organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o413-o414

N′-[(E)-2-Hy­dr­oxy-5-iodo­benzyl­­idene]furan-2-carbohydrazide monohydrate

aYoung Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bDepartment of Chemistry, University of Zanjan, 45195-313 Zanjan, Iran, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 December 2011; accepted 27 December 2011; online 14 January 2012)

The organic mol­ecule of the title monohydrate, C12H9IN2O3·H2O, features a disordered furyl ring with the major component [site occupancy = 0.575 (18)] having the carbonyl O and furyl O atoms syn, and the other conformation having these atoms anti. The mol­ecule is slightly twisted with the dihedral angle between the benzene and furyl rings being 10.3 (6)° (major component). An intra­molecular O—H⋯N(imine) hydrogen bond is formed. In the crystal, the water mol­ecule accepts a hydrogen bond from an amine H atom, and forms two O—H⋯O(carbon­yl) hydrogen bonds, thereby linking three different carbohydrazide mol­ecules. The result is a supra­molecular layer parallel to (001). The closest contacts between layers are of the type I⋯I, at a distance of 3.6986 (6) Å.

Related literature

For historical background to aroylhydrazones, see: Craliz et al. (1955[Craliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.]). For the structure of the isomorphous bromido deriv­ative, see: Tai et al. (2007[Tai, X.-S., Yin, J., Hao, M.-Y. & Liang, Z.-P. (2007). Acta Cryst. E63, o2144-o2145.]). For the structures of related carbohydrazides, see: Abdel-Aziz et al. (2011[Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2317-o2318.]); Bikas et al. (2012[Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o193.]). For the synthesis of a precursor mol­ecule, see: Nielsen & Gothelf (2001[Nielsen, M. & Gothelf, K. V. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2440-2444.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9IN2O3·H2O

  • Mr = 374.13

  • Orthorhombic, P 21 21 21

  • a = 4.8607 (2) Å

  • b = 12.5873 (4) Å

  • c = 21.1627 (9) Å

  • V = 1294.80 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 19.57 mm−1

  • T = 100 K

  • 0.20 × 0.08 × 0.04 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.111, Tmax = 0.508

  • 4758 measured reflections

  • 2641 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.158

  • S = 1.09

  • 2641 reflections

  • 186 parameters

  • 34 restraints

  • H-atom parameters constrained

  • Δρmax = 3.22 e Å−3

  • Δρmin = −1.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1050 Friedel pairs

  • Flack parameter: −0.020 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1w 0.88 1.96 2.813 (7) 163
O1—H1⋯N1 0.84 2.20 2.744 (8) 122
O1w—H11⋯O2i 0.84 1.99 2.815 (8) 167
O1w—H12⋯O2ii 0.84 2.00 2.826 (8) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazone ligands (carbohydrazides), a class of Schiff base, derived from the condensation of acid hydrazides (R–CO–NH–NH2) with aromatic 2-hydroxy aldehydes or ketones (Craliz et al., 1955) are potentially important tridentate O,N,O-donor ligands. Previous structural studies of carbohydrazide derivatives (Abdel-Aziz et al., 2011; Bikas et al., 2012) have been extended to include the title compound, (I), which is isomorphous with bromido derivative (Tai et al., 2007).

In the molecule of (I), Fig. 1, the furyl ring was found to be disordered over two almost diagonally opposed orientations with the dihedral angle between the two components being 9.5 (10)°. In the major component (site occupancy = 0.575 (18)), the carbonyl-O and furyl-O atoms are syn. Overall, the molecule of (I) exhibits a small twist with the dihedral angle between the benzene and furyl rings being 10.3 (6)° for the major component; the comparable angle involving the minor component = 15.9 (8)°. The hydroxyl-H atom forms an intramolecular hydrogen bond to the imine-H atom, Table 1. The conformation about the C7N1 imine bond [1.283 (10) Å] is E.

In the crystal packing, the amine-H atoms forms a hydrogen bond to the water-O, and the water-H atoms form hydrogen bonds to carbonyl-O atoms from two different molecules, Table 1. The result is a supramolecular layers parallel to (001) comprising alternating rows of carbohydrazide molecules and water molecules, Fig. 2. The layers stack along the c axis with the closest contacts between them being I···I interactions [3.6986 (6) Å for symmetry operation: -1/2 + x, 5/2 - y, 2 - z], Fig. 3.

Related literature top

For historical background to aroylhydrazones, see: Craliz et al. (1955). For the structure of the isomorphous bromido derivative, see: Tai et al. (2007). For the structures of related carbohydrazides, see: Abdel-Aziz et al. (2011); Bikas et al. (2012). For the synthesis of a precursor molecule, see: Nielsen & Gothelf (2001).

Experimental top

2-Hydroxy-5-iodobenzaldehyde was synthesized according to the reported procedure by Nielsen & Gothelf (2001). For preparing the title compound a methanol (10 ml) solution of 2-hydroxy-5-iodobenzaldehyde (1.5 mmol) was added drop-wise to a methanol solution (10 ml) of 2-furanecarboxylic acid hydrazide (1.5 mmol), and the mixture was refluxed for 3 h. The solution was then evaporated on a steam bath to 5 cm3 and cooled to room temperature. The light-yellow precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Colourless crystals were obtained from its methanol:water (98:2 v/v) solution by slow solvent evaporation. Yield: 86%. IR (cm-1): 3447 (w, broad, —OH), 3262 (m, N—H); 1668 (versus, C O); 1609 (s, CN(azomethine)); 952 (m, N—N); 1274, 1351 (versus, C—O enolate). 1H NMR (250.13 MHz; DMSO-d6): δ 12.16 (s, 1H, CO—NH—); 11.15 (s, 1H, —OH); 8.57 (s, 1H); 7.92 (s, 1H); 7.88 (s, 1H); 7.51 (d, 1H, J = 8.5 Hz); 7.30 (s, 1H); 7.74 (d, 1H, J = 8.75 Hz; 6.67 (s, 1H) p.p.m.. 1H NMR (250.13 MHz; DMSO-d6 + D2O): δ 8.85 (s, 1H); 7.83 (s, 1H); 7382 (s, 1H); 7.24 (s, 1H); 6.72 (d, 1H, J = 8.75 Hz); 6.64 (s, 1H) p.p.m.. 13C NMR (DMSO; 62.90 MHz): δ 81.72, 112.61, 115.82, 119.48, 122.35, 136.62, 139.76, 145.99, 146.52, 146.63, 154.56 and 157.35 p.p.m..

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, N—H 0.88 Å, O—H 0.84%A; Uiso(H) 1.2Ueq(C,N,O)] and were included in the refinement in the riding model approximation.

The H-atoms of the water molecule were placed in chemically sensible positions on the basis of hydrogen bonds but were not refined; Uiso(H) = 1.5Ueq(O).

The furyl ring is disordered over two positions in a 0.575 (18): 0.425 (18) ratio. The C—O distances were restrained to 1.37±0.01 Å, the carbon–carbon single-bond distances to 1.42±0.01 Å and the carbon–carbon double-bond distances to 1.34±0.01 Å. The α-carbon atom is ordered. The Uiso of the atoms comprising the minor component were set to Ueq of those of the atoms of the major component which were refined anisotropically.

The final difference Fourier map had a peak at approximately 1 Å from I1 and a hole at approximately 1 Å from I1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. For reasons of clarity, only the major component of the furyl ring is shown.
[Figure 2] Fig. 2. Supramolecular layer parallel to (001) in (I). The intermolecular O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. For reasons of clarity, only the major component of the furyl ring is shown.
[Figure 3] Fig. 3. A view of the unit-cell contents of (I) in projection down the a axis. The intra- and inter-molecular O—H···O and the N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. For reasons of clarity, only the major component of the furyl ring is shown.
N'-[(E)-2-Hydroxy-5-iodobenzylidene]furan-2-carbohydrazide monohydrate top
Crystal data top
C12H9IN2O3·H2OF(000) = 728
Mr = 374.13Dx = 1.919 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 2924 reflections
a = 4.8607 (2) Åθ = 4.1–76.3°
b = 12.5873 (4) ŵ = 19.57 mm1
c = 21.1627 (9) ÅT = 100 K
V = 1294.80 (9) Å3Prism, colourless
Z = 40.20 × 0.08 × 0.04 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2641 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2575 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 4.1°
ω scanh = 65
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1510
Tmin = 0.111, Tmax = 0.508l = 1826
4758 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.127P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2641 reflectionsΔρmax = 3.22 e Å3
186 parametersΔρmin = 1.82 e Å3
34 restraintsAbsolute structure: Flack (1983), 1050 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (12)
Crystal data top
C12H9IN2O3·H2OV = 1294.80 (9) Å3
Mr = 374.13Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 4.8607 (2) ŵ = 19.57 mm1
b = 12.5873 (4) ÅT = 100 K
c = 21.1627 (9) Å0.20 × 0.08 × 0.04 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2641 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2575 reflections with I > 2σ(I)
Tmin = 0.111, Tmax = 0.508Rint = 0.039
4758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.158Δρmax = 3.22 e Å3
S = 1.09Δρmin = 1.82 e Å3
2641 reflectionsAbsolute structure: Flack (1983), 1050 Friedel pairs
186 parametersAbsolute structure parameter: 0.020 (12)
34 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I11.44774 (10)1.14557 (3)0.97807 (2)0.0213 (2)
O10.7447 (14)0.7625 (4)0.8846 (3)0.0239 (12)
H10.71610.76550.84550.036*
O20.1609 (12)0.7779 (4)0.7326 (3)0.0205 (10)
O30.214 (2)0.8642 (7)0.6509 (4)0.016 (2)0.575 (18)
O3'0.043 (3)1.0345 (7)0.6855 (7)0.016*0.425 (18)
O1W0.3405 (13)1.1654 (4)0.7575 (3)0.0265 (12)
H110.47561.20550.76410.040*
H120.19481.19820.76640.040*
N10.5129 (13)0.9031 (5)0.8010 (3)0.0170 (12)
N20.3308 (13)0.9420 (4)0.7566 (3)0.0158 (11)
H20.32651.01050.74830.019*
C10.8927 (16)0.8472 (6)0.9027 (3)0.0196 (14)
C21.0829 (17)0.8331 (6)0.9520 (4)0.0222 (14)
H2A1.10500.76480.97040.027*
C31.2403 (16)0.9185 (6)0.9745 (3)0.0196 (14)
H31.36450.90861.00870.024*
C41.2132 (15)1.0178 (6)0.9464 (3)0.0168 (13)
C51.0320 (17)1.0338 (5)0.8971 (3)0.0176 (13)
H51.01881.10180.87790.021*
C60.8665 (15)0.9496 (6)0.8753 (3)0.0165 (13)
C70.6706 (16)0.9737 (6)0.8255 (3)0.0168 (13)
H70.65881.04470.81050.020*
C80.1574 (17)0.8747 (6)0.7254 (3)0.0184 (13)
C90.0322 (15)0.9270 (5)0.6827 (3)0.0166 (13)
C100.085 (3)1.0323 (8)0.6628 (8)0.024 (3)0.575 (18)
H100.01411.09340.67610.028*0.575 (18)
C10'0.226 (5)0.8865 (16)0.6390 (12)0.024*0.425 (18)
H10'0.26310.81410.62970.028*0.425 (18)
C110.298 (3)1.0318 (11)0.6217 (7)0.021 (3)0.575 (18)
H11A0.37511.09200.60120.025*0.575 (18)
C11'0.345 (4)0.9727 (17)0.6138 (9)0.021*0.425 (18)
H11'0.48210.97200.58190.025*0.425 (18)
C120.384 (3)0.9257 (11)0.6150 (5)0.018 (3)0.575 (18)
H12A0.53360.90120.59010.022*0.575 (18)
C12'0.233 (4)1.0650 (16)0.6422 (9)0.018*0.425 (18)
H12'0.28321.13620.63250.022*0.425 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0259 (3)0.0187 (3)0.0192 (3)0.00161 (17)0.00272 (17)0.00437 (15)
O10.036 (3)0.015 (2)0.021 (3)0.005 (2)0.005 (2)0.002 (2)
O20.022 (2)0.013 (2)0.026 (3)0.002 (2)0.001 (2)0.0006 (19)
O30.023 (4)0.018 (4)0.006 (4)0.004 (4)0.006 (3)0.004 (3)
O1W0.027 (3)0.013 (2)0.039 (3)0.001 (2)0.002 (3)0.004 (2)
N10.023 (3)0.017 (2)0.012 (2)0.002 (2)0.001 (2)0.001 (2)
N20.022 (3)0.010 (2)0.015 (2)0.001 (2)0.003 (2)0.001 (2)
C10.024 (4)0.019 (3)0.016 (3)0.002 (3)0.001 (3)0.000 (3)
C20.032 (4)0.016 (3)0.019 (3)0.000 (3)0.004 (3)0.003 (3)
C30.023 (3)0.024 (4)0.012 (3)0.000 (3)0.004 (3)0.003 (3)
C40.021 (3)0.014 (3)0.015 (3)0.002 (3)0.001 (3)0.006 (2)
C50.026 (3)0.014 (3)0.012 (3)0.001 (3)0.000 (3)0.002 (2)
C60.016 (3)0.017 (3)0.016 (3)0.003 (3)0.000 (3)0.001 (2)
C70.021 (3)0.016 (3)0.013 (3)0.002 (3)0.001 (3)0.001 (2)
C80.020 (3)0.020 (3)0.015 (3)0.003 (3)0.001 (3)0.002 (3)
C90.021 (3)0.014 (3)0.015 (3)0.003 (3)0.001 (3)0.005 (2)
C100.031 (7)0.019 (5)0.020 (6)0.000 (5)0.007 (6)0.003 (5)
C110.025 (6)0.018 (6)0.021 (6)0.005 (5)0.002 (5)0.005 (5)
C120.029 (6)0.019 (6)0.007 (4)0.003 (5)0.007 (4)0.000 (4)
Geometric parameters (Å, º) top
I1—C42.082 (7)C3—H30.9500
O1—C11.342 (9)C4—C51.379 (10)
O1—H10.8400C5—C61.409 (11)
O2—C81.228 (9)C5—H50.9500
O3—C91.363 (8)C6—C71.451 (10)
O3—C121.363 (9)C7—H70.9500
O3'—C91.355 (8)C8—C91.449 (10)
O3'—C12'1.358 (9)C9—C101.413 (9)
O1W—H110.8402C9—C10'1.413 (10)
O1W—H120.8409C10—C111.353 (9)
N1—C71.283 (10)C10—H100.9500
N1—N21.381 (8)C10'—C11'1.341 (10)
N2—C81.365 (10)C10'—H10'0.9500
N2—H20.8800C11—C121.407 (9)
C1—C21.406 (10)C11—H11A0.9500
C1—C61.418 (10)C11'—C12'1.415 (10)
C2—C31.402 (10)C11'—H11'0.9500
C2—H2A0.9500C12—H12A0.9500
C3—C41.391 (9)C12'—H12'0.9500
C1—O1—H1109.5C6—C7—H7118.6
C9—O3—C12109.8 (8)O2—C8—N2123.1 (7)
C9—O3'—C12'106.2 (12)O2—C8—C9122.5 (7)
H11—O1W—H12109.0N2—C8—C9114.4 (6)
C7—N1—N2114.4 (6)O3—C9—C10106.3 (8)
C8—N2—N1120.4 (6)O3'—C9—C10'111.3 (11)
C8—N2—H2119.8O3'—C9—C8116.8 (8)
N1—N2—H2119.8O3—C9—C8117.1 (6)
O1—C1—C2117.6 (6)C10—C9—C8136.6 (8)
O1—C1—C6123.9 (7)C10'—C9—C8131.8 (10)
C2—C1—C6118.5 (7)C11—C10—C9109.0 (9)
C3—C2—C1120.9 (6)C11—C10—H10125.5
C3—C2—H2A119.5C9—C10—H10125.5
C1—C2—H2A119.5C11'—C10'—C9104.7 (14)
C4—C3—C2119.5 (7)C11'—C10'—H10'127.6
C4—C3—H3120.3C9—C10'—H10'127.6
C2—C3—H3120.3C10—C11—C12107.2 (10)
C5—C4—C3121.0 (6)C10—C11—H11A126.4
C5—C4—I1118.7 (5)C12—C11—H11A126.4
C3—C4—I1120.3 (5)C10'—C11'—C12'109.3 (16)
C4—C5—C6120.2 (6)C10'—C11'—H11'125.3
C4—C5—H5119.9C12'—C11'—H11'125.3
C6—C5—H5119.9O3—C12—C11107.6 (9)
C5—C6—C1119.9 (7)O3—C12—H12A126.2
C5—C6—C7117.1 (6)C11—C12—H12A126.2
C1—C6—C7123.0 (7)O3'—C12'—C11'108.3 (15)
N1—C7—C6122.7 (6)O3'—C12'—H12'125.8
N1—C7—H7118.6C11'—C12'—H12'125.8
C7—N1—N2—C8177.9 (6)C12—O3—C9—C10'21 (6)
O1—C1—C2—C3178.5 (7)C12—O3—C9—C8177.4 (9)
C6—C1—C2—C31.0 (11)O2—C8—C9—O3'170.8 (9)
C1—C2—C3—C41.8 (12)N2—C8—C9—O3'9.3 (11)
C2—C3—C4—C50.6 (11)O2—C8—C9—O31.1 (12)
C2—C3—C4—I1179.3 (6)N2—C8—C9—O3179.0 (8)
C3—C4—C5—C61.3 (11)O2—C8—C9—C10178.1 (12)
I1—C4—C5—C6178.8 (5)N2—C8—C9—C101.8 (16)
C4—C5—C6—C12.0 (11)O2—C8—C9—C10'5 (2)
C4—C5—C6—C7176.9 (7)N2—C8—C9—C10'174.5 (19)
O1—C1—C6—C5179.6 (7)O3'—C9—C10—C11151 (3)
C2—C1—C6—C50.8 (11)O3—C9—C10—C111.9 (15)
O1—C1—C6—C71.6 (12)C10'—C9—C10—C116.6 (18)
C2—C1—C6—C7178.0 (7)C8—C9—C10—C11178.8 (10)
N2—N1—C7—C6176.9 (6)O3'—C9—C10'—C11'3 (3)
C5—C6—C7—N1178.6 (7)O3—C9—C10'—C11'157 (8)
C1—C6—C7—N12.6 (11)C10—C9—C10'—C11'6 (2)
N1—N2—C8—O23.3 (11)C8—C9—C10'—C11'179.0 (13)
N1—N2—C8—C9176.8 (6)C9—C10—C11—C120.0 (17)
C12'—O3'—C9—O310.9 (17)C9—C10'—C11'—C12'1 (3)
C12'—O3'—C9—C1021 (2)C9—O3—C12—C113.2 (14)
C12'—O3'—C9—C10'3 (2)C10—C11—C12—O31.9 (16)
C12'—O3'—C9—C8179.6 (11)C9—O3'—C12'—C11'1.6 (19)
C12—O3—C9—O3'8.7 (15)C10'—C11'—C12'—O3'0 (3)
C12—O3—C9—C103.1 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1w0.881.962.813 (7)163
O1—H1···N10.842.202.744 (8)122
O1w—H11···O2i0.841.992.815 (8)167
O1w—H12···O2ii0.842.002.826 (8)168
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H9IN2O3·H2O
Mr374.13
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.8607 (2), 12.5873 (4), 21.1627 (9)
V3)1294.80 (9)
Z4
Radiation typeCu Kα
µ (mm1)19.57
Crystal size (mm)0.20 × 0.08 × 0.04
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.111, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
4758, 2641, 2575
Rint0.039
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 1.09
No. of reflections2641
No. of parameters186
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.22, 1.82
Absolute structureFlack (1983), 1050 Friedel pairs
Absolute structure parameter0.020 (12)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1w0.881.962.813 (7)163
O1—H1···N10.842.202.744 (8)122
O1w—H11···O2i0.841.992.815 (8)167
O1w—H12···O2ii0.842.002.826 (8)168
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: bikas_r@yahoo.com.

Acknowledgements

The authors are grateful to the Islamic Azad University, Tabriz Branch, the University of Zanjan and the University of Malaya for support of this study.

References

First citationAbdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2317–o2318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCraliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNielsen, M. & Gothelf, K. V. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2440–2444.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Yin, J., Hao, M.-Y. & Liang, Z.-P. (2007). Acta Cryst. E63, o2144–o2145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o413-o414
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds