inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

K3Al2As3O12

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

(Received 2 November 2011; accepted 5 January 2012; online 11 January 2012)

Single crystals of K3Al2As3O12, tripotassium dialuminotriarsenate(V), were obtained unintentionally by the reaction of KAsO3 with a corundum crucible at 973 K. The asymmetric unit contains three K, two Al, three As and 12 O atoms. The structure of the title compound is isotypic with those of other K3M2X3O12 (M′ = Al, Ga; X = P, As) structures and is made up of a three-dimensional network of corner-sharing [AlO4] and [AsO4] tetra­hedra. The three K+ cations are located in channels running along the [100], [001], [101] and [10[\overline{1}]] directions, exhibiting different coordination numbers of 9, 8 and 6, respectively. All corresponding [KOx] polyhedra are considerably distorted.

Related literature

For a recent review on NASICON-type materials, see: Anantharamulu et al. (2011[Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Velchuri Radha & Vithal, M. (2011). J. Mater. Sci. 46, 2821-2837.]). For isotypic K3M2X3O12 structures, see: Beaurain et al. (2008[Beaurain, M., Astier, R., Lee, A. van der & Armand, P. (2008). Acta Cryst. C64, i5-i8.]) and Yakubovich et al. (2008[Yakubovich, O. V., Steele, I. & Kireev, V. V. (2008). Cryst. Rep. 53, 952-959.]) for K3Ga2P3O12; Boughzala et al. (1997[Boughzala, H., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 3-5.]) for the solid solution K3Al2(As1.92P1.08)O12; Devi & Vidyasagar (2000[Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391-2396.]) for K3Al2P3O12. For the isopointal structure of Tl3Al2P3O12, see: Devi & Vidyasagar (2000[Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391-2396.]). For background to the bond-valence method, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

Experimental

Crystal data
  • K3Al2As3O12

  • Mr = 588

  • Orthorhombic, P n a 21

  • a = 8.7943 (2) Å

  • b = 17.4400 (2) Å

  • c = 8.6610 (3) Å

  • V = 1328.36 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.63 mm−1

  • T = 100 K

  • 0.10 × 0.06 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.49, Tmax = 0.92

  • 52293 measured reflections

  • 9623 independent reflections

  • 8606 reflections with I > 3σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 3σ(F2)] = 0.018

  • wR(F2) = 0.039

  • S = 0.80

  • 9623 reflections

  • 181 parameters

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3882 Friedel pairs

  • Flack parameter: 0.008 (3)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus; method used to solve structure: coordinates taken from an isotypic structure; program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

During crystal growth studies of KAsO3, we inadvertently obtained single crystals with composition K3Al2As3O12 from an attacked corundum crucible. Many oxides with general formula MxM'2X3O12 crystallize with three-dimensional framework structures (Devi & Vidyasagar, 2000) and are of technological interest. Most notably, compounds crystallizing in the NASICON (Na3Zr2Si2PO12) structure type are excellent ion conductors and have been intensely studied. A recent review on compounds with the NASICON structure has been given by Anantharamulu et al. (2011).

The structure of K3Al2As3O12 is isotypic with the phosphate analogue K3Al2P3O12 (Devi & Vidyasagar, 2000), the mixed arsenate/phosphate solid solution K3Al2As1.92P1.08O12 (Boughzala et al., 1997) and K3Ga2P3O12 (Beaurain et al., 2008; Yakubovich et al., 2008). Trithallium dialuminotriphosphate, Tl3Al2P3O12 (Devi & Vidyasagar, 2000), can be considered as isopointal to the title compound, because it features distinctly different coordinations of the Al sites and the cationic network due to the electron lone pairs of the Tl+ ions.

Whereas in the NASICON structure type the M' site is octahedrally and the X site tetrahedrally coordinated, in the title compound both sites exhibit a tetrahedral coordination. Two crystallographically different [AlO4] and three [AlO4] tetrahedra, all on general positions, are linked via their corners to a complex three-dimensional network, whereby [AlO4] units connect only to [AsO4] units and vice-versa. This network can be decomposed into undulating sheets normal to [010] (Al1, Al2, As1, As2) which are connected by [AsO4] units (As3) (Fig. 1).

The three different K+ cations are located in channels running along the [100] and [001] (K1, K2) (Fig. 1) as well as the [101] and [101] (K3) (Fig. 2) directions. Considering K–O distances up to 3.5 Å as relevant for first coordination spheres, the K+ cations are coordinated by 9 (K1), 8 (K1) and 6 (K3) O atoms, respectively, all in the form of irregular [KOx] polyhedra. The total bond valence sums (parameters: R0 = 2.132 Å, b = 0.37 (Brown & Altermatt, 1985)), 1.08 (K1), 1.04 (K2) and 0.90 (K3) valence units (v.u.) are close to the expected value of 1 v.u. and point to a slight undersaturation of K3. The coordination of the K+ cations is very similar in all isotypic structures. The main difference in these structures pertains to the bond lengths of the XO4 tetrahedra. Corresponding mean bond lengths are 1.746 Å for AlO4 and 1.680 Å for AsO4 tetrahedra in the title compound; 1.737 Å for AlO4 and 1.527 Å for PO4 tetrahedra in K3Al2P3O12; 1.730 Å for AlO4 and 1.615 Å for (As/P)O4 tetrahedra in K3Al2As1.92P1.08O12; 1.816 Å for GaO4 and 1.535 Å for PO4 tetrahedra in K3Ga2P3O12.

Related literature top

For a recent review on NASICON-type materials, see: Anantharamulu et al. (2011). For isotypic K3M'2X3O12 structures, see: Beaurain et al. (2008) and Yakubovich et al. (2008) for K3Ga2P3O12; Boughzala et al. (1997) for the solid solution K3Al2(As1.92P1.08)O12; Devi & Vidyasagar (2000) for K3Al2P3O12. For the isopointal structure of Tl3Al2P3O12, see: Devi & Vidyasagar (2000). For background to the bond-valence method, see: Brown & Altermatt (1985).

Experimental top

K2CO3 and H3AsO4 were obtained commercially and used without purification. 10 g 80%wt H3AsO4 were titrated against an aqueous K2CO3 solution using methyl red as indicator. The water was evaporated and the residue recrystallized from water to obtain KH2AsO4. This solid was then heated in a corundum crucible at 973 K, cooled to 633 K over 24 h and quenched. Few colourless crystals of the title compound were isolated from the reaction mixture.

Refinement top

The first refinement cycle was performed using the published atomic coordinates of K3Al2As1.92P1.08O12 (Boughzala et al., 1997) as starting parameters.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: coordinates taken from an isotypic structure; program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of K3Al2As3O12 viewed down [100], showing sheets of corner-sharing [AsO4] and [AlO4] tetrahedra extending parallel to (010). Displacement ellipsoids are drawn at the 90% probability level.
[Figure 2] Fig. 2. The crystal structure of K3Al2As3O12 viewed down [101]. Displacement ellipsoids are drawn at the 90% probability level.
tripotassium dialuminotriarsenate(V) top
Crystal data top
K3Al2As3O12F(000) = 1112
Mr = 588Dx = 2.939 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 54411 reflections
a = 8.7943 (2) Åθ = 3.3–44.8°
b = 17.4400 (2) ŵ = 8.63 mm1
c = 8.6610 (3) ÅT = 100 K
V = 1328.36 (6) Å3Plate, colourless
Z = 40.10 × 0.06 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
9623 independent reflections
Radiation source: X-ray tube8606 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scansθmax = 45.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.49, Tmax = 0.92k = 3434
52293 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
R[F2 > 2σ(F2)] = 0.018Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F2) = 0.039(Δ/σ)max = 0.003
S = 0.80Δρmax = 0.33 e Å3
9623 reflectionsΔρmin = 0.31 e Å3
181 parametersAbsolute structure: Flack (1983), 3882 Friedel pairs
0 restraintsAbsolute structure parameter: 0.008 (3)
1 constraint
Crystal data top
K3Al2As3O12V = 1328.36 (6) Å3
Mr = 588Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.7943 (2) ŵ = 8.63 mm1
b = 17.4400 (2) ÅT = 100 K
c = 8.6610 (3) Å0.10 × 0.06 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
9623 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
8606 reflections with I > 3σ(I)
Tmin = 0.49, Tmax = 0.92Rint = 0.038
52293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.039Δρmax = 0.33 e Å3
S = 0.80Δρmin = 0.31 e Å3
9623 reflectionsAbsolute structure: Flack (1983), 3882 Friedel pairs
181 parametersAbsolute structure parameter: 0.008 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.156896 (11)0.215743 (6)0.00090.004155 (18)
As20.293241 (12)0.313601 (6)0.511929 (16)0.004909 (19)
As30.236068 (12)0.502941 (6)0.085202 (18)0.005355 (19)
K10.01017 (3)0.402188 (14)0.84037 (3)0.00837 (4)
K20.95033 (3)0.354962 (14)0.30906 (3)0.00818 (4)
K30.68161 (3)0.488891 (15)0.11580 (3)0.01179 (5)
Al10.34851 (4)0.34012 (2)0.14668 (4)0.00492 (7)
Al20.13204 (4)0.16767 (2)0.65562 (4)0.00520 (7)
O10.29089 (10)0.15184 (5)0.03110 (9)0.00824 (17)
O20.02014 (10)0.20900 (5)0.13689 (9)0.00746 (16)
O30.21755 (9)0.30785 (4)0.00781 (10)0.00643 (14)
O40.06929 (10)0.20939 (5)0.82779 (9)0.00730 (16)
O50.17013 (13)0.37287 (6)0.58794 (12)0.0139 (2)
O60.47459 (12)0.34183 (7)0.53518 (11)0.0168 (2)
O70.27956 (11)0.22138 (5)0.57055 (11)0.01044 (18)
O80.26654 (10)0.30933 (6)0.31927 (9)0.00936 (18)
O90.07409 (11)0.46866 (6)0.15273 (11)0.01076 (18)
O100.29028 (11)0.57855 (5)0.19818 (10)0.00894 (17)
O110.23407 (11)0.52699 (6)0.90078 (10)0.01074 (19)
O120.37999 (10)0.43772 (5)0.12022 (10)0.00883 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.00437 (3)0.00356 (3)0.00453 (3)0.00007 (3)0.00035 (3)0.00027 (3)
As20.00554 (3)0.00472 (4)0.00447 (3)0.00042 (3)0.00028 (3)0.00036 (3)
As30.00642 (4)0.00336 (3)0.00628 (3)0.00018 (3)0.00018 (3)0.00019 (3)
K10.00698 (7)0.01015 (8)0.00797 (6)0.00039 (6)0.00040 (5)0.00102 (6)
K20.00765 (8)0.00734 (8)0.00955 (7)0.00014 (6)0.00017 (6)0.00078 (6)
K30.01516 (10)0.00792 (9)0.01230 (8)0.00147 (7)0.00295 (7)0.00020 (6)
Al10.00487 (12)0.00439 (12)0.00550 (10)0.00023 (9)0.00019 (9)0.00024 (9)
Al20.00592 (12)0.00438 (12)0.00532 (10)0.00071 (10)0.00068 (9)0.00031 (9)
O10.0078 (3)0.0069 (3)0.0101 (3)0.0029 (2)0.0011 (2)0.0004 (2)
O20.0062 (3)0.0094 (3)0.0067 (2)0.0020 (2)0.0017 (2)0.0006 (2)
O30.0075 (2)0.0046 (2)0.0072 (2)0.0014 (2)0.0019 (2)0.0005 (2)
O40.0078 (3)0.0089 (3)0.0052 (2)0.0016 (2)0.0019 (2)0.0019 (2)
O50.0193 (4)0.0088 (3)0.0138 (3)0.0037 (3)0.0083 (3)0.0016 (3)
O60.0101 (3)0.0274 (5)0.0130 (3)0.0102 (3)0.0069 (3)0.0108 (3)
O70.0121 (3)0.0056 (3)0.0136 (3)0.0006 (2)0.0041 (2)0.0026 (2)
O80.0094 (3)0.0144 (4)0.0043 (2)0.0031 (3)0.0001 (2)0.0002 (2)
O90.0084 (3)0.0083 (3)0.0155 (3)0.0023 (2)0.0031 (2)0.0001 (3)
O100.0131 (3)0.0043 (3)0.0094 (3)0.0018 (2)0.0003 (2)0.0010 (2)
O110.0138 (3)0.0121 (4)0.0063 (3)0.0010 (3)0.0004 (2)0.0016 (2)
O120.0085 (3)0.0044 (3)0.0136 (3)0.0006 (2)0.0019 (2)0.0002 (2)
Geometric parameters (Å, º) top
K1—O1i2.7084 (9)Al1—O81.7443 (9)
K1—O3ii2.8524 (8)Al1—O121.7396 (9)
K1—O52.6496 (11)Al2—O41.7485 (9)
K1—O9ii2.9964 (10)Al2—O6vii1.7415 (11)
K1—O9iii2.8747 (10)Al2—O71.7616 (10)
K1—O10iii2.9344 (10)Al2—O10viii1.7373 (10)
K1—O112.9814 (10)As1—O11.6429 (9)
K2—O1iv2.7885 (9)As1—O21.6875 (8)
K2—O2v3.0134 (9)As1—O31.6936 (8)
K2—O7iv3.0260 (10)As1—O4ix1.6893 (8)
K2—O8v2.8939 (10)As2—O51.6352 (10)
K2—O9v2.6362 (10)As2—O61.6812 (11)
K2—O11vi2.7384 (10)As2—O71.6909 (9)
K3—O1iv2.7360 (9)As2—O81.6867 (8)
K3—O5vi2.7515 (10)As3—O91.6519 (9)
K3—O11vi2.5921 (9)As3—O101.7098 (9)
K3—O122.7989 (10)As3—O11ix1.6515 (9)
Al1—O2iv1.7376 (9)As3—O121.7285 (9)
Al1—O31.7578 (9)
O1i—K1—O3ii86.82 (3)O1iv—K3—O5vi126.59 (3)
O1i—K1—O5144.51 (3)O1iv—K3—O11vi93.38 (3)
O1i—K1—O9ii73.59 (3)O1iv—K3—O1292.90 (3)
O1i—K1—O9iii115.72 (3)O5vi—K3—O11vi92.38 (3)
O1i—K1—O10iii69.80 (3)O5vi—K3—O12136.86 (3)
O1i—K1—O11128.11 (3)O11vi—K3—O12102.95 (3)
O3ii—K1—O588.21 (3)O2iv—Al1—O3112.21 (4)
O3ii—K1—O9ii69.16 (3)O2iv—Al1—O8104.42 (4)
O3ii—K1—O9iii154.71 (3)O2iv—Al1—O12109.74 (5)
O3ii—K1—O10iii148.77 (2)O3—Al1—O8102.53 (4)
O3ii—K1—O1184.81 (2)O3—Al1—O12109.11 (4)
O5—K1—O9ii136.06 (3)O8—Al1—O12118.68 (5)
O5—K1—O9iii79.72 (3)O4—Al2—O6vii107.43 (5)
O5—K1—O10iii98.85 (3)O4—Al2—O7111.59 (4)
O5—K1—O1186.28 (3)O4—Al2—O10viii108.39 (4)
O9ii—K1—O9iii104.81 (3)O6vii—Al2—O7112.68 (5)
O9ii—K1—O10iii120.24 (3)O6vii—Al2—O10viii110.77 (6)
O9ii—K1—O1155.61 (2)O7—Al2—O10viii105.95 (5)
O9iii—K1—O10iii56.01 (3)O1—As1—O2110.66 (4)
O9iii—K1—O1172.39 (3)O1—As1—O3114.32 (4)
O10iii—K1—O11125.79 (3)O1—As1—O4ix115.08 (4)
O1iv—K2—O2v68.86 (2)O2—As1—O3105.42 (4)
O1iv—K2—O7iv112.20 (3)O2—As1—O4ix106.85 (4)
O1iv—K2—O8v119.86 (2)O3—As1—O4ix103.72 (4)
O1iv—K2—O9v78.24 (3)O5—As2—O6113.25 (6)
O1iv—K2—O11vi89.12 (3)O5—As2—O7115.67 (5)
O2v—K2—O7iv95.73 (2)O5—As2—O8109.52 (5)
O2v—K2—O8v65.61 (2)O6—As2—O7108.07 (5)
O2v—K2—O9v107.28 (3)O6—As2—O8105.28 (4)
O2v—K2—O11vi154.06 (3)O7—As2—O8104.19 (5)
O7iv—K2—O8v109.45 (3)O9—As3—O10108.48 (5)
O7iv—K2—O9v156.96 (3)O9—As3—O11ix115.16 (5)
O7iv—K2—O11vi79.62 (3)O9—As3—O12109.34 (4)
O8v—K2—O9v79.97 (3)O10—As3—O11ix111.13 (5)
O8v—K2—O11vi140.08 (3)O10—As3—O12101.71 (4)
O9v—K2—O11vi80.10 (3)O11ix—As3—O12110.16 (5)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1, y+1, z1/2; (vii) x1/2, y+1/2, z; (viii) x+1/2, y1/2, z+1/2; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formulaK3Al2As3O12
Mr588
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)8.7943 (2), 17.4400 (2), 8.6610 (3)
V3)1328.36 (6)
Z4
Radiation typeMo Kα
µ (mm1)8.63
Crystal size (mm)0.10 × 0.06 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.49, 0.92
No. of measured, independent and
observed [I > 3σ(I)] reflections
52293, 9623, 8606
Rint0.038
(sin θ/λ)max1)0.997
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.039, 0.80
No. of reflections9623
No. of parameters181
Δρmax, Δρmin (e Å3)0.33, 0.31
Absolute structureFlack (1983), 3882 Friedel pairs
Absolute structure parameter0.008 (3)

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), coordinates taken from an isotypic structure, JANA2006 (Petříček et al., 2006), ATOMS (Dowty, 2006), publCIF (Westrip, 2010).

 

References

First citationAnantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Velchuri Radha & Vithal, M. (2011). J. Mater. Sci. 46, 2821–2837.  Google Scholar
First citationBeaurain, M., Astier, R., Lee, A. van der & Armand, P. (2008). Acta Cryst. C64, i5–i8.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoughzala, H., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 3–5.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2008). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDevi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396.  CrossRef PubMed CAS Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O. V., Steele, I. & Kireev, V. V. (2008). Cryst. Rep. 53, 952–959.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds