metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­diformato­cobalt(II)]-μ-1,4-bis­­(1H-benzimidazol-1-yl)benzene] dihydrate]

aCollege of Science, Chang'an University, Xi'an 710064, Shaanxi, People's Republic of China, and bKey Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China
*Correspondence e-mail: huangpingyun1@163.com

(Received 23 November 2011; accepted 21 December 2011; online 7 January 2012)

In the title coordination polymer, {[Co(CHO2)2(C20H14N4)(H2O)2]·2H2O}n, the CoII atom (site symmetry [\overline{1}]) is coordinated by two formate O atoms, two water O atoms and two N atoms from two 1,4-bis­(1H-benzimidazol-1-yl)benzene ligands (L), resulting in a distorted trans-CoN2O4 octa­hedral coordin­ation environment. The complete L ligand is generated by crystallographic inversion symmetry and serves to bridge the cobalt ions into a chain propagating in [1[\overline{1}][\overline{1}]]. The dihedral angle between the central benzene ring and the imidazole ring system is 38.48 (12)°. O—H⋯O hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules occur and help to link the chains together.

Related literature

For background to coordination polymers containing imidazole-derived ligands, see: Li et al. (2009[Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904-3909.], 2011[Li, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984-1989.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(CHO2)2(C20H14N4)(H2O)2]·2H2O

  • Mr = 531.38

  • Triclinic, [P \overline 1]

  • a = 7.497 (4) Å

  • b = 9.136 (5) Å

  • c = 9.443 (7) Å

  • α = 78.289 (19)°

  • β = 77.858 (19)°

  • γ = 67.72 (2)°

  • V = 579.6 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.839, Tmax = 0.867

  • 4958 measured reflections

  • 2012 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.10

  • 2012 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.1110 (19)
Co1—N1 2.136 (2)
Co1—O1W 2.1451 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2Wi 0.83 1.94 2.759 (4) 170
O1W—H1B⋯O2i 0.90 1.83 2.691 (4) 159
O2W—H2A⋯O1ii 0.98 2.01 2.837 (4) 141
O2W—H2B⋯O2iii 0.88 1.89 2.766 (4) 170
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole has been extensively used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied. However, to our knowledge, the research on imidazole ligands bearing rigid spacers is still less developed (Li et al., 2009; Li et al., 2011). For the title compound, the geometry of the CoII ion is bound by two benzoimidazole rings of individual L ligands, two water molecules and two formate ions forming a slightly distorted octahedral coordination environment(Fig. 1). Notably, as shown in Fig. 2, the six-coordinate CoII center is bridged by the ligand L to form an infinite one-dimensional architecture.

Related literature top

For background to coordination polymers containing imidazole-derived ligands, see: Li et al. (2009, 2011).

Experimental top

A mixture of CH3OH and H2O (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of Co(HCO2)2 in H2O (6 ml). Then a solution of 1,4-di(1H-benzimidazol-1-yl)benzene (L, 0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, purple blocks appeared at the boundary. Yield: ~21% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[[diaquadiformatocobalt(II)]-µ-1,4- bis(1H-benzimidazol-1-yl)benzene] dihydrate] top
Crystal data top
[Co(CHO2)2(C20H14N4)(H2O)2]·2H2OZ = 1
Mr = 531.38F(000) = 275
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.497 (4) ÅCell parameters from 6325 reflections
b = 9.136 (5) Åθ = 2.9–53.8°
c = 9.443 (7) ŵ = 0.80 mm1
α = 78.289 (19)°T = 293 K
β = 77.858 (19)°Block, purple
γ = 67.72 (2)°0.22 × 0.20 × 0.18 mm
V = 579.6 (6) Å3
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2012 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1010
Tmin = 0.839, Tmax = 0.867l = 1111
4958 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.3613P]
where P = (Fo2 + 2Fc2)/3
2012 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Co(CHO2)2(C20H14N4)(H2O)2]·2H2Oγ = 67.72 (2)°
Mr = 531.38V = 579.6 (6) Å3
Triclinic, P1Z = 1
a = 7.497 (4) ÅMo Kα radiation
b = 9.136 (5) ŵ = 0.80 mm1
c = 9.443 (7) ÅT = 293 K
α = 78.289 (19)°0.22 × 0.20 × 0.18 mm
β = 77.858 (19)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2012 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1910 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.867Rint = 0.026
4958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.10Δρmax = 1.08 e Å3
2012 reflectionsΔρmin = 0.46 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.50000.02012 (17)
O1W1.2375 (2)0.3098 (2)0.58992 (19)0.0295 (4)
O2W0.1838 (4)0.0285 (3)0.5850 (3)0.0609 (7)
O10.8818 (2)0.3208 (2)0.5127 (2)0.0293 (4)
O20.6238 (3)0.2504 (2)0.5388 (3)0.0463 (5)
N10.8569 (3)0.5511 (2)0.7146 (2)0.0265 (4)
N20.7050 (3)0.7105 (2)0.8865 (2)0.0275 (5)
C10.7791 (4)0.6984 (3)0.7437 (3)0.0292 (5)
H10.77510.78640.67310.035*
C20.7396 (3)0.5554 (3)0.9577 (3)0.0262 (5)
C30.8340 (3)0.4566 (3)0.8486 (3)0.0243 (5)
C40.8857 (4)0.2915 (3)0.8831 (3)0.0325 (6)
H40.94660.22440.81170.039*
C50.8430 (4)0.2314 (3)1.0271 (3)0.0414 (7)
H50.87720.12161.05310.050*
C60.7500 (5)0.3310 (4)1.1347 (3)0.0450 (7)
H60.72430.28571.23070.054*
C70.6952 (4)0.4944 (3)1.1030 (3)0.0374 (6)
H70.63190.56061.17480.045*
C80.6007 (3)0.8580 (3)0.9448 (3)0.0257 (5)
C90.6227 (4)0.8724 (3)1.0825 (3)0.0306 (5)
H90.70470.78681.13760.037*
C100.4786 (4)0.9844 (3)0.8624 (3)0.0319 (6)
H100.46440.97320.77010.038*
C110.7062 (4)0.3410 (3)0.5497 (3)0.0295 (5)
H110.62860.43390.58970.035*
H1B1.35790.31420.56080.044*
H1A1.23580.22050.58630.044*
H2B0.23250.05720.54010.105 (17)*
H2A0.05650.09270.55510.091 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0216 (3)0.0196 (3)0.0178 (3)0.00541 (17)0.00065 (16)0.00702 (16)
O1W0.0255 (8)0.0273 (9)0.0346 (10)0.0076 (7)0.0052 (7)0.0045 (7)
O2W0.0647 (15)0.0300 (11)0.094 (2)0.0096 (10)0.0345 (14)0.0111 (12)
O10.0243 (9)0.0274 (9)0.0365 (10)0.0089 (7)0.0001 (7)0.0098 (7)
O20.0294 (10)0.0370 (11)0.0755 (16)0.0147 (9)0.0014 (10)0.0148 (10)
N10.0332 (11)0.0229 (10)0.0193 (10)0.0060 (8)0.0009 (8)0.0061 (8)
N20.0362 (11)0.0217 (10)0.0195 (10)0.0044 (8)0.0003 (8)0.0076 (8)
C10.0421 (14)0.0226 (12)0.0182 (11)0.0081 (10)0.0019 (10)0.0055 (9)
C20.0279 (12)0.0229 (12)0.0239 (12)0.0047 (10)0.0010 (9)0.0060 (9)
C30.0241 (11)0.0249 (11)0.0214 (12)0.0059 (9)0.0015 (9)0.0052 (9)
C40.0347 (13)0.0232 (12)0.0349 (14)0.0053 (10)0.0002 (11)0.0084 (10)
C50.0518 (17)0.0252 (13)0.0386 (16)0.0097 (12)0.0016 (13)0.0015 (11)
C60.0608 (19)0.0378 (15)0.0274 (15)0.0158 (14)0.0018 (13)0.0036 (12)
C70.0493 (16)0.0341 (14)0.0223 (13)0.0104 (12)0.0026 (11)0.0061 (11)
C80.0317 (12)0.0215 (11)0.0212 (12)0.0061 (9)0.0013 (9)0.0089 (9)
C90.0374 (14)0.0256 (12)0.0241 (12)0.0037 (10)0.0073 (10)0.0047 (10)
C100.0434 (14)0.0296 (13)0.0196 (12)0.0060 (11)0.0058 (10)0.0089 (10)
C110.0267 (13)0.0265 (12)0.0337 (14)0.0067 (10)0.0042 (10)0.0058 (10)
Geometric parameters (Å, º) top
Co1—O1i2.1110 (19)C2—C71.394 (4)
Co1—O12.1110 (19)C2—C31.402 (3)
Co1—N12.136 (2)C3—C41.393 (4)
Co1—N1i2.136 (2)C4—C51.378 (4)
Co1—O1Wi2.1451 (19)C4—H40.9300
Co1—O1W2.1451 (19)C5—C61.394 (4)
O1W—H1B0.8998C5—H50.9300
O1W—H1A0.8288C6—C71.375 (4)
O2W—H2B0.8823C6—H60.9300
O2W—H2A0.9779C7—H70.9300
O1—C111.240 (3)C8—C101.382 (4)
O2—C111.236 (3)C8—C91.383 (3)
N1—C11.309 (3)C9—C10ii1.384 (4)
N1—C31.398 (3)C9—H90.9300
N2—C11.355 (3)C10—C9ii1.384 (3)
N2—C21.391 (3)C10—H100.9300
N2—C81.432 (3)C11—H110.9300
C1—H10.9300
O1i—Co1—O1180.000 (1)N2—C2—C3105.4 (2)
O1i—Co1—N188.37 (8)C7—C2—C3122.2 (2)
O1—Co1—N191.63 (8)C4—C3—N1130.5 (2)
O1i—Co1—N1i91.63 (8)C4—C3—C2120.3 (2)
O1—Co1—N1i88.37 (8)N1—C3—C2109.2 (2)
N1—Co1—N1i180.0C5—C4—C3117.4 (2)
O1i—Co1—O1Wi84.83 (8)C5—C4—H4121.3
O1—Co1—O1Wi95.17 (8)C3—C4—H4121.3
N1—Co1—O1Wi89.43 (8)C4—C5—C6121.8 (3)
N1i—Co1—O1Wi90.57 (8)C4—C5—H5119.1
O1i—Co1—O1W95.17 (8)C6—C5—H5119.1
O1—Co1—O1W84.83 (8)C7—C6—C5121.9 (3)
N1—Co1—O1W90.57 (8)C7—C6—H6119.1
N1i—Co1—O1W89.43 (8)C5—C6—H6119.1
O1Wi—Co1—O1W180.00 (9)C6—C7—C2116.5 (3)
Co1—O1W—H1B117.7C6—C7—H7121.7
Co1—O1W—H1A112.5C2—C7—H7121.7
H1B—O1W—H1A111.6C10—C8—C9120.7 (2)
H2B—O2W—H2A107.9C10—C8—N2119.4 (2)
C11—O1—Co1123.68 (16)C9—C8—N2119.8 (2)
C1—N1—C3105.12 (19)C8—C9—C10ii119.3 (2)
C1—N1—Co1120.75 (16)C8—C9—H9120.3
C3—N1—Co1133.95 (16)C10ii—C9—H9120.3
C1—N2—C2106.57 (19)C8—C10—C9ii119.9 (2)
C1—N2—C8124.6 (2)C8—C10—H10120.0
C2—N2—C8128.7 (2)C9ii—C10—H10120.0
N1—C1—N2113.7 (2)O2—C11—O1126.7 (2)
N1—C1—H1123.2O2—C11—H11116.7
N2—C1—H1123.2O1—C11—H11116.7
N2—C2—C7132.4 (2)
O1i—Co1—O1—C11166 (100)Co1—N1—C3—C46.5 (4)
N1—Co1—O1—C1150.3 (2)C1—N1—C3—C20.2 (3)
N1i—Co1—O1—C11129.7 (2)Co1—N1—C3—C2174.71 (17)
O1Wi—Co1—O1—C1139.3 (2)N2—C2—C3—C4178.4 (2)
O1W—Co1—O1—C11140.7 (2)C7—C2—C3—C40.5 (4)
O1i—Co1—N1—C139.7 (2)N2—C2—C3—N10.5 (3)
O1—Co1—N1—C1140.3 (2)C7—C2—C3—N1179.4 (2)
N1i—Co1—N1—C1178 (100)N1—C3—C4—C5179.6 (3)
O1Wi—Co1—N1—C145.2 (2)C2—C3—C4—C51.0 (4)
O1W—Co1—N1—C1134.8 (2)C3—C4—C5—C60.6 (4)
O1i—Co1—N1—C3134.6 (2)C4—C5—C6—C70.2 (5)
O1—Co1—N1—C345.4 (2)C5—C6—C7—C20.8 (5)
N1i—Co1—N1—C33 (100)N2—C2—C7—C6178.9 (3)
O1Wi—Co1—N1—C3140.6 (2)C3—C2—C7—C60.4 (4)
O1W—Co1—N1—C339.4 (2)C1—N2—C8—C1036.0 (4)
C3—N1—C1—N20.3 (3)C2—N2—C8—C10139.4 (3)
Co1—N1—C1—N2176.00 (16)C1—N2—C8—C9144.2 (3)
C2—N2—C1—N10.6 (3)C2—N2—C8—C940.4 (4)
C8—N2—C1—N1175.6 (2)C10—C8—C9—C10ii0.3 (4)
C1—N2—C2—C7179.3 (3)N2—C8—C9—C10ii179.9 (2)
C8—N2—C2—C73.3 (5)C9—C8—C10—C9ii0.3 (4)
C1—N2—C2—C30.7 (3)N2—C8—C10—C9ii179.9 (2)
C8—N2—C2—C3175.3 (2)Co1—O1—C11—O2168.5 (2)
C1—N1—C3—C4178.6 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2Wiii0.831.942.759 (4)170
O1W—H1B···O2iii0.901.832.691 (4)159
O2W—H2A···O1iv0.982.012.837 (4)141
O2W—H2B···O2v0.881.892.766 (4)170
Symmetry codes: (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(CHO2)2(C20H14N4)(H2O)2]·2H2O
Mr531.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.497 (4), 9.136 (5), 9.443 (7)
α, β, γ (°)78.289 (19), 77.858 (19), 67.72 (2)
V3)579.6 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.839, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
4958, 2012, 1910
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.10
No. of reflections2012
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.46

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.1110 (19)Co1—O1W2.1451 (19)
Co1—N12.136 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2Wi0.831.942.759 (4)170
O1W—H1B···O2i0.901.832.691 (4)159
O2W—H2A···O1ii0.982.012.837 (4)141
O2W—H2B···O2iii0.881.892.766 (4)170
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1.
 

References

First citationLi, Z. X., Chu, X., Cui, G. H., Liu, Y., Li, L. & Xue, G. L. (2011). CrystEngComm, 13, 1984–1989.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds