organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-4′-phenyl-2′′-sulfanyl­idene­di­spiro­[indoline-3,2′-pyrrolidine-3′,5′′-1,3-thia­zolidine]-2,4′′-dione

aDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea
*Correspondence e-mail: sampath@konkuk.ac.kr

(Received 22 December 2011; accepted 30 December 2011; online 11 January 2012)

The title compound, C20H17N3O2S2, crystallizes with two mol­ecules in the asymmetric unit. The pyrrolo­dine rings have envelope conformations in both mol­ecules, the N atoms deviating by 0.574 (3) and 0.612 (2) Å from the mean planes through the other ring atoms. The 1′-methyl and 4′-phenyl groups on the pyrrolidine rings are substituted in equatorial positions. In the crystal, mol­ecules are linked into a three-dimensional network by N—H⋯O, N—H⋯N and C—H⋯O and N—H⋯π hydrogen bonds.

Related literature

The spiro­pyrrolidinyloxindole ring system is a frequently observed structural motif in many of the pharmacologically relevant alkaloids, see: Hilton et al. (2000[Hilton, S. T., Ho, T. C., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639-2641.]). For the biological activity of heterocyclic compounds, see: Chavan et al. (2001[Chavan, P., Mane, A. S. & Shingare, M. S. (2001). Indian J. Chem. Sect. B, 40, 339-341.]); Baldwin et al. (1994[Baldwin, J. E., Turner, M. S. C. & Moloney, M. G. (1994). Tetrahedron, 50, 9411-9424.]); Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Okita & Isobe (1994[Okita, T. & Isobe, M. (1994). Tetrahedron, 50, 11143-11152.]); Mogilaiah et al. (2001[Mogilaiah, K., Ramesh Babu, H. & Babu, R. R. (2001). Indian J. Chem. Sect. B, 40, 1270-1273.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For the synthesis, see: Sampath et al. (2010[Sampath, N., Mathews, R. & Ponnuswamy, M. N. (2010). J. Chem. Crystallogr. 40, 1105-1109.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O2S2

  • Mr = 395.49

  • Monoclinic, C 2/c

  • a = 24.259 (6) Å

  • b = 13.359 (3) Å

  • c = 23.628 (5) Å

  • β = 90.418 (7)°

  • V = 7657 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.45 × 0.38 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: refined from ΔF (XABS; Parkin et al. 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.703, Tmax = 0.999

  • 9064 measured reflections

  • 9064 independent reflections

  • 6169 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.155

  • S = 1.09

  • 9064 reflections

  • 463 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9B–C14B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2B—H2B⋯O2A 0.86 2.17 2.794 (3) 129
N6A—H6A⋯N1Bi 0.86 2.28 3.083 (3) 156
C4B—H4B⋯O1Aii 0.98 2.36 3.290 (3) 159
N6B—H6B⋯O1Aiii 0.86 2.18 2.836 (3) 133
N2A—H2ACg1iv 0.86 2.95 3.806 (3) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds are of interest because of their diverse biological activities (Chavan et al., 2001; Baldwin et al., 1994). Some received considerable attention because of their potential antimicrobial activity (Amal Raj et al., 2003), especially indoles and spiroindoles, which play important roles in medicinal chemistry (Mogilaiah et al., 2001). The spiropyrrolidinyloxindole ring system is a frequently observed structural motif in many of the pharmacologically relevant alkaloids (Hilton et al., 2000). The derivatives of spirooxindole possess wide range of biological properties such as antimicrobial, antitumoral, antibiotic agents and inhibitors of human NK-1 receptor (Okita & Isobe, 1994).

The title compound (Fig. 1) crystallizes with two molecules (A and B) in the assymetric unit. Both these molecules contain a central of pyrrolidine ring, which is connected by two spiro junctions at the atoms C1 and C8 to a thiosolidine and oxindole rings, respectively. The pyrrolidine rings adopt an envelope conformation in both the molecules and the atoms N1A and N1B deviate -0.574 (3) and -0.612 (2) Å, respectively from the mean plane defined by the atoms C1, C2, C3 and C4. The other two substituents, the phenyl ring and methyl groups are oriented equatorially to best plane of the pyrrolidine rings.

The dihedral angles between the pyrrolidine ring and the oxidole and the thiosolidines moieties are 84.7 (1) and 88.2 (1)°, respectively for molecule A and 81.8 (1)and 90.0 (1)°, respectively for molecule B. The packing diagram of the title molecule viewed down b axis is shown in Fig. 2. The molecules are linked to form a three-dimensional network by N–H···O, N—H···N and C—H···O intra and intermolecular hydrogen bonds. In addition there is an N—H···π weak interaction, Table 1.

Related literature top

The spiropyrrolidinyloxindole ring system is a frequently observed structural motif in many of the pharmacologically relevant alkaloids, see: Hilton et al. (2000). For the biological activity of heterocyclic compounds, see: Chavan et al. (2001); Baldwin et al. (1994); Amal Raj et al. (2003); Okita & Isobe (1994); Mogilaiah et al. (2001). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1995). For the synthesis, see: Sampath et al. (2010).

Experimental top

A mixture of 5-benzylidene-2-thioxo-1,3-thiazolidin-4-one (1 mmol), isatin (1 mmol) and sarcosine (1 mmol) were taken up in 20 ml of aqueous methanol and refluxed for 8 h on a water bath (Sampath et al., 2010). The resultant product was subjected to column chromatography to yield the title compound and it was crystallized using methanol by slow evaporation method.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.96 Å for methyl H atoms and for aromatic N—H = 0.86 Å. The Uiso parameters for H atoms were constraned to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms. The thermal and bond length parameters of the phenyl rings indicate that these rings are quite mobile.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level. H-atoms were removed for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate the intra and intermolecular interactions between the molecules.
1'-Methyl-4'-phenyl-2''-sulfanylidenedispiro[indoline-3,2'- pyrrolidine-3',5''-1,3-thiazolidine]-2,4''-dione top
Crystal data top
C20H17N3O2S2F(000) = 3296
Mr = 395.49Dx = 1.372 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.259 (6) ÅCell parameters from 9064 reflections
b = 13.359 (3) Åθ = 1–28°
c = 23.628 (5) ŵ = 0.30 mm1
β = 90.418 (7)°T = 293 K
V = 7657 (3) Å3Lath, yellow
Z = 160.45 × 0.38 × 0.24 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
9064 independent reflections
Radiation source: fine-focus sealed tube6169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: part of the refinement model (ΔF)
(XABS; Parkin et al. 1995).
h = 3132
Tmin = 0.703, Tmax = 0.999k = 017
9064 measured reflectionsl = 031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0495P)2 + 12.055P]
where P = (Fo2 + 2Fc2)/3
9064 reflections(Δ/σ)max < 0.001
463 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C20H17N3O2S2V = 7657 (3) Å3
Mr = 395.49Z = 16
Monoclinic, C2/cMo Kα radiation
a = 24.259 (6) ŵ = 0.30 mm1
b = 13.359 (3) ÅT = 293 K
c = 23.628 (5) Å0.45 × 0.38 × 0.24 mm
β = 90.418 (7)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
9064 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS; Parkin et al. 1995).
6169 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.999Rint = 0.000
9064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0495P)2 + 12.055P]
where P = (Fo2 + 2Fc2)/3
9064 reflectionsΔρmax = 0.54 e Å3
463 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.07844 (3)0.44292 (5)0.10629 (3)0.03707 (18)
S2A0.03750 (3)0.44370 (7)0.06515 (4)0.0536 (2)
O1A0.06586 (9)0.70694 (15)0.16755 (9)0.0470 (5)
O2A0.20088 (10)0.4378 (2)0.07926 (13)0.0761 (8)
N1A0.19449 (11)0.6383 (2)0.14698 (13)0.0626 (9)
N2A0.17752 (12)0.5500 (2)0.00962 (13)0.0627 (8)
H2A0.18660.51460.01920.075*
C1A0.10975 (11)0.5525 (2)0.13913 (12)0.0336 (6)
C2A0.15768 (11)0.6004 (2)0.10277 (13)0.0417 (7)
C3A0.19671 (15)0.5637 (3)0.19186 (17)0.0696 (11)
H3A10.21160.59200.22650.083*
H3A20.21900.50680.18090.083*
C4A0.13652 (13)0.5336 (2)0.19913 (13)0.0442 (7)
H4A0.12020.58280.22480.053*
C5A0.06213 (11)0.6272 (2)0.14331 (12)0.0348 (6)
N6A0.01560 (9)0.59483 (18)0.11580 (11)0.0411 (6)
H6A0.01250.63350.11170.049*
C7A0.01507 (11)0.4997 (2)0.09515 (12)0.0345 (6)
C8A0.18171 (12)0.5186 (3)0.06360 (16)0.0538 (9)
C9A0.15640 (13)0.6479 (3)0.00619 (16)0.0534 (9)
C10A0.15109 (15)0.7069 (3)0.04149 (17)0.0685 (11)
H10A0.15810.68180.07740.082*
C11A0.13493 (17)0.8045 (4)0.0334 (2)0.0822 (14)
H11A0.13130.84630.06460.099*
C12A0.12411 (18)0.8418 (3)0.0193 (2)0.0785 (13)
H12A0.11350.90830.02340.094*
C13A0.12889 (15)0.7803 (3)0.06675 (18)0.0624 (10)
H13A0.12200.80570.10270.075*
C14A0.14398 (12)0.6817 (2)0.05987 (14)0.0446 (7)
C15A0.24819 (17)0.6718 (4)0.1271 (2)0.110 (2)
H15A0.26960.69600.15860.165*
H15B0.24330.72460.10000.165*
H15C0.26700.61680.10960.165*
C16A0.12790 (14)0.4324 (2)0.22578 (13)0.0480 (8)
C17A0.0875 (2)0.4210 (4)0.26582 (18)0.0935 (10)
H17A0.06480.47470.27480.112*
C18A0.0803 (2)0.3289 (4)0.29305 (19)0.0935 (10)
H18A0.05300.32220.32030.112*
C19A0.1121 (2)0.2507 (4)0.28035 (19)0.0935 (10)
H19A0.10680.19010.29880.112*
C20A0.1516 (2)0.2587 (3)0.2412 (2)0.0909 (16)
H20A0.17340.20360.23270.109*
C21A0.16001 (17)0.3502 (3)0.21300 (18)0.0696 (11)
H21A0.18730.35530.18570.084*
S1B0.36499 (4)0.44011 (6)0.16906 (4)0.0522 (2)
S2B0.31112 (5)0.44048 (10)0.28093 (5)0.0892 (4)
O1B0.43828 (9)0.19100 (16)0.19970 (9)0.0503 (6)
O2B0.36139 (11)0.43102 (18)0.03885 (10)0.0619 (7)
N1B0.42929 (9)0.23907 (18)0.06498 (10)0.0371 (6)
N2B0.29280 (11)0.3182 (2)0.05743 (12)0.0552 (7)
H2B0.26580.34920.04140.066*
C1B0.40734 (12)0.3350 (2)0.14583 (12)0.0382 (7)
C2B0.38050 (11)0.2770 (2)0.09430 (12)0.0353 (6)
C3B0.46916 (13)0.3211 (2)0.06459 (13)0.0462 (8)
H3B10.45830.37270.03790.055*
H3B20.50570.29720.05500.055*
C4B0.46771 (12)0.3603 (2)0.12547 (13)0.0419 (7)
H4B0.49250.31700.14750.050*
C5B0.41038 (12)0.2663 (2)0.19733 (12)0.0403 (7)
N6B0.37778 (11)0.2991 (2)0.24075 (11)0.0526 (7)
H6B0.37450.26460.27130.063*
C7B0.35061 (14)0.3880 (3)0.23427 (13)0.0531 (9)
C8B0.34507 (14)0.3535 (2)0.05928 (13)0.0442 (8)
C9B0.28757 (13)0.2259 (3)0.08442 (14)0.0522 (9)
C10B0.24089 (16)0.1667 (4)0.08728 (17)0.0769 (13)
H10B0.20710.18860.07320.092*
C11B0.24680 (18)0.0736 (4)0.11201 (19)0.0845 (14)
H11B0.21630.03170.11430.101*
C12B0.29666 (18)0.0413 (3)0.13330 (16)0.0683 (11)
H12B0.29930.02180.14980.082*
C13B0.34306 (14)0.1015 (3)0.13039 (14)0.0513 (8)
H13B0.37690.07890.14410.062*
C14B0.33827 (12)0.1962 (2)0.10669 (12)0.0404 (7)
C15B0.41752 (14)0.1977 (3)0.00892 (13)0.0522 (8)
H15D0.45120.17480.00780.078*
H15E0.40130.24850.01460.078*
H15F0.39240.14260.01240.078*
C16B0.48891 (14)0.4658 (2)0.13328 (15)0.0492 (8)
C17B0.5268 (3)0.4834 (4)0.1750 (3)0.1263 (14)
H17B0.53740.43180.19920.152*
C18B0.5496 (3)0.5779 (4)0.1817 (3)0.1263 (14)
H18B0.57620.58790.20960.152*
C19B0.5342 (3)0.6552 (4)0.1489 (3)0.1263 (14)
H19B0.54870.71870.15510.152*
C20B0.49755 (19)0.6390 (3)0.1072 (2)0.0805 (13)
H20B0.48720.69160.08360.097*
C21B0.47467 (17)0.5443 (3)0.09865 (17)0.0669 (10)
H21B0.44960.53420.06920.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0367 (4)0.0316 (4)0.0428 (4)0.0071 (3)0.0041 (3)0.0068 (3)
S2A0.0362 (4)0.0512 (5)0.0733 (6)0.0032 (4)0.0057 (4)0.0160 (5)
O1A0.0530 (13)0.0342 (12)0.0536 (13)0.0066 (10)0.0067 (10)0.0132 (10)
O2A0.0543 (15)0.0664 (18)0.108 (2)0.0300 (13)0.0262 (14)0.0231 (16)
N1A0.0485 (16)0.063 (2)0.076 (2)0.0201 (14)0.0237 (15)0.0221 (17)
N2A0.0622 (18)0.064 (2)0.063 (2)0.0055 (16)0.0258 (15)0.0041 (16)
C1A0.0325 (13)0.0304 (15)0.0377 (15)0.0049 (11)0.0039 (11)0.0008 (12)
C2A0.0297 (14)0.0445 (18)0.0510 (19)0.0033 (12)0.0011 (13)0.0108 (15)
C3A0.058 (2)0.074 (3)0.076 (3)0.0142 (19)0.0321 (19)0.023 (2)
C4A0.0525 (18)0.0396 (18)0.0405 (17)0.0004 (14)0.0125 (14)0.0018 (14)
C5A0.0382 (15)0.0332 (16)0.0330 (15)0.0017 (12)0.0022 (12)0.0032 (12)
N6A0.0308 (12)0.0352 (14)0.0573 (17)0.0080 (10)0.0025 (11)0.0109 (12)
C7A0.0341 (14)0.0316 (16)0.0379 (16)0.0008 (11)0.0053 (12)0.0044 (12)
C8A0.0316 (16)0.055 (2)0.075 (3)0.0080 (15)0.0158 (16)0.0141 (19)
C9A0.0428 (18)0.057 (2)0.061 (2)0.0046 (16)0.0045 (16)0.0148 (18)
C10A0.061 (2)0.089 (3)0.056 (2)0.010 (2)0.0069 (18)0.022 (2)
C11A0.069 (3)0.089 (3)0.089 (3)0.001 (2)0.008 (2)0.049 (3)
C12A0.079 (3)0.055 (3)0.101 (4)0.004 (2)0.009 (3)0.038 (3)
C13A0.063 (2)0.049 (2)0.076 (3)0.0011 (17)0.0058 (19)0.0151 (19)
C14A0.0369 (16)0.0448 (19)0.052 (2)0.0002 (13)0.0001 (14)0.0135 (15)
C15A0.055 (2)0.138 (5)0.137 (4)0.049 (3)0.032 (3)0.063 (4)
C16A0.063 (2)0.0434 (19)0.0368 (17)0.0033 (16)0.0166 (15)0.0032 (14)
C17A0.146 (3)0.0746 (19)0.0599 (16)0.0371 (19)0.0032 (17)0.0009 (14)
C18A0.146 (3)0.0746 (19)0.0599 (16)0.0371 (19)0.0032 (17)0.0009 (14)
C19A0.146 (3)0.0746 (19)0.0599 (16)0.0371 (19)0.0032 (17)0.0009 (14)
C20A0.114 (4)0.046 (2)0.112 (4)0.005 (2)0.057 (3)0.007 (2)
C21A0.073 (3)0.050 (2)0.085 (3)0.0097 (19)0.014 (2)0.014 (2)
S1B0.0704 (6)0.0407 (5)0.0455 (5)0.0290 (4)0.0036 (4)0.0023 (4)
S2B0.1098 (9)0.1043 (9)0.0537 (6)0.0609 (8)0.0190 (6)0.0113 (6)
O1B0.0636 (14)0.0409 (13)0.0464 (13)0.0242 (11)0.0049 (11)0.0072 (10)
O2B0.0807 (17)0.0452 (14)0.0596 (16)0.0130 (12)0.0078 (13)0.0167 (12)
N1B0.0390 (13)0.0367 (14)0.0357 (13)0.0064 (10)0.0065 (10)0.0058 (11)
N2B0.0428 (15)0.070 (2)0.0530 (17)0.0194 (14)0.0034 (13)0.0125 (15)
C1B0.0466 (16)0.0313 (15)0.0367 (16)0.0186 (13)0.0028 (13)0.0009 (12)
C2B0.0375 (15)0.0351 (16)0.0335 (15)0.0157 (12)0.0023 (12)0.0021 (12)
C3B0.0466 (17)0.0453 (19)0.0470 (19)0.0048 (14)0.0104 (14)0.0013 (15)
C4B0.0417 (16)0.0375 (17)0.0465 (18)0.0082 (13)0.0034 (13)0.0006 (14)
C5B0.0494 (17)0.0396 (17)0.0320 (16)0.0141 (14)0.0033 (13)0.0023 (13)
N6B0.0723 (19)0.0540 (17)0.0315 (14)0.0285 (15)0.0073 (13)0.0031 (12)
C7B0.066 (2)0.055 (2)0.0382 (18)0.0278 (17)0.0050 (16)0.0074 (15)
C8B0.0545 (19)0.0451 (19)0.0329 (17)0.0184 (15)0.0013 (14)0.0007 (14)
C9B0.0422 (18)0.072 (2)0.0422 (19)0.0081 (17)0.0079 (14)0.0062 (17)
C10B0.045 (2)0.123 (4)0.063 (3)0.007 (2)0.0050 (18)0.021 (3)
C11B0.065 (3)0.118 (4)0.071 (3)0.034 (3)0.012 (2)0.015 (3)
C12B0.081 (3)0.067 (3)0.058 (2)0.019 (2)0.014 (2)0.011 (2)
C13B0.057 (2)0.049 (2)0.049 (2)0.0055 (16)0.0081 (16)0.0036 (16)
C14B0.0410 (16)0.0455 (18)0.0348 (16)0.0074 (14)0.0074 (13)0.0004 (14)
C15B0.061 (2)0.054 (2)0.0409 (19)0.0061 (17)0.0089 (15)0.0134 (16)
C16B0.057 (2)0.0360 (18)0.055 (2)0.0039 (14)0.0059 (16)0.0008 (15)
C17B0.164 (3)0.0598 (18)0.154 (3)0.022 (2)0.091 (3)0.0004 (19)
C18B0.164 (3)0.0598 (18)0.154 (3)0.022 (2)0.091 (3)0.0004 (19)
C19B0.164 (3)0.0598 (18)0.154 (3)0.022 (2)0.091 (3)0.0004 (19)
C20B0.103 (3)0.043 (2)0.096 (3)0.002 (2)0.011 (3)0.013 (2)
C21B0.085 (3)0.043 (2)0.073 (3)0.0003 (19)0.013 (2)0.0076 (19)
Geometric parameters (Å, º) top
S1A—C7A1.733 (3)S1B—C7B1.728 (4)
S1A—C1A1.820 (3)S1B—C1B1.826 (3)
S2A—C7A1.636 (3)S2B—C7B1.625 (3)
O1A—C5A1.213 (3)O1B—C5B1.214 (3)
O2A—C8A1.232 (4)O2B—C8B1.210 (4)
N1A—C3A1.456 (4)N1B—C15B1.462 (4)
N1A—C15A1.458 (5)N1B—C3B1.462 (4)
N1A—C2A1.460 (4)N1B—C2B1.466 (3)
N2A—C8A1.346 (5)N2B—C8B1.353 (4)
N2A—C9A1.406 (4)N2B—C9B1.394 (4)
N2A—H2A0.8600N2B—H2B0.8600
C1A—C5A1.530 (4)C1B—C5B1.525 (4)
C1A—C4A1.575 (4)C1B—C2B1.580 (4)
C1A—C2A1.586 (4)C1B—C4B1.581 (4)
C2A—C14A1.520 (4)C2B—C14B1.518 (4)
C2A—C8A1.549 (5)C2B—C8B1.568 (4)
C3A—C4A1.526 (5)C3B—C4B1.531 (4)
C3A—H3A10.9700C3B—H3B10.9700
C3A—H3A20.9700C3B—H3B20.9700
C4A—C16A1.506 (4)C4B—C16B1.511 (4)
C4A—H4A0.9800C4B—H4B0.9800
C5A—N6A1.368 (4)C5B—N6B1.372 (4)
N6A—C7A1.361 (4)N6B—C7B1.367 (4)
N6A—H6A0.8600N6B—H6B0.8600
C9A—C10A1.380 (5)C9B—C10B1.383 (5)
C9A—C14A1.382 (5)C9B—C14B1.392 (4)
C10A—C11A1.376 (6)C10B—C11B1.381 (6)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.367 (6)C11B—C12B1.376 (6)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.394 (5)C12B—C13B1.386 (5)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.378 (5)C13B—C14B1.387 (4)
C13A—H13A0.9300C13B—H13B0.9300
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C16A—C17A1.376 (6)C16B—C17B1.363 (6)
C16A—C21A1.381 (5)C16B—C21B1.372 (5)
C17A—C18A1.399 (6)C17B—C18B1.386 (6)
C17A—H17A0.9300C17B—H17B0.9300
C18A—C19A1.334 (7)C18B—C19B1.342 (7)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.341 (7)C19B—C20B1.341 (6)
C19A—H19A0.9300C19B—H19B0.9300
C20A—C21A1.408 (6)C20B—C21B1.396 (5)
C20A—H20A0.9300C20B—H20B0.9300
C21A—H21A0.9300C21B—H21B0.9300
C7A—S1A—C1A94.56 (12)C7B—S1B—C1B94.37 (14)
C3A—N1A—C15A114.6 (3)C15B—N1B—C3B113.7 (2)
C3A—N1A—C2A107.6 (3)C15B—N1B—C2B113.9 (2)
C15A—N1A—C2A114.8 (3)C3B—N1B—C2B106.3 (2)
C8A—N2A—C9A111.7 (3)C8B—N2B—C9B112.4 (3)
C8A—N2A—H2A124.2C8B—N2B—H2B123.8
C9A—N2A—H2A124.2C9B—N2B—H2B123.8
C5A—C1A—C4A110.7 (2)C5B—C1B—C2B109.7 (2)
C5A—C1A—C2A109.2 (2)C5B—C1B—C4B109.3 (2)
C4A—C1A—C2A104.7 (2)C2B—C1B—C4B104.3 (2)
C5A—C1A—S1A103.84 (18)C5B—C1B—S1B104.28 (19)
C4A—C1A—S1A115.01 (19)C2B—C1B—S1B112.30 (18)
C2A—C1A—S1A113.5 (2)C4B—C1B—S1B116.9 (2)
N1A—C2A—C14A111.0 (3)N1B—C2B—C14B113.2 (2)
N1A—C2A—C8A116.2 (3)N1B—C2B—C8B114.7 (2)
C14A—C2A—C8A100.8 (3)C14B—C2B—C8B101.4 (2)
N1A—C2A—C1A101.5 (2)N1B—C2B—C1B101.8 (2)
C14A—C2A—C1A119.5 (2)C14B—C2B—C1B118.4 (2)
C8A—C2A—C1A108.6 (2)C8B—C2B—C1B107.9 (2)
N1A—C3A—C4A103.4 (3)N1B—C3B—C4B103.3 (2)
N1A—C3A—H3A1111.1N1B—C3B—H3B1111.1
C4A—C3A—H3A1111.1C4B—C3B—H3B1111.1
N1A—C3A—H3A2111.1N1B—C3B—H3B2111.1
C4A—C3A—H3A2111.1C4B—C3B—H3B2111.1
H3A1—C3A—H3A2109.0H3B1—C3B—H3B2109.1
C16A—C4A—C3A114.8 (3)C16B—C4B—C3B115.1 (3)
C16A—C4A—C1A117.5 (2)C16B—C4B—C1B118.5 (2)
C3A—C4A—C1A104.2 (3)C3B—C4B—C1B103.9 (2)
C16A—C4A—H4A106.5C16B—C4B—H4B106.2
C3A—C4A—H4A106.5C3B—C4B—H4B106.2
C1A—C4A—H4A106.5C1B—C4B—H4B106.2
O1A—C5A—N6A124.1 (3)O1B—C5B—N6B123.7 (3)
O1A—C5A—C1A123.4 (3)O1B—C5B—C1B124.0 (3)
N6A—C5A—C1A112.6 (2)N6B—C5B—C1B112.3 (2)
C7A—N6A—C5A118.1 (2)C7B—N6B—C5B118.3 (3)
C7A—N6A—H6A121.0C7B—N6B—H6B120.9
C5A—N6A—H6A121.0C5B—N6B—H6B120.9
N6A—C7A—S2A126.0 (2)N6B—C7B—S2B125.8 (3)
N6A—C7A—S1A110.4 (2)N6B—C7B—S1B110.5 (2)
S2A—C7A—S1A123.60 (17)S2B—C7B—S1B123.7 (2)
O2A—C8A—N2A125.7 (4)O2B—C8B—N2B126.5 (3)
O2A—C8A—C2A125.6 (3)O2B—C8B—C2B126.1 (3)
N2A—C8A—C2A108.7 (3)N2B—C8B—C2B107.4 (3)
C10A—C9A—C14A122.9 (4)C10B—C9B—C14B122.7 (4)
C10A—C9A—N2A127.6 (4)C10B—C9B—N2B127.2 (3)
C14A—C9A—N2A109.4 (3)C14B—C9B—N2B110.0 (3)
C11A—C10A—C9A116.9 (4)C11B—C10B—C9B116.9 (4)
C11A—C10A—H10A121.6C11B—C10B—H10B121.5
C9A—C10A—H10A121.6C9B—C10B—H10B121.5
C12A—C11A—C10A122.0 (4)C12B—C11B—C10B121.7 (4)
C12A—C11A—H11A119.0C12B—C11B—H11B119.1
C10A—C11A—H11A119.0C10B—C11B—H11B119.1
C11A—C12A—C13A120.1 (4)C11B—C12B—C13B120.7 (4)
C11A—C12A—H12A120.0C11B—C12B—H12B119.6
C13A—C12A—H12A120.0C13B—C12B—H12B119.6
C14A—C13A—C12A119.3 (4)C12B—C13B—C14B118.9 (3)
C14A—C13A—H13A120.4C12B—C13B—H13B120.5
C12A—C13A—H13A120.4C14B—C13B—H13B120.5
C13A—C14A—C9A118.7 (3)C13B—C14B—C9B118.9 (3)
C13A—C14A—C2A131.4 (3)C13B—C14B—C2B132.2 (3)
C9A—C14A—C2A109.3 (3)C9B—C14B—C2B108.6 (3)
N1A—C15A—H15A109.5N1B—C15B—H15D109.5
N1A—C15A—H15B109.5N1B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
N1A—C15A—H15C109.5N1B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C17A—C16A—C21A117.9 (4)C17B—C16B—C21B117.7 (4)
C17A—C16A—C4A119.3 (3)C17B—C16B—C4B118.4 (3)
C21A—C16A—C4A122.8 (3)C21B—C16B—C4B123.8 (3)
C16A—C17A—C18A120.4 (5)C16B—C17B—C18B120.4 (5)
C16A—C17A—H17A119.8C16B—C17B—H17B119.8
C18A—C17A—H17A119.8C18B—C17B—H17B119.8
C19A—C18A—C17A120.7 (5)C19B—C18B—C17B121.8 (5)
C19A—C18A—H18A119.6C19B—C18B—H18B119.1
C17A—C18A—H18A119.6C17B—C18B—H18B119.1
C18A—C19A—C20A120.7 (5)C20B—C19B—C18B118.7 (5)
C18A—C19A—H19A119.7C20B—C19B—H19B120.7
C20A—C19A—H19A119.7C18B—C19B—H19B120.7
C19A—C20A—C21A120.2 (5)C19B—C20B—C21B120.8 (4)
C19A—C20A—H20A119.9C19B—C20B—H20B119.6
C21A—C20A—H20A119.9C21B—C20B—H20B119.6
C16A—C21A—C20A120.2 (4)C16B—C21B—C20B120.6 (4)
C16A—C21A—H21A119.9C16B—C21B—H21B119.7
C20A—C21A—H21A119.9C20B—C21B—H21B119.7
C7A—S1A—C1A—C5A5.1 (2)C7B—S1B—C1B—C5B4.6 (2)
C7A—S1A—C1A—C4A126.1 (2)C7B—S1B—C1B—C2B114.0 (2)
C7A—S1A—C1A—C2A113.4 (2)C7B—S1B—C1B—C4B125.4 (2)
C3A—N1A—C2A—C14A168.7 (3)C15B—N1B—C2B—C14B63.0 (3)
C15A—N1A—C2A—C14A62.4 (4)C3B—N1B—C2B—C14B170.9 (2)
C3A—N1A—C2A—C8A76.9 (4)C15B—N1B—C2B—C8B52.7 (3)
C15A—N1A—C2A—C8A51.9 (4)C3B—N1B—C2B—C8B73.4 (3)
C3A—N1A—C2A—C1A40.7 (3)C15B—N1B—C2B—C1B168.9 (2)
C15A—N1A—C2A—C1A169.6 (3)C3B—N1B—C2B—C1B42.8 (3)
C5A—C1A—C2A—N1A97.5 (3)C5B—C1B—C2B—N1B94.1 (3)
C4A—C1A—C2A—N1A21.0 (3)C4B—C1B—C2B—N1B23.0 (3)
S1A—C1A—C2A—N1A147.2 (2)S1B—C1B—C2B—N1B150.45 (19)
C5A—C1A—C2A—C14A24.9 (4)C5B—C1B—C2B—C14B30.6 (3)
C4A—C1A—C2A—C14A143.4 (3)C4B—C1B—C2B—C14B147.7 (2)
S1A—C1A—C2A—C14A90.4 (3)S1B—C1B—C2B—C14B84.8 (3)
C5A—C1A—C2A—C8A139.6 (2)C5B—C1B—C2B—C8B144.9 (2)
C4A—C1A—C2A—C8A101.9 (3)C4B—C1B—C2B—C8B98.1 (2)
S1A—C1A—C2A—C8A24.3 (3)S1B—C1B—C2B—C8B29.4 (3)
C15A—N1A—C3A—C4A173.4 (4)C15B—N1B—C3B—C4B172.0 (2)
C2A—N1A—C3A—C4A44.4 (4)C2B—N1B—C3B—C4B45.8 (3)
N1A—C3A—C4A—C16A157.7 (3)N1B—C3B—C4B—C16B159.4 (2)
N1A—C3A—C4A—C1A27.7 (4)N1B—C3B—C4B—C1B28.3 (3)
C5A—C1A—C4A—C16A110.3 (3)C5B—C1B—C4B—C16B110.6 (3)
C2A—C1A—C4A—C16A132.2 (3)C2B—C1B—C4B—C16B132.2 (3)
S1A—C1A—C4A—C16A7.0 (4)S1B—C1B—C4B—C16B7.5 (4)
C5A—C1A—C4A—C3A121.4 (3)C5B—C1B—C4B—C3B120.3 (3)
C2A—C1A—C4A—C3A3.9 (3)C2B—C1B—C4B—C3B3.1 (3)
S1A—C1A—C4A—C3A121.3 (3)S1B—C1B—C4B—C3B121.6 (2)
C4A—C1A—C5A—O1A49.6 (4)C2B—C1B—C5B—O1B64.7 (4)
C2A—C1A—C5A—O1A65.1 (4)C4B—C1B—C5B—O1B49.1 (4)
S1A—C1A—C5A—O1A173.5 (2)S1B—C1B—C5B—O1B174.8 (3)
C4A—C1A—C5A—N6A131.7 (3)C2B—C1B—C5B—N6B115.0 (3)
C2A—C1A—C5A—N6A113.6 (3)C4B—C1B—C5B—N6B131.1 (3)
S1A—C1A—C5A—N6A7.8 (3)S1B—C1B—C5B—N6B5.4 (3)
O1A—C5A—N6A—C7A173.6 (3)O1B—C5B—N6B—C7B176.4 (3)
C1A—C5A—N6A—C7A7.7 (4)C1B—C5B—N6B—C7B3.8 (4)
C5A—N6A—C7A—S2A175.3 (2)C5B—N6B—C7B—S2B178.8 (3)
C5A—N6A—C7A—S1A3.4 (3)C5B—N6B—C7B—S1B0.0 (4)
C1A—S1A—C7A—N6A1.5 (2)C1B—S1B—C7B—N6B3.0 (3)
C1A—S1A—C7A—S2A179.75 (19)C1B—S1B—C7B—S2B178.2 (3)
C9A—N2A—C8A—O2A177.0 (3)C9B—N2B—C8B—O2B179.2 (3)
C9A—N2A—C8A—C2A3.8 (4)C9B—N2B—C8B—C2B2.3 (4)
N1A—C2A—C8A—O2A57.2 (4)N1B—C2B—C8B—O2B56.4 (4)
C14A—C2A—C8A—O2A177.2 (3)C14B—C2B—C8B—O2B178.7 (3)
C1A—C2A—C8A—O2A56.4 (4)C1B—C2B—C8B—O2B56.2 (4)
N1A—C2A—C8A—N2A123.6 (3)N1B—C2B—C8B—N2B125.1 (3)
C14A—C2A—C8A—N2A3.5 (3)C14B—C2B—C8B—N2B2.8 (3)
C1A—C2A—C8A—N2A122.8 (3)C1B—C2B—C8B—N2B122.3 (3)
C8A—N2A—C9A—C10A173.9 (3)C8B—N2B—C9B—C10B175.8 (4)
C8A—N2A—C9A—C14A2.4 (4)C8B—N2B—C9B—C14B0.8 (4)
C14A—C9A—C10A—C11A2.9 (5)C14B—C9B—C10B—C11B2.0 (6)
N2A—C9A—C10A—C11A172.9 (4)N2B—C9B—C10B—C11B174.2 (4)
C9A—C10A—C11A—C12A0.5 (6)C9B—C10B—C11B—C12B0.5 (7)
C10A—C11A—C12A—C13A0.5 (7)C10B—C11B—C12B—C13B0.3 (7)
C11A—C12A—C13A—C14A0.7 (6)C11B—C12B—C13B—C14B1.3 (6)
C12A—C13A—C14A—C9A3.0 (5)C12B—C13B—C14B—C9B2.7 (5)
C12A—C13A—C14A—C2A173.4 (3)C12B—C13B—C14B—C2B176.1 (3)
C10A—C9A—C14A—C13A4.1 (5)C10B—C9B—C14B—C13B3.1 (5)
N2A—C9A—C14A—C13A172.3 (3)N2B—C9B—C14B—C13B173.7 (3)
C10A—C9A—C14A—C2A176.6 (3)C10B—C9B—C14B—C2B178.0 (3)
N2A—C9A—C14A—C2A0.1 (4)N2B—C9B—C14B—C2B1.2 (4)
N1A—C2A—C14A—C13A45.3 (4)N1B—C2B—C14B—C13B48.2 (4)
C8A—C2A—C14A—C13A169.0 (3)C8B—C2B—C14B—C13B171.5 (3)
C1A—C2A—C14A—C13A72.2 (4)C1B—C2B—C14B—C13B70.7 (4)
N1A—C2A—C14A—C9A125.8 (3)N1B—C2B—C14B—C9B125.7 (3)
C8A—C2A—C14A—C9A2.1 (3)C8B—C2B—C14B—C9B2.4 (3)
C1A—C2A—C14A—C9A116.6 (3)C1B—C2B—C14B—C9B115.4 (3)
C3A—C4A—C16A—C17A138.1 (4)C3B—C4B—C16B—C17B130.5 (5)
C1A—C4A—C16A—C17A98.9 (4)C1B—C4B—C16B—C17B105.8 (5)
C3A—C4A—C16A—C21A40.0 (5)C3B—C4B—C16B—C21B45.6 (5)
C1A—C4A—C16A—C21A83.0 (4)C1B—C4B—C16B—C21B78.1 (4)
C21A—C16A—C17A—C18A1.1 (6)C21B—C16B—C17B—C18B0.1 (9)
C4A—C16A—C17A—C18A177.1 (4)C4B—C16B—C17B—C18B176.4 (5)
C16A—C17A—C18A—C19A0.6 (7)C16B—C17B—C18B—C19B2.1 (11)
C17A—C18A—C19A—C20A0.0 (8)C17B—C18B—C19B—C20B2.9 (11)
C18A—C19A—C20A—C21A0.1 (7)C18B—C19B—C20B—C21B1.5 (10)
C17A—C16A—C21A—C20A1.0 (6)C17B—C16B—C21B—C20B1.4 (7)
C4A—C16A—C21A—C20A177.1 (3)C4B—C16B—C21B—C20B177.5 (4)
C19A—C20A—C21A—C16A0.4 (6)C19B—C20B—C21B—C16B0.7 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N2B—H2B···O2A0.862.172.794 (3)129
N6A—H6A···N1Bi0.862.283.083 (3)156
C4B—H4B···O1Aii0.982.363.290 (3)159
N6B—H6B···O1Aiii0.862.182.836 (3)133
N2A—H2A···Cg1iv0.862.953.806 (3)170
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H17N3O2S2
Mr395.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.259 (6), 13.359 (3), 23.628 (5)
β (°) 90.418 (7)
V3)7657 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.45 × 0.38 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(XABS; Parkin et al. 1995).
Tmin, Tmax0.703, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
9064, 9064, 6169
Rint0.000
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.155, 1.09
No. of reflections9064
No. of parameters463
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0495P)2 + 12.055P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.54, 0.49

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9B–C14B ring.
D—H···AD—HH···AD···AD—H···A
N2B—H2B···O2A0.862.172.794 (3)129
N6A—H6A···N1Bi0.862.283.083 (3)156
C4B—H4B···O1Aii0.982.363.290 (3)159
N6B—H6B···O1Aiii0.862.182.836 (3)133
N2A—H2A···Cg1iv0.862.953.806 (3)170
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z.
 

References

First citationAmal Raj, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBaldwin, J. E., Turner, M. S. C. & Moloney, M. G. (1994). Tetrahedron, 50, 9411–9424.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChavan, P., Mane, A. S. & Shingare, M. S. (2001). Indian J. Chem. Sect. B, 40, 339–341.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHilton, S. T., Ho, T. C., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMogilaiah, K., Ramesh Babu, H. & Babu, R. R. (2001). Indian J. Chem. Sect. B, 40, 1270–1273.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOkita, T. & Isobe, M. (1994). Tetrahedron, 50, 11143–11152.  CrossRef CAS Web of Science Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSampath, N., Mathews, R. & Ponnuswamy, M. N. (2010). J. Chem. Crystallogr. 40, 1105–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds