organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Methyl­benzene­sulfonamido)­phenyl 3-methyl­benzene­sulfonate

aPharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia, bMalaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, SAINS@USM, No. 10, 11900 Persiaran Bukit Jambul, Pulau Pinang, Malaysia, cDepartment of Biological Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 November 2011; accepted 20 December 2011; online 7 January 2012)

The complete mol­ecule of the title compound, C20H19NO5S2, is generated by a crystallographic twofold axis and the O atom and N—H group attached to the central benzene ring are statistically disordered. The dihedral angle between the central and terminal benzene rings is 56.91 (5)° and that between the terminal benzene rings is 29.80 (5)°. In the crystal, N—H⋯O hydrogen bonding links the mol­ecules into sheets lying parallel to the ab plane.

Related literature

For the biological properties of sulfonyl derivatives, see: Supuran et al. (2003[Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.]). For a related structure, see: Sinha et al. (2011[Sinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3275.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO5S2

  • Mr = 417.48

  • Monoclinic, C 2/c

  • a = 14.4352 (1) Å

  • b = 9.1250 (1) Å

  • c = 15.4402 (2) Å

  • β = 109.700 (1)°

  • V = 1914.76 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.41 × 0.34 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.926

  • 21937 measured reflections

  • 3533 independent reflections

  • 3249 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.08

  • 3533 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 1.02 1.97 2.9854 (11) 178
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonyl compounds have attracted our interest and many others, due to their varied biological activities (Sinha et al., 2011). Sulfonyl derivatives are found to be active against inflammation, various viral infections as well as cancer (Supuran et al., 2003).

The asymmetric unit of the title compound consists of half the molecule with the other half of the molecule being generated by a twofold axis. The crystal structure is disordered with the O1 and the N1 atoms attached at the same position with half occupancies each to the central phenyl ring (Fig 1 and Fig 2). All parameters in (I) are within normal ranges. The dihedral angle between C1/C6 and C8—C12/C8a—C12a is 56.91 (5)° whereas the dihedral angle between C1—C6 and C1a—C6a is 29.80 (5)°. In the crystal structure, (Fig. 3), N1—H1···O3i hydrogen bonds (Table 1) link the molecules into infinite layers parallel to ab-plane.

Related literature top

For the biological properties of sulfonyl derivatives, see: Supuran et al. (2003). For a related structure, see: Sinha et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

0.02 mole of m-toluenesulfonyl chloride was added to 0.01 mole of p-aminophenol dissolved in pyridine. The reaction mixture was then neutralized by adding hydrochloric acid. The precipitate formed was dissolved in 5% aqueous sodium hydroxide and the sulfonamide recovered by adding 1:1 hydrochloric acid slowly. Re-crystallization of the product by ethanol gave colourless blocks of the title compound.

Refinement top

N bound H atom is located from a difference Fourier maps and refined using a riding model. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96Å and Uiso(H) = 1.2 or 1.5 Ueq(C-methyl). A rotating group model was applied to the methyl groups. The crystal structure is disordered with N1 and O1 occupying the same phenyl position with refined site of occupancies closed to 0.5. In the final refinement, the ratio was fixed at half occupancy.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A disorder component of the structure with 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The other disorder component of the structure with 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
4-(3-Methylbenzenesulfonamido)phenyl 3-methylbenzenesulfonate top
Crystal data top
C20H19NO5S2F(000) = 872
Mr = 417.48Dx = 1.448 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9887 reflections
a = 14.4352 (1) Åθ = 2.7–32.8°
b = 9.1250 (1) ŵ = 0.31 mm1
c = 15.4402 (2) ÅT = 100 K
β = 109.700 (1)°Block, colourless
V = 1914.76 (4) Å30.41 × 0.34 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3533 independent reflections
Radiation source: fine-focus sealed tube3249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 33.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2219
Tmin = 0.883, Tmax = 0.926k = 1313
21937 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0485P)2 + 1.0937P]
where P = (Fo2 + 2Fc2)/3
3533 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C20H19NO5S2V = 1914.76 (4) Å3
Mr = 417.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.4352 (1) ŵ = 0.31 mm1
b = 9.1250 (1) ÅT = 100 K
c = 15.4402 (2) Å0.41 × 0.34 × 0.25 mm
β = 109.700 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3249 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.926Rint = 0.022
21937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
3533 reflectionsΔρmin = 0.40 e Å3
128 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.261632 (15)0.38804 (2)0.813408 (15)0.01868 (7)
O10.30077 (5)0.33201 (8)0.73257 (5)0.01910 (13)0.50
N10.30077 (5)0.33201 (8)0.73257 (5)0.01910 (13)0.50
H10.27190.23090.71200.023*0.50
O20.15974 (5)0.34770 (9)0.78153 (5)0.02715 (16)
O30.28871 (6)0.53930 (8)0.83108 (6)0.02607 (15)
C10.43833 (8)0.12376 (12)1.06033 (7)0.02529 (19)
H1A0.47720.06781.11160.030*
C20.46090 (8)0.27063 (12)1.05424 (7)0.0268 (2)
H2A0.51450.31401.10120.032*
C30.40519 (7)0.35443 (11)0.97948 (7)0.02235 (17)
H3A0.41950.45520.97500.027*
C40.32808 (6)0.28698 (9)0.91157 (6)0.01695 (15)
C50.30453 (7)0.14007 (10)0.91733 (6)0.01931 (16)
H5A0.25110.09690.87010.023*
C60.35980 (8)0.05647 (10)0.99286 (7)0.02188 (17)
C70.33362 (11)0.10114 (11)1.00160 (9)0.0333 (2)
H7A0.31160.14710.94070.050*
H7B0.28070.10581.02790.050*
H7C0.39150.15311.04190.050*
C80.40253 (6)0.33636 (9)0.74375 (6)0.01551 (14)
C90.45112 (6)0.20366 (9)0.74745 (6)0.01958 (16)
H9A0.41760.11380.74650.023*
C120.45042 (6)0.46948 (9)0.74605 (6)0.01721 (15)
H12A0.41600.55930.74230.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01452 (11)0.02118 (11)0.02237 (11)0.00479 (7)0.00888 (8)0.00390 (7)
O10.0117 (3)0.0267 (3)0.0194 (3)0.0003 (2)0.0059 (2)0.0029 (2)
N10.0117 (3)0.0267 (3)0.0194 (3)0.0003 (2)0.0059 (2)0.0029 (2)
O20.0132 (3)0.0395 (4)0.0301 (4)0.0052 (3)0.0090 (3)0.0047 (3)
O30.0290 (4)0.0177 (3)0.0358 (4)0.0067 (3)0.0166 (3)0.0039 (3)
C10.0242 (4)0.0312 (5)0.0205 (4)0.0031 (4)0.0076 (3)0.0049 (3)
C20.0220 (4)0.0330 (5)0.0220 (4)0.0049 (4)0.0030 (3)0.0008 (4)
C30.0209 (4)0.0220 (4)0.0235 (4)0.0041 (3)0.0066 (3)0.0019 (3)
C40.0160 (3)0.0172 (3)0.0188 (3)0.0010 (3)0.0074 (3)0.0003 (3)
C50.0208 (4)0.0180 (4)0.0201 (4)0.0017 (3)0.0081 (3)0.0016 (3)
C60.0271 (4)0.0196 (4)0.0221 (4)0.0013 (3)0.0125 (3)0.0021 (3)
C70.0497 (7)0.0203 (4)0.0344 (5)0.0012 (4)0.0201 (5)0.0050 (4)
C80.0119 (3)0.0183 (3)0.0161 (3)0.0001 (3)0.0044 (3)0.0026 (3)
C90.0171 (4)0.0143 (3)0.0236 (4)0.0018 (3)0.0019 (3)0.0025 (3)
C120.0149 (3)0.0150 (3)0.0221 (4)0.0011 (3)0.0068 (3)0.0000 (3)
Geometric parameters (Å, º) top
S1—O21.4329 (8)C4—C51.3931 (12)
S1—O31.4354 (8)C5—C61.3969 (13)
S1—O11.6167 (7)C5—H5A0.9500
S1—C41.7572 (9)C6—C71.5046 (14)
O1—C81.4206 (10)C7—H7A0.9800
O1—H11.0188C7—H7B0.9800
C1—C21.3899 (15)C7—H7C0.9800
C1—C61.3968 (15)C8—C91.3909 (12)
C1—H1A0.9500C8—C121.3921 (12)
C2—C31.3922 (14)C9—C9i1.3866 (18)
C2—H2A0.9500C9—H9A0.9500
C3—C41.3894 (13)C12—C12i1.3949 (16)
C3—H3A0.9500C12—H12A0.9500
O2—S1—O3119.64 (5)C4—C5—C6119.72 (9)
O2—S1—O1103.82 (4)C4—C5—H5A120.1
O3—S1—O1107.89 (4)C6—C5—H5A120.1
O2—S1—C4111.11 (4)C1—C6—C5118.30 (9)
O3—S1—C4107.83 (5)C1—C6—C7121.23 (9)
O1—S1—C4105.59 (4)C5—C6—C7120.45 (10)
C8—O1—S1120.90 (6)C6—C7—H7A109.5
C8—O1—H1111.2C6—C7—H7B109.5
S1—O1—H1108.3H7A—C7—H7B109.5
C2—C1—C6121.55 (9)C6—C7—H7C109.5
C2—C1—H1A119.2H7A—C7—H7C109.5
C6—C1—H1A119.2H7B—C7—H7C109.5
C1—C2—C3120.17 (9)C9—C8—C12121.29 (8)
C1—C2—H2A119.9C9—C8—O1117.85 (7)
C3—C2—H2A119.9C12—C8—O1120.78 (8)
C4—C3—C2118.32 (9)C9i—C9—C8119.46 (5)
C4—C3—H3A120.8C9i—C9—H9A120.3
C2—C3—H3A120.8C8—C9—H9A120.3
C3—C4—C5121.92 (8)C8—C12—C12i119.23 (5)
C3—C4—S1118.94 (7)C8—C12—H12A120.4
C5—C4—S1119.08 (7)C12i—C12—H12A120.4
O2—S1—O1—C8172.37 (7)C3—C4—C5—C60.44 (13)
O3—S1—O1—C859.70 (8)S1—C4—C5—C6176.91 (7)
C4—S1—O1—C855.39 (7)C2—C1—C6—C51.03 (15)
C6—C1—C2—C30.35 (16)C2—C1—C6—C7177.82 (10)
C1—C2—C3—C40.71 (15)C4—C5—C6—C10.63 (14)
C2—C3—C4—C51.11 (14)C4—C5—C6—C7178.23 (9)
C2—C3—C4—S1176.24 (8)S1—O1—C8—C9113.82 (8)
O2—S1—C4—C3144.83 (8)S1—O1—C8—C1269.45 (10)
O3—S1—C4—C311.90 (9)C12—C8—C9—C9i0.70 (16)
O1—S1—C4—C3103.24 (8)O1—C8—C9—C9i176.01 (10)
O2—S1—C4—C537.75 (8)C9—C8—C12—C12i1.20 (15)
O3—S1—C4—C5170.68 (7)O1—C8—C12—C12i177.81 (10)
O1—S1—C4—C574.19 (8)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3ii1.021.972.9854 (11)178
Symmetry code: (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H19NO5S2
Mr417.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)14.4352 (1), 9.1250 (1), 15.4402 (2)
β (°) 109.700 (1)
V3)1914.76 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.41 × 0.34 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.883, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
21937, 3533, 3249
Rint0.022
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.08
No. of reflections3533
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i1.021.972.9854 (11)178
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: habibahw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAW gratefully acknowledges the Malaysian Ministry of Science, Technology and Innovation for the synthesis work funded by grant Nos. 311/IFN/69230112 and 304/PFARMASI/650545/I121. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds