organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis[(2-meth­­oxy­eth­­oxy)meth­yl]-1,5-naphthyridine-4,8(1H,5H)-dione

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 2 December 2011; accepted 19 December 2011; online 7 January 2012)

The complete mol­ecule of the title compound, C16H22N2O6, is generated by crystallographic inversion symmetry. The conformation of the N—C—O—C fragment of the side chain is approximately gauche [torsion angle = −74.84 (17)°]. In the crystal, weak C—H⋯O inter­actions link the mol­ecules.

Related literature

The background to the applications of the title compound, see: Shan et al. (2005[Shan, J., Yap, G. P. A. & Richeson, D. S. (2005). Can. J. Chem. 83, 958-968.]). For the synthesis, see: Toshihiro et al. (2002[Toshihiro, T., Takashi, T. & Aoyama, Y. (2002). J. Am. Chem. Soc. 124, 12453-12462.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22N2O6

  • Mr = 338.36

  • Monoclinic, P 21 /n

  • a = 7.1610 (14) Å

  • b = 11.497 (2) Å

  • c = 10.734 (2) Å

  • β = 105.45 (3)°

  • V = 851.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 3261 measured reflections

  • 1549 independent reflections

  • 1246 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.01

  • 1549 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.45 3.264 (2) 147
C6—H6A⋯O1ii 0.93 2.58 3.397 (2) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Express. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

The background to the applications of the title compound, see: Shan et al. (2005). For the synthesis, see: Toshihiro et al. (2002). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by a method reported in literature (Toshihiro et al., 2002). Colourless blocks were obtained by dissolving it (0.5 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 30 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
1,5-Bis[(2-methoxyethoxy)methyl]-1,5-naphthyridine- 4,8(1H,5H)-dione top
Crystal data top
C16H22N2O6F(000) = 360
Mr = 338.36Dx = 1.319 Mg m3
Monoclinic, P21/nMelting point: 365 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.1610 (14) ÅCell parameters from 25 reflections
b = 11.497 (2) Åθ = 9–13°
c = 10.734 (2) ŵ = 0.10 mm1
β = 105.45 (3)°T = 293 K
V = 851.8 (3) Å3Block, colourless
Z = 20.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.3°, θmin = 2.7°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.970, Tmax = 0.990l = 1212
3261 measured reflections3 standard reflections every 200 reflections
1549 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.1P)2 + 0.026P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1549 reflectionsΔρmax = 0.24 e Å3
110 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.30 (2)
Crystal data top
C16H22N2O6V = 851.8 (3) Å3
Mr = 338.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.1610 (14) ŵ = 0.10 mm1
b = 11.497 (2) ÅT = 293 K
c = 10.734 (2) Å0.30 × 0.20 × 0.10 mm
β = 105.45 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1246 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.970, Tmax = 0.9903 standard reflections every 200 reflections
3261 measured reflections intensity decay: 1%
1549 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
1549 reflectionsΔρmin = 0.17 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03696 (18)0.64646 (11)0.57178 (12)0.0421 (4)
O10.25472 (18)1.00854 (10)0.36603 (13)0.0584 (4)
C10.2858 (3)1.0712 (2)0.2607 (2)0.0781 (7)
H1A0.23891.14920.26230.117*
H1B0.21771.03410.18150.117*
H1C0.42191.07290.26650.117*
O20.06007 (17)0.80910 (9)0.43882 (11)0.0532 (4)
C50.1950 (2)0.62630 (14)0.67339 (15)0.0479 (5)
H5A0.24370.68750.72920.057*
C20.3185 (3)0.89321 (17)0.3692 (2)0.0658 (6)
H2B0.45810.89170.38360.079*
H2C0.26030.85600.28690.079*
C30.2645 (3)0.82888 (15)0.4743 (2)0.0639 (6)
H3A0.33250.75510.48900.077*
H3B0.30140.87360.55370.077*
O30.32189 (18)0.33513 (10)0.62397 (14)0.0672 (5)
C40.0118 (2)0.77036 (13)0.54011 (17)0.0494 (5)
H4A0.15140.77970.51650.059*
H4B0.04190.81770.61600.059*
C60.2837 (2)0.52236 (14)0.69674 (16)0.0489 (5)
H6A0.38600.51320.77040.059*
C70.2259 (2)0.42641 (13)0.61247 (15)0.0449 (4)
C80.0437 (2)0.44520 (12)0.50952 (13)0.0380 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0493 (7)0.0351 (7)0.0376 (7)0.0011 (5)0.0041 (5)0.0016 (5)
O10.0678 (8)0.0436 (7)0.0690 (9)0.0043 (5)0.0273 (7)0.0064 (5)
C10.0727 (13)0.0781 (15)0.0928 (16)0.0075 (11)0.0385 (12)0.0289 (12)
O20.0602 (8)0.0402 (6)0.0513 (7)0.0052 (5)0.0012 (6)0.0059 (5)
C50.0557 (9)0.0440 (9)0.0374 (9)0.0068 (7)0.0009 (7)0.0030 (6)
C20.0697 (11)0.0493 (11)0.0836 (14)0.0087 (9)0.0291 (10)0.0052 (9)
C30.0577 (11)0.0523 (11)0.0756 (13)0.0029 (8)0.0071 (9)0.0127 (9)
O30.0602 (8)0.0429 (7)0.0812 (10)0.0086 (5)0.0114 (7)0.0018 (6)
C40.0565 (9)0.0341 (8)0.0532 (10)0.0014 (7)0.0066 (7)0.0044 (7)
C60.0490 (9)0.0464 (9)0.0413 (9)0.0051 (7)0.0054 (7)0.0051 (7)
C70.0459 (9)0.0396 (8)0.0446 (9)0.0003 (7)0.0040 (7)0.0083 (7)
C80.0442 (8)0.0341 (8)0.0346 (8)0.0035 (6)0.0086 (6)0.0034 (6)
Geometric parameters (Å, º) top
N1—C51.366 (2)C2—H2B0.9700
N1—C8i1.3919 (19)C2—H2C0.9700
N1—C41.4843 (19)C3—H3A0.9700
O1—C21.400 (2)C3—H3B0.9700
O1—C11.407 (2)O3—C71.2426 (18)
C1—H1A0.9600C4—H4A0.9700
C1—H1B0.9600C4—H4B0.9700
C1—H1C0.9600C6—C71.417 (2)
O2—C41.394 (2)C6—H6A0.9300
O2—C31.429 (2)C7—C81.484 (2)
C5—C61.345 (2)C8—N1i1.3919 (19)
C5—H5A0.9300C8—C8i1.398 (3)
C2—C31.484 (3)
C5—N1—C8i119.30 (13)O2—C3—H3A109.8
C5—N1—C4116.10 (13)C2—C3—H3A109.8
C8i—N1—C4123.37 (13)O2—C3—H3B109.8
C2—O1—C1112.60 (16)C2—C3—H3B109.8
O1—C1—H1A109.5H3A—C3—H3B108.2
O1—C1—H1B109.5O2—C4—N1111.85 (13)
H1A—C1—H1B109.5O2—C4—H4A109.2
O1—C1—H1C109.5N1—C4—H4A109.2
H1A—C1—H1C109.5O2—C4—H4B109.2
H1B—C1—H1C109.5N1—C4—H4B109.2
C4—O2—C3114.06 (14)H4A—C4—H4B107.9
C6—C5—N1123.30 (15)C5—C6—C7121.98 (14)
C6—C5—H5A118.3C5—C6—H6A119.0
N1—C5—H5A118.3C7—C6—H6A119.0
O1—C2—C3109.96 (17)O3—C7—C6122.30 (14)
O1—C2—H2B109.7O3—C7—C8123.39 (14)
C3—C2—H2B109.7C6—C7—C8114.30 (13)
O1—C2—H2C109.7N1i—C8—C8i119.73 (16)
C3—C2—H2C109.7N1i—C8—C7119.50 (13)
H2B—C2—H2C108.2C8i—C8—C7120.73 (16)
O2—C3—C2109.45 (16)
C8i—N1—C5—C62.9 (3)N1—C5—C6—C73.7 (3)
C4—N1—C5—C6164.78 (16)C5—C6—C7—O3170.47 (16)
C1—O1—C2—C3174.45 (17)C5—C6—C7—C88.8 (2)
C4—O2—C3—C2167.81 (14)O3—C7—C8—N1i6.6 (2)
O1—C2—C3—O272.0 (2)C6—C7—C8—N1i174.16 (14)
C3—O2—C4—N174.84 (17)O3—C7—C8—C8i171.19 (18)
C5—N1—C4—O297.84 (16)C6—C7—C8—C8i8.1 (2)
C8i—N1—C4—O269.31 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3ii0.932.453.264 (2)147
C6—H6A···O1iii0.932.583.397 (2)147
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H22N2O6
Mr338.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.1610 (14), 11.497 (2), 10.734 (2)
β (°) 105.45 (3)
V3)851.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3261, 1549, 1246
Rint0.047
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.01
No. of reflections1549
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.453.264 (2)147
C6—H6A···O1ii0.932.583.397 (2)147
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Express. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShan, J., Yap, G. P. A. & Richeson, D. S. (2005). Can. J. Chem. 83, 958–968.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToshihiro, T., Takashi, T. & Aoyama, Y. (2002). J. Am. Chem. Soc. 124, 12453–12462.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds