organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-4-Di­ethyl­amino-2-hy­dr­oxy­benzyl­­idene]hydrazinecarboxamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa-Israel
*Correspondence e-mail: hkfun@usm.my

(Received 16 December 2011; accepted 4 January 2012; online 14 January 2012)

Two mol­ecules make up the asymmetric unit of the title compound, C12H18N4O2, and both feature an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring. The diethyl­amino group of one of the mol­ecules is disordered over two sets of sites in a 0.59 (2):0.41 (2) ratio. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into sheets lying parallel to the ac plane and C—H⋯π inter­actions are also observed.

Related literature

For a related structure and background references to semicarbazides and semicarbazones, see: Fun et al. (2011[Fun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2885-o2886.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18N4O2

  • Mr = 250.30

  • Triclinic, [P \overline 1]

  • a = 8.794 (2) Å

  • b = 12.532 (3) Å

  • c = 14.292 (5) Å

  • α = 112.911 (7)°

  • β = 96.033 (7)°

  • γ = 107.296 (5)°

  • V = 1340.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.12 × 0.03 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.998

  • 15373 measured reflections

  • 4567 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.220

  • S = 1.00

  • 4567 reflections

  • 378 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1B–C6B benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1O1⋯N2A 0.87 1.79 2.608 (4) 157
O1B—H2O1⋯N2B 0.87 1.91 2.654 (5) 142
N3A—H1N3⋯O2Ai 0.95 1.90 2.832 (4) 168
N3B—H2N3⋯O2Bii 0.99 1.87 2.837 (4) 168
N4A—H1N4⋯O1B 0.79 2.40 3.077 (5) 144
N4A—H2N4⋯O2Biii 0.90 2.01 2.901 (5) 172
N4B—H3N4⋯O2Aiv 0.78 2.14 2.911 (5) 167
N4B—H4N4⋯O1A 0.89 2.20 2.962 (5) 144
C9A—H9ABCg1v 0.97 2.83 3.733 (19) 156
C10X—H10FCg1v 0.96 2.71 3.46 (3) 136
Symmetry codes: (i) -x, -y, -z; (ii) -x+2, -y, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of semicarbazides (Fun et al., 2011), we now describe the structure of the title compound, (I).

The asymmetric unit of (I) consists of two crystallographically independent molecules A and B as shown in Fig. 1. The diethylamino group (N1/C9–C12) in the molecule A is observed to be disordered over two positions with a site-occupancy ratio of 0.59 (2): 0.41 (2). The intramolecular O1A—H1O1···N2A and O1B—H2O1···N2B hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995) in both molecules. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), N3A—H1N3···O2A, N3B—H2N3···O2B, N4B—H3N4···O2A, N4A—H2N4···O2B, N4A—H1N4···O1B and N4B—H4N4···O1A hydrogen bonds (Table 1) link the molecules into two-dimensional network parallel to the ac plane. The crystal structure is further consolidated by C—H···π interactions, involving the centroid of the benzene ring (C1B–C6B; Cg1; Table 1).

Related literature top

For a related structure and background references to semicarbazides and semicarbazones, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987).

Experimental top

Semicarbazide hydrochloride (0.86 g, 7.70 mmol) and freshly recrystallized sodium acetate (0.77 g, 9.40 mmol) were dissolved in water (10 ml). The reaction mixture was stirred at room temperature for 10 minutes. To this, N,N-diethylaminosalicylaldehyde (1.396 g, 7.23 mmol) was added and the mixture was shaken well. A little alcohol was added to dissolve the turbidity. The mixture was shaken for a further 10 minutes and allowed to stand. The title compound crystallizes out on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from ethanol. Yield: 1.4 g, 77.43%. M.p. 508–510 K.

Refinement top

All N and O bound H atoms were located from the difference map and were fixed at their found positions with Uiso(H) = 1.2 Ueq(N) and 1.5 Ueq(O). [N–H = 0.7896–0.9855 Å and O–H = 0.8662 and 0.8740 Å]. The hydrogen atoms bounded to C atoms were positioned geometrically [C–H = 0.93, 0.96, and 0.97 Å] with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The diethylamino group in one molecule was modelled as disordered over two sets of sites in a 0.59 (2): 0.41 (2) ratio.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing two crystallographically independent molecules with 30% probability displacement ellipsoids. Intramolecular hydrogen bonds and minor component of disorder are shown as dashed line and open bonds, respectively.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a two-dimensional network parallel to the ac plane. Intermolecular hydrogen bonds are shown as dashed lines.
2-[(E)-4-Diethylamino-2-hydroxybenzylidene]hydrazinecarboxamide top
Crystal data top
C12H18N4O2Z = 4
Mr = 250.30F(000) = 536
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.794 (2) ÅCell parameters from 1473 reflections
b = 12.532 (3) Åθ = 2.5–21.7°
c = 14.292 (5) ŵ = 0.09 mm1
α = 112.911 (7)°T = 296 K
β = 96.033 (7)°Plate, colourless
γ = 107.296 (5)°0.35 × 0.12 × 0.03 mm
V = 1340.8 (7) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
4567 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.970, Tmax = 0.998k = 1414
15373 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1117P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4567 reflectionsΔρmax = 0.37 e Å3
378 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (5)
Crystal data top
C12H18N4O2γ = 107.296 (5)°
Mr = 250.30V = 1340.8 (7) Å3
Triclinic, P1Z = 4
a = 8.794 (2) ÅMo Kα radiation
b = 12.532 (3) ŵ = 0.09 mm1
c = 14.292 (5) ÅT = 296 K
α = 112.911 (7)°0.35 × 0.12 × 0.03 mm
β = 96.033 (7)°
Data collection top
Bruker APEX DUO CCD
diffractometer
4567 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2179 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.998Rint = 0.082
15373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
4567 reflectionsΔρmin = 0.23 e Å3
378 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.6655 (3)0.1779 (3)0.2307 (2)0.0701 (8)
H1O10.56060.14870.20320.105*
O2A0.0328 (3)0.0381 (2)0.10768 (18)0.0570 (7)
N1A1.139 (2)0.3932 (17)0.1487 (15)0.071 (4)0.59 (2)
C9A1.2352 (15)0.4443 (17)0.2568 (12)0.069 (4)0.59 (2)
H9AA1.16340.46060.30320.082*0.59 (2)
H9AB1.32020.52370.27350.082*0.59 (2)
C10A1.3145 (18)0.3656 (12)0.2799 (14)0.091 (4)0.59 (2)
H10A1.35910.40070.35420.136*0.59 (2)
H10B1.40140.36170.24480.136*0.59 (2)
H10C1.23450.28300.25560.136*0.59 (2)
C11A1.2166 (18)0.4446 (19)0.0825 (13)0.089 (5)0.59 (2)
H11A1.30220.52530.12710.107*0.59 (2)
H11B1.13500.45770.04150.107*0.59 (2)
C12A1.290 (2)0.3647 (14)0.0100 (13)0.112 (5)0.59 (2)
H12A1.33120.40130.03440.169*0.59 (2)
H12B1.20700.28330.03250.169*0.59 (2)
H12C1.37800.35790.04990.169*0.59 (2)
N1X1.137 (4)0.338 (2)0.126 (3)0.082 (7)0.41 (2)
C9X1.248 (2)0.355 (2)0.2198 (17)0.082 (6)0.41 (2)
H9XA1.35680.36440.20790.098*0.41 (2)
H9XB1.20820.28280.23280.098*0.41 (2)
C10X1.258 (3)0.469 (2)0.313 (2)0.102 (7)0.41 (2)
H10D1.32590.47640.37460.153*0.41 (2)
H10E1.14990.46160.32300.153*0.41 (2)
H10F1.30550.54140.30260.153*0.41 (2)
C11X1.230 (2)0.372 (2)0.0587 (18)0.079 (6)0.41 (2)
H11C1.17540.30830.01260.095*0.41 (2)
H11D1.33670.36620.07560.095*0.41 (2)
C12X1.262 (3)0.496 (2)0.0576 (17)0.110 (7)0.41 (2)
H12D1.31440.49830.00240.166*0.41 (2)
H12E1.33310.56080.12380.166*0.41 (2)
H12F1.16000.50700.04600.166*0.41 (2)
N2A0.3762 (3)0.1003 (3)0.1066 (2)0.0506 (8)
N3A0.2069 (3)0.0468 (3)0.0751 (2)0.0549 (8)
H1N30.14780.03260.00950.066*
N4A0.2015 (4)0.0214 (3)0.2272 (3)0.0679 (10)
H1N40.29620.06310.24880.081*
H2N40.14360.00010.26950.081*
C1A0.7295 (4)0.2133 (3)0.1602 (3)0.0518 (10)
C2A0.8972 (4)0.2705 (4)0.1830 (3)0.0627 (11)
H2AA0.96170.28380.24530.075*
C3A0.9731 (5)0.3092 (4)0.1144 (3)0.0661 (12)
C4A0.8712 (5)0.2833 (4)0.0200 (3)0.0695 (12)
H4AA0.91740.30530.02860.083*
C5A0.7041 (5)0.2256 (4)0.0015 (3)0.0612 (11)
H5AA0.64010.20990.06500.073*
C6A0.6255 (4)0.1896 (3)0.0660 (3)0.0456 (9)
C7A0.4491 (4)0.1316 (3)0.0425 (3)0.0512 (9)
H7AA0.38590.11620.02100.061*
C8A0.1193 (5)0.0088 (3)0.1376 (3)0.0509 (9)
O1B0.5150 (3)0.1937 (3)0.4058 (2)0.0696 (8)
H2O10.60210.17370.40430.104*
O2B1.0082 (3)0.0267 (2)0.36887 (19)0.0561 (7)
N1B0.2108 (5)0.3598 (4)0.6416 (3)0.0821 (12)
N2B0.7297 (3)0.1094 (3)0.4683 (2)0.0492 (8)
N3B0.8512 (4)0.0593 (3)0.4610 (2)0.0528 (8)
H2N30.88530.04670.52260.063*
N4B0.8368 (4)0.0353 (3)0.2920 (3)0.0699 (10)
H3N40.85930.00560.23890.084*
H4N40.77390.08060.30030.084*
C1B0.4775 (4)0.2152 (3)0.4999 (3)0.0496 (9)
C2B0.3629 (5)0.2704 (4)0.5218 (3)0.0606 (11)
H2BA0.31420.28930.47230.073*
C3B0.3186 (5)0.2987 (4)0.6184 (3)0.0578 (10)
C4B0.3893 (5)0.2639 (4)0.6874 (3)0.0580 (11)
H4BA0.35990.27830.75060.070*
C5B0.5022 (5)0.2086 (3)0.6638 (3)0.0525 (10)
H5BA0.54650.18610.71200.063*
C6B0.5538 (4)0.1842 (3)0.5718 (3)0.0446 (9)
C7B0.6773 (4)0.1298 (3)0.5521 (3)0.0495 (9)
H7BA0.72060.10860.60160.059*
C8B0.9039 (5)0.0206 (4)0.3727 (3)0.0517 (9)
C9B0.1244 (7)0.3852 (6)0.5621 (5)0.0962 (17)
H9BA0.10350.31870.49260.115*
H9BB0.01940.38790.57560.115*
C10B0.2252 (8)0.5042 (6)0.5667 (5)0.122 (2)
H10G0.17410.51600.51060.183*
H10H0.33250.50400.55980.183*
H10I0.23520.57090.63280.183*
C11B0.1968 (6)0.4216 (5)0.7525 (4)0.0918 (16)
H11E0.29210.43220.80090.110*
H11F0.19450.50340.76750.110*
C12B0.0490 (7)0.3475 (5)0.7673 (5)0.1114 (19)
H12G0.03020.39560.83290.167*
H12H0.06180.27420.76790.167*
H12I0.04300.32340.71110.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0498 (16)0.119 (2)0.0724 (19)0.0315 (15)0.0236 (14)0.0708 (18)
O2A0.0424 (15)0.0861 (19)0.0444 (15)0.0184 (13)0.0128 (12)0.0342 (14)
N1A0.043 (5)0.092 (10)0.066 (7)0.007 (7)0.010 (4)0.048 (8)
C9A0.051 (6)0.079 (9)0.055 (8)0.006 (5)0.003 (6)0.026 (8)
C10A0.096 (8)0.096 (8)0.080 (9)0.049 (6)0.010 (7)0.031 (7)
C11A0.062 (7)0.101 (13)0.099 (10)0.017 (8)0.020 (6)0.050 (10)
C12A0.099 (9)0.158 (12)0.109 (10)0.059 (8)0.049 (7)0.074 (9)
N1X0.061 (9)0.095 (16)0.098 (16)0.012 (13)0.022 (10)0.062 (15)
C9X0.052 (10)0.095 (12)0.078 (14)0.009 (8)0.019 (9)0.031 (11)
C10X0.100 (13)0.088 (13)0.086 (15)0.003 (10)0.009 (12)0.033 (14)
C11X0.056 (9)0.117 (16)0.087 (14)0.027 (10)0.041 (8)0.065 (13)
C12X0.115 (14)0.092 (15)0.096 (13)0.002 (11)0.008 (10)0.050 (10)
N2A0.0417 (17)0.063 (2)0.053 (2)0.0194 (14)0.0159 (15)0.0309 (16)
N3A0.0400 (17)0.081 (2)0.0468 (19)0.0167 (15)0.0135 (14)0.0355 (17)
N4A0.0446 (18)0.109 (3)0.057 (2)0.0194 (18)0.0134 (16)0.050 (2)
C1A0.049 (2)0.069 (3)0.058 (3)0.0273 (19)0.0218 (19)0.042 (2)
C2A0.044 (2)0.094 (3)0.064 (3)0.022 (2)0.014 (2)0.051 (2)
C3A0.044 (2)0.095 (3)0.068 (3)0.017 (2)0.019 (2)0.050 (3)
C4A0.059 (3)0.091 (3)0.062 (3)0.017 (2)0.025 (2)0.042 (2)
C5A0.054 (2)0.084 (3)0.047 (2)0.016 (2)0.0153 (19)0.037 (2)
C6A0.041 (2)0.060 (2)0.043 (2)0.0175 (17)0.0136 (16)0.0292 (18)
C7A0.053 (2)0.066 (2)0.040 (2)0.0213 (19)0.0141 (18)0.0277 (19)
C8A0.051 (2)0.064 (2)0.039 (2)0.0183 (19)0.0141 (18)0.0258 (18)
O1B0.0695 (18)0.114 (2)0.0463 (17)0.0531 (17)0.0241 (14)0.0401 (16)
O2B0.0627 (16)0.0853 (19)0.0542 (16)0.0473 (15)0.0307 (13)0.0453 (14)
N1B0.095 (3)0.126 (3)0.074 (3)0.080 (3)0.047 (2)0.057 (2)
N2B0.0505 (18)0.065 (2)0.0472 (19)0.0304 (16)0.0174 (15)0.0310 (16)
N3B0.0597 (19)0.077 (2)0.0467 (19)0.0416 (17)0.0217 (15)0.0378 (16)
N4B0.085 (2)0.121 (3)0.050 (2)0.070 (2)0.0355 (18)0.055 (2)
C1B0.047 (2)0.067 (2)0.037 (2)0.0248 (19)0.0114 (17)0.0225 (19)
C2B0.060 (2)0.085 (3)0.051 (2)0.038 (2)0.017 (2)0.036 (2)
C3B0.057 (2)0.069 (3)0.058 (3)0.034 (2)0.025 (2)0.028 (2)
C4B0.059 (2)0.073 (3)0.055 (3)0.031 (2)0.027 (2)0.032 (2)
C5B0.060 (2)0.065 (2)0.042 (2)0.023 (2)0.0192 (18)0.0322 (19)
C6B0.044 (2)0.050 (2)0.039 (2)0.0169 (17)0.0096 (16)0.0198 (17)
C7B0.049 (2)0.058 (2)0.046 (2)0.0223 (18)0.0116 (18)0.0255 (19)
C8B0.057 (2)0.069 (3)0.046 (2)0.030 (2)0.0189 (19)0.036 (2)
C9B0.100 (4)0.128 (5)0.113 (5)0.075 (4)0.060 (4)0.073 (4)
C10B0.141 (5)0.137 (5)0.110 (5)0.067 (5)0.046 (4)0.059 (4)
C11B0.090 (4)0.121 (4)0.114 (4)0.070 (3)0.062 (3)0.069 (4)
C12B0.110 (5)0.130 (5)0.100 (4)0.049 (4)0.041 (4)0.049 (4)
Geometric parameters (Å, º) top
O1A—C1A1.360 (4)C3A—C4A1.400 (6)
O1A—H1O10.8662C4A—C5A1.371 (5)
O2A—C8A1.239 (4)C4A—H4AA0.9300
N1A—C3A1.418 (19)C5A—C6A1.381 (5)
N1A—C11A1.46 (3)C5A—H5AA0.9300
N1A—C9A1.46 (2)C6A—C7A1.442 (5)
C9A—C10A1.48 (3)C7A—H7AA0.9300
C9A—H9AA0.9700O1B—C1B1.361 (4)
C9A—H9AB0.9700O1B—H2O10.8740
C10A—H10A0.9600O2B—C8B1.227 (4)
C10A—H10B0.9600N1B—C3B1.376 (5)
C10A—H10C0.9600N1B—C9B1.487 (6)
C11A—C12A1.49 (2)N1B—C11B1.506 (6)
C11A—H11A0.9700N2B—C7B1.288 (4)
C11A—H11B0.9700N2B—N3B1.385 (4)
C12A—H12A0.9600N3B—C8B1.350 (5)
C12A—H12B0.9600N3B—H2N30.9855
C12A—H12C0.9600N4B—C8B1.340 (4)
N1X—C3A1.35 (3)N4B—H3N40.7808
N1X—C11X1.44 (4)N4B—H4N40.8898
N1X—C9X1.47 (4)C1B—C2B1.381 (5)
C9X—C10X1.50 (4)C1B—C6B1.406 (5)
C9X—H9XA0.9700C2B—C3B1.414 (5)
C9X—H9XB0.9700C2B—H2BA0.9300
C10X—H10D0.9600C3B—C4B1.385 (5)
C10X—H10E0.9600C4B—C5B1.371 (5)
C10X—H10F0.9600C4B—H4BA0.9300
C11X—C12X1.50 (3)C5B—C6B1.387 (5)
C11X—H11C0.9700C5B—H5BA0.9300
C11X—H11D0.9700C6B—C7B1.442 (5)
C12X—H12D0.9600C7B—H7BA0.9300
C12X—H12E0.9600C9B—C10B1.464 (7)
C12X—H12F0.9600C9B—H9BA0.9700
N2A—C7A1.287 (4)C9B—H9BB0.9700
N2A—N3A1.378 (4)C10B—H10G0.9600
N3A—C8A1.369 (4)C10B—H10H0.9600
N3A—H1N30.9445C10B—H10I0.9600
N4A—C8A1.330 (5)C11B—C12B1.446 (7)
N4A—H1N40.7896C11B—H11E0.9700
N4A—H2N40.8989C11B—H11F0.9700
C1A—C2A1.373 (5)C12B—H12G0.9600
C1A—C6A1.415 (5)C12B—H12H0.9600
C2A—C3A1.399 (5)C12B—H12I0.9600
C2A—H2AA0.9300
C1A—O1A—H1O1102.4C5A—C6A—C7A122.3 (3)
C3A—N1A—C11A121.8 (15)C1A—C6A—C7A122.0 (3)
C3A—N1A—C9A121.6 (15)N2A—C7A—C6A122.1 (3)
C11A—N1A—C9A116.2 (14)N2A—C7A—H7AA118.9
N1A—C9A—C10A116 (2)C6A—C7A—H7AA118.9
N1A—C9A—H9AA108.3O2A—C8A—N4A122.5 (3)
C10A—C9A—H9AA108.3O2A—C8A—N3A119.0 (3)
N1A—C9A—H9AB108.3N4A—C8A—N3A118.5 (3)
C10A—C9A—H9AB108.3C1B—O1B—H2O1110.1
H9AA—C9A—H9AB107.4C3B—N1B—C9B121.2 (4)
N1A—C11A—C12A114 (2)C3B—N1B—C11B121.1 (4)
N1A—C11A—H11A108.7C9B—N1B—C11B117.0 (4)
C12A—C11A—H11A108.7C7B—N2B—N3B116.0 (3)
N1A—C11A—H11B108.7C8B—N3B—N2B122.0 (3)
C12A—C11A—H11B108.7C8B—N3B—H2N3124.0
H11A—C11A—H11B107.6N2B—N3B—H2N3113.6
C3A—N1X—C11X126 (3)C8B—N4B—H3N4117.2
C3A—N1X—C9X124 (2)C8B—N4B—H4N4120.9
C11X—N1X—C9X110 (2)H3N4—N4B—H4N4121.8
N1X—C9X—C10X110 (3)O1B—C1B—C2B116.7 (3)
N1X—C9X—H9XA109.6O1B—C1B—C6B121.5 (3)
C10X—C9X—H9XA109.6C2B—C1B—C6B121.8 (3)
N1X—C9X—H9XB109.6C1B—C2B—C3B120.8 (4)
C10X—C9X—H9XB109.6C1B—C2B—H2BA119.6
H9XA—C9X—H9XB108.1C3B—C2B—H2BA119.6
C9X—C10X—H10D109.5N1B—C3B—C4B122.4 (4)
C9X—C10X—H10E109.5N1B—C3B—C2B120.3 (4)
H10D—C10X—H10E109.5C4B—C3B—C2B117.3 (4)
C9X—C10X—H10F109.5C5B—C4B—C3B120.8 (4)
H10D—C10X—H10F109.5C5B—C4B—H4BA119.6
H10E—C10X—H10F109.5C3B—C4B—H4BA119.6
N1X—C11X—C12X121 (3)C4B—C5B—C6B123.5 (4)
N1X—C11X—H11C107.1C4B—C5B—H5BA118.3
C12X—C11X—H11C107.1C6B—C5B—H5BA118.3
N1X—C11X—H11D107.1C5B—C6B—C1B115.8 (3)
C12X—C11X—H11D107.1C5B—C6B—C7B121.4 (3)
H11C—C11X—H11D106.8C1B—C6B—C7B122.8 (3)
C11X—C12X—H12D109.5N2B—C7B—C6B122.3 (3)
C11X—C12X—H12E109.5N2B—C7B—H7BA118.9
H12D—C12X—H12E109.5C6B—C7B—H7BA118.9
C11X—C12X—H12F109.5O2B—C8B—N4B123.1 (4)
H12D—C12X—H12F109.5O2B—C8B—N3B119.6 (3)
H12E—C12X—H12F109.5N4B—C8B—N3B117.4 (3)
C7A—N2A—N3A116.3 (3)C10B—C9B—N1B109.9 (5)
C8A—N3A—N2A120.3 (3)C10B—C9B—H9BA109.7
C8A—N3A—H1N3117.9N1B—C9B—H9BA109.7
N2A—N3A—H1N3121.8C10B—C9B—H9BB109.7
C8A—N4A—H1N4119.2N1B—C9B—H9BB109.7
C8A—N4A—H2N4118.2H9BA—C9B—H9BB108.2
H1N4—N4A—H2N4120.5C9B—C10B—H10G109.5
O1A—C1A—C2A117.6 (3)C9B—C10B—H10H109.5
O1A—C1A—C6A120.6 (3)H10G—C10B—H10H109.5
C2A—C1A—C6A121.8 (3)C9B—C10B—H10I109.5
C1A—C2A—C3A121.3 (4)H10G—C10B—H10I109.5
C1A—C2A—H2AA119.3H10H—C10B—H10I109.5
C3A—C2A—H2AA119.3C12B—C11B—N1B110.8 (5)
N1X—C3A—C2A119.4 (14)C12B—C11B—H11E109.5
N1X—C3A—C4A121.0 (15)N1B—C11B—H11E109.5
C2A—C3A—C4A117.1 (4)C12B—C11B—H11F109.5
C2A—C3A—N1A120.6 (9)N1B—C11B—H11F109.5
C4A—C3A—N1A121.0 (9)H11E—C11B—H11F108.1
C5A—C4A—C3A120.6 (4)C11B—C12B—H12G109.5
C5A—C4A—H4AA119.7C11B—C12B—H12H109.5
C3A—C4A—H4AA119.7H12G—C12B—H12H109.5
C4A—C5A—C6A123.5 (4)C11B—C12B—H12I109.5
C4A—C5A—H5AA118.3H12G—C12B—H12I109.5
C6A—C5A—H5AA118.3H12H—C12B—H12I109.5
C5A—C6A—C1A115.7 (3)
C3A—N1A—C9A—C10A84.1 (19)O1A—C1A—C6A—C7A2.3 (6)
C11A—N1A—C9A—C10A102.9 (19)C2A—C1A—C6A—C7A178.9 (3)
C3A—N1A—C11A—C12A86.4 (19)N3A—N2A—C7A—C6A179.3 (3)
C9A—N1A—C11A—C12A101 (2)C5A—C6A—C7A—N2A178.6 (4)
C3A—N1X—C9X—C10X67 (3)C1A—C6A—C7A—N2A1.3 (6)
C11X—N1X—C9X—C10X106 (2)N2A—N3A—C8A—O2A179.5 (3)
C3A—N1X—C11X—C12X71 (3)N2A—N3A—C8A—N4A2.0 (5)
C9X—N1X—C11X—C12X101 (3)C7B—N2B—N3B—C8B172.5 (3)
C7A—N2A—N3A—C8A179.0 (3)O1B—C1B—C2B—C3B178.7 (3)
O1A—C1A—C2A—C3A179.6 (4)C6B—C1B—C2B—C3B0.4 (6)
C6A—C1A—C2A—C3A0.7 (6)C9B—N1B—C3B—C4B174.0 (4)
C11X—N1X—C3A—C2A176 (2)C11B—N1B—C3B—C4B16.0 (7)
C9X—N1X—C3A—C2A13 (3)C9B—N1B—C3B—C2B6.8 (7)
C11X—N1X—C3A—C4A15 (3)C11B—N1B—C3B—C2B163.2 (4)
C9X—N1X—C3A—C4A174.7 (18)C1B—C2B—C3B—N1B176.5 (4)
C11X—N1X—C3A—N1A84 (5)C1B—C2B—C3B—C4B2.7 (6)
C9X—N1X—C3A—N1A87 (5)N1B—C3B—C4B—C5B176.8 (4)
C1A—C2A—C3A—N1X164.5 (14)C2B—C3B—C4B—C5B2.4 (6)
C1A—C2A—C3A—C4A2.2 (7)C3B—C4B—C5B—C6B0.3 (6)
C1A—C2A—C3A—N1A164.9 (10)C4B—C5B—C6B—C1B2.6 (5)
C11A—N1A—C3A—N1X91 (5)C4B—C5B—C6B—C7B177.8 (3)
C9A—N1A—C3A—N1X97 (5)O1B—C1B—C6B—C5B178.7 (3)
C11A—N1A—C3A—C2A174.0 (15)C2B—C1B—C6B—C5B2.3 (5)
C9A—N1A—C3A—C2A1 (2)O1B—C1B—C6B—C7B0.8 (5)
C11A—N1A—C3A—C4A7 (2)C2B—C1B—C6B—C7B178.2 (3)
C9A—N1A—C3A—C4A165.2 (13)N3B—N2B—C7B—C6B178.5 (3)
N1X—C3A—C4A—C5A163.9 (14)C5B—C6B—C7B—N2B178.2 (3)
C2A—C3A—C4A—C5A1.9 (7)C1B—C6B—C7B—N2B2.2 (5)
N1A—C3A—C4A—C5A165.2 (10)N2B—N3B—C8B—O2B177.7 (3)
C3A—C4A—C5A—C6A0.1 (7)N2B—N3B—C8B—N4B1.7 (5)
C4A—C5A—C6A—C1A1.4 (6)C3B—N1B—C9B—C10B88.2 (6)
C4A—C5A—C6A—C7A178.6 (4)C11B—N1B—C9B—C10B82.1 (5)
O1A—C1A—C6A—C5A177.8 (3)C3B—N1B—C11B—C12B103.9 (5)
C2A—C1A—C6A—C5A1.1 (6)C9B—N1B—C11B—C12B85.7 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1B–C6B benzene ring.
D—H···AD—HH···AD···AD—H···A
O1A—H1O1···N2A0.871.792.608 (4)157
O1B—H2O1···N2B0.871.912.654 (5)142
N3A—H1N3···O2Ai0.951.902.832 (4)168
N3B—H2N3···O2Bii0.991.872.837 (4)168
N4A—H1N4···O1B0.792.403.077 (5)144
N4A—H2N4···O2Biii0.902.012.901 (5)172
N4B—H3N4···O2Aiv0.782.142.911 (5)167
N4B—H4N4···O1A0.892.202.962 (5)144
C9A—H9AB···Cg1v0.972.833.733 (19)156
C10X—H10F···Cg1v0.962.713.46 (3)136
Symmetry codes: (i) x, y, z; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H18N4O2
Mr250.30
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.794 (2), 12.532 (3), 14.292 (5)
α, β, γ (°)112.911 (7), 96.033 (7), 107.296 (5)
V3)1340.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.12 × 0.03
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
15373, 4567, 2179
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.220, 1.00
No. of reflections4567
No. of parameters378
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1B–C6B benzene ring.
D—H···AD—HH···AD···AD—H···A
O1A—H1O1···N2A0.871.792.608 (4)157
O1B—H2O1···N2B0.871.912.654 (5)142
N3A—H1N3···O2Ai0.951.902.832 (4)168
N3B—H2N3···O2Bii0.991.872.837 (4)168
N4A—H1N4···O1B0.792.403.077 (5)144
N4A—H2N4···O2Biii0.902.012.901 (5)172
N4B—H3N4···O2Aiv0.782.142.911 (5)167
N4B—H4N4···O1A0.892.202.962 (5)144
C9A—H9AB···Cg1v0.972.833.733 (19)156
C10X—H10F···Cg1v0.962.713.46 (3)136
Symmetry codes: (i) x, y, z; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z+1.
 

Footnotes

Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2885–o2886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds