinecarbonyl)pyridinium nitrate. The asymmetric unit of C17H14N4O5, consists of a (E)-4-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazinecarbonyl)pyridinium cation and a nitrate anion (Fig. 1). The dihedral angle between the mean planes of the benzene and naphthalene rings is 2.20 (7)°. The cation displays a trans configuration with respect to the C=N and N—N bonds. It is to note that the overall structure of the cation is very similar to that found for free ligand Richardson & Bernhardt (1999). The packing diagram of the title compound is shown in Fig. 2. There is a strong intramolecular O—H···N hydrogen bond in which the N of the azomethine group (–C=N–) acts as hydrogen acceptor for the hydrogen O—H group attached to the naphthalene ring. Two intermolecular N—H···O hydrogen bonds are formed between cation and anion where NO3- acts as hydrogen bonds acceptor (Fig. 3). The supramolecular structure is further stabilised by C—H···O interactions.

Related literature top

For historical background to aroylhydrazones, see: Craliz et al. (1955). For related structures see: Bikas et al. (2010a,b); Hosseini Monfared et al. (2010a); Abdel-Aziz et al. (2011). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008). For catalytic applications of aroylhydrazones, see: Hosseini Monfared et al. (2010b).

For related literature, see: Richardson & Bernhardt (1999).

Experimental top

All reagents were commercially available and used as received. A methanol (10 ml) solution of 2-hydroxy-1-naphthaldehyde (1.63 mmol) was dropwise added to a methanol solution (10 ml) of 4-pyridine carboxylic acid hydrazide (1.63 mmol), and the mixture was refluxed for 3 hrs. Then the solution was evaporated on a steam bath to 5 ml and cooled to room temperature. The resultant yellow precipitate was separated and filtered off, washed with 5 ml of cooled methanol and then dried in air. 1 mmol of this solid was placed in one arm of a branched tube with 2 mmol of Mn(NO3)2.4H2O. Methanol was carefully added to fill the arms, the tube was sealed and the arm containing the reagents was immersed in an oil bath at 60 °C while the other arm was kept at ambient temperature. After 4 days, crystals were deposited in the cooler arm, which were filtered off and air dried. Yield: 85%, Selected IR spectrum: 3430 (s, broad), 1630 (s), 1600 (m), 1549 (m), 1384 (versus), 1291 (m), 972 (m), 834 (s), 764 cm-1 (m).

Refinement top

The hydrogen atoms of the N—H and O—H groups were positioned geometrically and refined as riding atoms with, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(N), O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The C—H hydrogen atoms were positioned geometrically and refined as riding atoms with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labelling scheme and anisotropic displacement ellipsoids (drawn at 30% probability level for non-H atoms).
[Figure 2] Fig. 2. The packing diagram of the title compound.
[Figure 3] Fig. 3. A diagram showing formation of intra- (O–H···N) and intermolecular (N–H···O) hydrogen bonds between anions and cations.
(E)-4-{2-[(2-Hydroxynaphthalen-1- yl)methylidene]hydrazinecarbonyl}pyridinium nitrate top
Crystal data top
C17H14N3O2+·NO3F(000) = 736
Mr = 354.32Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4462 reflections
a = 8.695 (3) Åθ = 2–70°
b = 6.375 (2) ŵ = 0.11 mm1
c = 28.955 (9) ÅT = 100 K
β = 98.19 (4)°Needle, orange
V = 1588.6 (9) Å30.30 × 0.10 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur PX kappa-geometry
diffractometer with an Onyx CCD camera
3368 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 31.1°, θmin = 2.6°
ω and phi scansh = 1212
12608 measured reflectionsk = 89
5046 independent reflectionsl = 4235
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
5046 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H14N3O2+·NO3V = 1588.6 (9) Å3
Mr = 354.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.695 (3) ŵ = 0.11 mm1
b = 6.375 (2) ÅT = 100 K
c = 28.955 (9) Å0.30 × 0.10 × 0.07 mm
β = 98.19 (4)°
Data collection top
Oxford Diffraction Xcalibur PX kappa-geometry
diffractometer with an Onyx CCD camera
3368 reflections with I > 2σ(I)
12608 measured reflectionsRint = 0.030
5046 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
5046 reflectionsΔρmin = 0.22 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.97012 (9)0.07072 (13)0.68081 (3)0.02035 (19)
H10.93950.17490.66420.031*
C10.69254 (13)0.00322 (16)0.67027 (4)0.0134 (2)
C20.84656 (13)0.04806 (17)0.68768 (4)0.0157 (2)
C30.88242 (14)0.23367 (17)0.71408 (4)0.0183 (2)
H30.98730.26430.72630.022*
C40.76730 (14)0.36810 (17)0.72201 (4)0.0182 (2)
H40.79310.49130.73990.022*
C50.60945 (14)0.32776 (17)0.70405 (4)0.0160 (2)
C60.49134 (15)0.47202 (18)0.71132 (4)0.0196 (3)
H60.51860.59880.72770.023*
C70.33824 (15)0.43169 (19)0.69510 (5)0.0229 (3)
H70.26000.53010.69980.028*
C80.29866 (14)0.2422 (2)0.67130 (4)0.0229 (3)
H80.19240.21180.66080.028*
C90.41042 (14)0.10038 (18)0.66288 (4)0.0189 (2)
H90.38030.02500.64630.023*
C100.57040 (13)0.13845 (16)0.67860 (4)0.0143 (2)
C110.65724 (13)0.19520 (17)0.64348 (4)0.0149 (2)
H110.55260.23480.63320.018*
N10.77034 (11)0.31000 (14)0.63397 (3)0.0160 (2)
N20.73812 (12)0.49164 (14)0.60861 (3)0.0163 (2)
H20.64250.53340.59890.020*
C120.86518 (13)0.60206 (17)0.59968 (4)0.0166 (2)
O20.99749 (10)0.53944 (13)0.61115 (3)0.0244 (2)
C130.83618 (13)0.80954 (16)0.57479 (4)0.0151 (2)
C140.69062 (14)0.88961 (17)0.55696 (4)0.0172 (2)
H140.59870.81570.56110.021*
C150.68192 (14)1.07777 (17)0.53318 (4)0.0181 (2)
H150.58341.13310.52050.022*
N30.81220 (12)1.18318 (14)0.52782 (3)0.0178 (2)
H3A0.80431.30070.51170.021*
C160.95343 (14)1.11540 (18)0.54613 (4)0.0198 (3)
H161.04291.19700.54310.024*
C170.96832 (14)0.92589 (18)0.56950 (4)0.0188 (2)
H171.06840.87500.58190.023*
N1A0.32288 (12)0.41051 (15)0.54333 (4)0.0204 (2)
O1A0.19647 (10)0.44786 (12)0.51679 (3)0.0205 (2)
O2A0.34501 (10)0.23488 (14)0.56160 (3)0.0273 (2)
O3A0.42367 (12)0.55145 (16)0.54972 (4)0.0453 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (4)0.0201 (4)0.0232 (5)0.0038 (3)0.0003 (3)0.0040 (3)
C10.0172 (5)0.0125 (5)0.0104 (5)0.0002 (4)0.0017 (4)0.0002 (4)
C20.0177 (5)0.0165 (5)0.0127 (6)0.0016 (4)0.0017 (4)0.0028 (4)
C30.0187 (5)0.0203 (5)0.0150 (6)0.0039 (5)0.0004 (4)0.0008 (5)
C40.0249 (6)0.0159 (5)0.0137 (6)0.0046 (5)0.0025 (5)0.0028 (4)
C50.0225 (6)0.0144 (5)0.0117 (6)0.0010 (4)0.0050 (4)0.0001 (4)
C60.0274 (6)0.0158 (5)0.0166 (6)0.0003 (5)0.0067 (5)0.0021 (5)
C70.0239 (6)0.0231 (6)0.0232 (7)0.0070 (5)0.0081 (5)0.0024 (5)
C80.0177 (6)0.0284 (6)0.0221 (7)0.0032 (5)0.0009 (5)0.0031 (5)
C90.0192 (5)0.0191 (5)0.0177 (6)0.0001 (5)0.0006 (5)0.0051 (5)
C100.0175 (5)0.0144 (5)0.0113 (6)0.0002 (4)0.0027 (4)0.0003 (4)
C110.0180 (5)0.0135 (5)0.0128 (6)0.0000 (4)0.0014 (4)0.0008 (4)
N10.0217 (5)0.0116 (4)0.0144 (5)0.0010 (4)0.0020 (4)0.0012 (4)
N20.0192 (5)0.0128 (4)0.0168 (5)0.0009 (4)0.0018 (4)0.0038 (4)
C120.0210 (6)0.0139 (5)0.0147 (6)0.0037 (4)0.0021 (4)0.0015 (4)
O20.0194 (4)0.0202 (4)0.0327 (6)0.0015 (3)0.0008 (4)0.0044 (4)
C130.0201 (5)0.0132 (5)0.0122 (6)0.0030 (4)0.0033 (4)0.0009 (4)
C140.0200 (5)0.0153 (5)0.0160 (6)0.0057 (4)0.0019 (4)0.0007 (4)
C150.0210 (6)0.0167 (5)0.0162 (6)0.0030 (5)0.0014 (5)0.0010 (4)
N30.0249 (5)0.0146 (4)0.0141 (5)0.0048 (4)0.0030 (4)0.0016 (4)
C160.0212 (6)0.0194 (5)0.0193 (6)0.0064 (5)0.0051 (5)0.0002 (5)
C170.0193 (6)0.0192 (5)0.0178 (6)0.0033 (5)0.0025 (5)0.0006 (5)
N1A0.0182 (5)0.0218 (5)0.0207 (6)0.0045 (4)0.0011 (4)0.0028 (4)
O1A0.0169 (4)0.0208 (4)0.0223 (5)0.0037 (3)0.0020 (3)0.0052 (3)
O2A0.0274 (5)0.0225 (4)0.0304 (6)0.0001 (4)0.0009 (4)0.0091 (4)
O3A0.0312 (6)0.0385 (6)0.0590 (8)0.0226 (5)0.0178 (5)0.0197 (5)
Geometric parameters (Å, º) top
O1—C21.3521 (14)C11—H110.9500
O1—H10.8400N1—N21.3784 (13)
C1—C21.4007 (16)N2—C121.3654 (15)
C1—C101.4404 (16)N2—H20.8800
C1—C111.4581 (16)C12—O21.2183 (14)
C2—C31.4192 (16)C12—C131.5101 (16)
C3—C41.3618 (17)C13—C141.3938 (17)
C3—H30.9500C13—C171.3942 (16)
C4—C51.4202 (17)C14—C151.3799 (16)
C4—H40.9500C14—H140.9500
C5—C61.4165 (17)C15—N31.3449 (15)
C5—C101.4295 (16)C15—H150.9500
C6—C71.3714 (18)N3—C161.3380 (16)
C6—H60.9500N3—H3A0.8800
C7—C81.4091 (18)C16—C171.3818 (17)
C7—H70.9500C16—H160.9500
C8—C91.3741 (17)C17—H170.9500
C8—H80.9500N1A—O2A1.2416 (13)
C9—C101.4215 (16)N1A—O3A1.2503 (13)
C9—H90.9500N1A—O1A1.2706 (13)
C11—N11.2867 (15)
C2—O1—H1109.5N1—C11—C1118.81 (10)
C2—C1—C10118.90 (10)N1—C11—H11120.6
C2—C1—C11120.36 (10)C1—C11—H11120.6
C10—C1—C11120.73 (10)C11—N1—N2119.23 (10)
O1—C2—C1123.73 (10)C12—N2—N1115.18 (10)
O1—C2—C3115.34 (10)C12—N2—H2122.4
C1—C2—C3120.93 (11)N1—N2—H2122.4
C4—C3—C2120.34 (11)O2—C12—N2122.52 (11)
C4—C3—H3119.8O2—C12—C13120.27 (11)
C2—C3—H3119.8N2—C12—C13117.21 (10)
C3—C4—C5121.30 (11)C14—C13—C17118.91 (10)
C3—C4—H4119.4C14—C13—C12125.35 (10)
C5—C4—H4119.4C17—C13—C12115.73 (10)
C6—C5—C4120.75 (10)C15—C14—C13119.05 (11)
C6—C5—C10120.05 (11)C15—C14—H14120.5
C4—C5—C10119.20 (11)C13—C14—H14120.5
C7—C6—C5121.08 (11)N3—C15—C14120.31 (11)
C7—C6—H6119.5N3—C15—H15119.8
C5—C6—H6119.5C14—C15—H15119.8
C6—C7—C8119.07 (11)C16—N3—C15122.24 (10)
C6—C7—H7120.5C16—N3—H3A118.9
C8—C7—H7120.5C15—N3—H3A118.9
C9—C8—C7121.41 (11)N3—C16—C17119.54 (11)
C9—C8—H8119.3N3—C16—H16120.2
C7—C8—H8119.3C17—C16—H16120.2
C8—C9—C10121.03 (11)C16—C17—C13119.85 (11)
C8—C9—H9119.5C16—C17—H17120.1
C10—C9—H9119.5C13—C17—H17120.1
C9—C10—C5117.31 (10)O2A—N1A—O3A121.47 (11)
C9—C10—C1123.41 (10)O2A—N1A—O1A119.66 (10)
C5—C10—C1119.28 (10)O3A—N1A—O1A118.85 (10)
C10—C1—C2—O1178.17 (10)C11—C1—C10—C91.70 (17)
C11—C1—C2—O10.78 (18)C2—C1—C10—C50.43 (16)
C10—C1—C2—C31.51 (17)C11—C1—C10—C5178.51 (11)
C11—C1—C2—C3179.55 (11)C2—C1—C11—N13.82 (17)
O1—C2—C3—C4178.13 (11)C10—C1—C11—N1175.10 (11)
C1—C2—C3—C41.57 (18)C1—C11—N1—N2179.91 (10)
C2—C3—C4—C50.38 (18)C11—N1—N2—C12179.21 (10)
C3—C4—C5—C6178.04 (12)N1—N2—C12—O23.65 (17)
C3—C4—C5—C102.30 (18)N1—N2—C12—C13176.03 (9)
C4—C5—C6—C7178.34 (12)O2—C12—C13—C14174.93 (12)
C10—C5—C6—C71.32 (18)N2—C12—C13—C145.38 (17)
C5—C6—C7—C80.71 (19)O2—C12—C13—C174.57 (17)
C6—C7—C8—C91.9 (2)N2—C12—C13—C17175.11 (10)
C7—C8—C9—C101.0 (2)C17—C13—C14—C152.30 (17)
C8—C9—C10—C51.02 (18)C12—C13—C14—C15177.18 (11)
C8—C9—C10—C1179.19 (12)C13—C14—C15—N30.78 (18)
C6—C5—C10—C92.15 (17)C14—C15—N3—C162.04 (18)
C4—C5—C10—C9177.51 (11)C15—N3—C16—C173.20 (18)
C6—C5—C10—C1178.04 (11)N3—C16—C17—C131.54 (18)
C4—C5—C10—C12.30 (17)C14—C13—C17—C161.17 (18)
C2—C1—C10—C9179.36 (11)C12—C13—C17—C16178.37 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.822.5519 (15)145
N2—H2···O3A0.882.213.0332 (19)155
N3—H3A···O1Ai0.881.802.6794 (14)174
C14—H14···O3A0.952.263.1528 (16)156
C8—H8···O2ii0.952.603.2449 (19)125
C15—H15···O2Aiii0.952.613.3089 (19)130
C16—H16···O1Aiv0.952.283.1923 (16)160
C16—H16···O2Aiv0.952.623.4553 (19)147
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z; (iii) x, y+1, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14N3O2+·NO3
Mr354.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.695 (3), 6.375 (2), 28.955 (9)
β (°) 98.19 (4)
V3)1588.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.10 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur PX kappa-geometry
diffractometer with an Onyx CCD camera
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12608, 5046, 3368
Rint0.030
(sin θ/λ)max1)0.726
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.03
No. of reflections5046
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.822.5519 (15)144.9
N2—H2···O3A0.882.213.0332 (19)155.3
N3—H3A···O1Ai0.881.802.6794 (14)174.1
C14—H14···O3A0.952.263.1528 (16)155.7
C8—H8···O2ii0.952.603.2449 (19)125.4
C15—H15···O2Aiii0.952.613.3089 (19)130.3
C16—H16···O1Aiv0.952.283.1923 (16)160.1
C16—H16···O2Aiv0.952.623.4553 (19)147.4
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z; (iii) x, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the Islamic Azad Uinversity, Tabriz Branch, and the University of Zanjan for financial support of this study.

References

First citationAbdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2317–o2318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010a). Acta Cryst. E66, o2073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010b). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538-541.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCraliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.  Google Scholar
First citationHosseini Monfared, H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236–o237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHosseini Monfared, H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574–2583.  Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationRichardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266–273.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o367-o368
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds