organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,3-di­amino­pyridinium) phthalate dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 20 December 2011; accepted 27 December 2011; online 14 January 2012)

The complete anion of the title hydrated mol­ecular salt, 2C5H8N3+·C8H4O4·2H2O, is generated by a crystallographic twofold axis. In the crystal, the cations, anions and water mol­ecules are connected by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. The crystal structure also features C—H⋯π inter­actions.

Related literature

For background to hydrogen-bonding patterns of 2-amino­pyridine derivatives, see: Gellert & Hsu (1988[Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311-313.]); Banerjee & Murugavel (2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.]). For related structures, see: Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1418-o1419.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1480-o1481.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o1496-o1497.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H8N3+·C8H4O4·2H2O

  • Mr = 420.43

  • Monoclinic, C 2/c

  • a = 15.795 (5) Å

  • b = 13.083 (4) Å

  • c = 11.012 (4) Å

  • β = 115.194 (5)°

  • V = 2059.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.42 × 0.36 × 0.03 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.997

  • 10343 measured reflections

  • 2955 independent reflections

  • 2148 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.04

  • 2955 reflections

  • 184 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C6–C8/C6A–C8A and N1/C1–C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H5⋯O2i 0.90 (2) 2.03 (2) 2.9155 (19) 169.0 (18)
N1—H6⋯O2ii 0.98 (2) 1.790 (19) 2.7565 (18) 170.3 (19)
N2—H7⋯O1ii 0.92 (2) 1.99 (2) 2.8976 (19) 168.1 (19)
N3—H9⋯O1Wiii 0.89 (2) 2.09 (2) 2.978 (2) 179 (3)
N3—H10⋯O2i 0.89 (2) 2.23 (2) 3.078 (2) 158.8 (17)
O1W—H11⋯O1iv 0.95 (3) 1.86 (3) 2.7878 (18) 165 (3)
O1W—H12⋯O1v 0.92 (2) 1.99 (2) 2.8641 (18) 158.2 (19)
C3—H2⋯O1Wvi 0.984 (17) 2.516 (18) 3.369 (2) 145.0 (14)
C4—H8⋯Cg1iii 1.01 (2) 2.76 (2) 3.629 (2) 144.3 (15)
C6—H3⋯Cg2vii 0.959 (18) 2.568 (18) 3.497 (2) 163.4 (14)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y, z+1; (v) -x+1, -y, -z+1; (vi) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminopyridine and its derivatives are amomg the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Gellert & Hsu, 1988; Banerjee & Murugavel, 2004). A series of similar complexes formed from 2-aminopyridine and carboxylates has been reported previously (Hemamalini & Fun, 2010a,b,c). The present work, 2,3-diaminopyridinium phthalate dihydrate, (2/1/1) (I), is a continuation of our structural study of complexes of the 2,3-diaminopyridinium system.

The asymmetric unit of the title compound, (I), contains one 2,3-diamino- pyridinium cation, a half of phthalate anion (which lies on a twofold axis; -x+1, y, -z+1/2) and a water molecule as shown in Fig. 1. The dihedral angle between the pyridine (N1/C1–C5) and benzene (C6–C8/ C6A–C8A) ring is 80.61 (7)°.

In the crystal structure (Fig. 2), the ion pairs and water molecules are connected via N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds forming a three-dimensional network. The crystal structure is further stabilized by C—H···π interactions involving the centroids of the C6–C8/C6A–C8A (Cg1) and N1/C1–C5 (Cg2) rings.

Related literature top

For background to hydrogen-bonding patterns of 2-aminopyridine derivatives, see: Gellert & Hsu (1988); Banerjee & Murugavel (2004). For related structures, see: Hemamalini & Fun (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and phthalic acid (42 mg, Merck) were mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and brown plates of the title compound appeared after a few days.

Refinement top

All hydrogen atoms were located from a difference Fourier maps and refined freely [N–H = 0.89 (2)–0.98 (2)Å; O–H = 0.91 (2)– 0.95 (3) Å and C–H = 0.959 (18)–1.01 (2) Å]. The highest residual electron density peak is located at 0.73 Å from C9 and the deepest hole is located at 0.78 Å from C9.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecule of (I) with 30% probability displacement ellipsoids. Atoms labelled A are generated by -x+1, y, -z+1/2.
[Figure 2] Fig. 2. The crystal packing of the title compound showing hydrogen-bonded (dashed lines) networks. H atoms not involved in hydrogen bond interactions are omitted for clarity.
Bis(2,3-diaminopyridinium) benzene-1,2-dicarboxylate dihydrate top
Crystal data top
2C5H8N3+·C8H4O4·2H2OF(000) = 888
Mr = 420.43Dx = 1.356 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3390 reflections
a = 15.795 (5) Åθ = 2.8–29.8°
b = 13.083 (4) ŵ = 0.10 mm1
c = 11.012 (4) ÅT = 100 K
β = 115.194 (5)°Plate, brown
V = 2059.2 (11) Å30.42 × 0.36 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
2955 independent reflections
Radiation source: fine-focus sealed tube2148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 29.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.958, Tmax = 0.997k = 1818
10343 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.7423P]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
2C5H8N3+·C8H4O4·2H2OV = 2059.2 (11) Å3
Mr = 420.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.795 (5) ŵ = 0.10 mm1
b = 13.083 (4) ÅT = 100 K
c = 11.012 (4) Å0.42 × 0.36 × 0.03 mm
β = 115.194 (5)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
2955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2148 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.997Rint = 0.042
10343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125All H-atom parameters refined
S = 1.04Δρmax = 0.33 e Å3
2955 reflectionsΔρmin = 0.26 e Å3
184 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23077 (8)0.94380 (9)1.03746 (11)0.0227 (3)
N20.30262 (8)0.94315 (10)0.89459 (13)0.0256 (3)
N30.17815 (10)0.78666 (11)0.74285 (14)0.0330 (3)
C10.23819 (9)0.90400 (10)0.93023 (13)0.0192 (3)
C20.17516 (9)0.82430 (9)0.85688 (13)0.0210 (3)
C30.11106 (9)0.79131 (11)0.90331 (14)0.0249 (3)
C40.10585 (11)0.83570 (13)1.01540 (15)0.0313 (3)
C50.16621 (11)0.91224 (13)1.08149 (15)0.0310 (3)
O10.43751 (6)0.07071 (7)0.10193 (9)0.0225 (2)
O20.32273 (6)0.12167 (7)0.15491 (9)0.0225 (2)
C60.45346 (10)0.41720 (10)0.20469 (14)0.0242 (3)
C70.40590 (9)0.32537 (10)0.16012 (13)0.0201 (3)
C80.45249 (8)0.23274 (9)0.20552 (12)0.0160 (2)
C90.40094 (8)0.13405 (9)0.15149 (12)0.0168 (2)
O1W0.45043 (8)0.10881 (8)0.86130 (12)0.0315 (3)
H10.3388 (12)0.3242 (12)0.0959 (17)0.028 (4)*
H20.0692 (11)0.7346 (13)0.8557 (17)0.026 (4)*
H30.4209 (12)0.4807 (14)0.1749 (17)0.032 (4)*
H40.1689 (13)0.9496 (15)1.160 (2)0.043 (5)*
H50.3138 (13)0.9165 (14)0.8275 (19)0.033 (5)*
H60.2697 (12)1.0029 (15)1.0806 (18)0.036 (5)*
H70.3468 (13)0.9879 (15)0.9506 (19)0.039 (5)*
H80.0557 (13)0.8149 (14)1.044 (2)0.042 (5)*
H90.1404 (14)0.7328 (17)0.712 (2)0.046 (5)*
H100.2265 (14)0.7967 (14)0.723 (2)0.040 (5)*
H110.4555 (16)0.1035 (17)0.950 (3)0.064 (7)*
H120.4828 (16)0.0542 (18)0.850 (2)0.062 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0235 (6)0.0244 (6)0.0181 (5)0.0068 (5)0.0070 (4)0.0020 (4)
N20.0237 (6)0.0281 (6)0.0260 (6)0.0104 (5)0.0116 (5)0.0096 (5)
N30.0323 (7)0.0332 (7)0.0364 (7)0.0153 (6)0.0174 (6)0.0188 (6)
C10.0186 (6)0.0182 (6)0.0175 (6)0.0001 (4)0.0043 (5)0.0016 (4)
C20.0195 (6)0.0181 (6)0.0197 (6)0.0001 (5)0.0028 (5)0.0004 (5)
C30.0232 (6)0.0223 (6)0.0224 (6)0.0060 (5)0.0033 (5)0.0024 (5)
C40.0312 (7)0.0392 (8)0.0237 (7)0.0138 (6)0.0119 (6)0.0001 (6)
C50.0348 (8)0.0393 (8)0.0223 (7)0.0128 (6)0.0153 (6)0.0043 (6)
O10.0229 (5)0.0220 (5)0.0222 (5)0.0006 (4)0.0093 (4)0.0059 (4)
O20.0205 (4)0.0227 (5)0.0253 (5)0.0041 (4)0.0106 (4)0.0029 (4)
C60.0252 (7)0.0173 (6)0.0297 (7)0.0038 (5)0.0113 (6)0.0033 (5)
C70.0191 (6)0.0200 (6)0.0196 (6)0.0017 (5)0.0068 (5)0.0022 (4)
C80.0180 (6)0.0171 (6)0.0140 (5)0.0005 (4)0.0078 (4)0.0002 (4)
C90.0178 (5)0.0173 (6)0.0124 (5)0.0007 (4)0.0036 (4)0.0006 (4)
O1W0.0361 (6)0.0276 (6)0.0363 (6)0.0102 (4)0.0208 (5)0.0120 (4)
Geometric parameters (Å, º) top
N1—C11.3404 (17)C4—H81.01 (2)
N1—C51.3663 (18)C5—H40.98 (2)
N1—H60.98 (2)O1—C91.2596 (15)
N2—C11.3388 (17)O2—C91.2623 (15)
N2—H50.899 (19)C6—C6i1.382 (3)
N2—H70.92 (2)C6—C71.3910 (19)
N3—C21.3683 (19)C6—H30.959 (18)
N3—H90.89 (2)C7—C81.3954 (17)
N3—H100.89 (2)C7—H10.993 (17)
C1—C21.4304 (18)C8—C8i1.400 (2)
C2—C31.383 (2)C8—C91.5072 (17)
C3—C41.398 (2)O1W—H110.95 (3)
C3—H20.983 (17)O1W—H120.91 (2)
C4—C51.360 (2)
C1—N1—C5123.61 (12)C5—C4—H8119.7 (11)
C1—N1—H6117.6 (11)C3—C4—H8121.0 (11)
C5—N1—H6118.5 (10)C4—C5—N1119.44 (14)
C1—N2—H5122.2 (12)C4—C5—H4126.7 (11)
C1—N2—H7120.2 (11)N1—C5—H4113.8 (11)
H5—N2—H7116.0 (16)C6i—C6—C7120.25 (8)
C2—N3—H9111.0 (13)C6i—C6—H3119.9 (10)
C2—N3—H10122.9 (13)C7—C6—H3119.8 (10)
H9—N3—H10121.6 (18)C6—C7—C8120.03 (12)
N2—C1—N1118.16 (12)C6—C7—H1121.1 (10)
N2—C1—C2123.13 (12)C8—C7—H1118.9 (10)
N1—C1—C2118.67 (12)C7—C8—C8i119.70 (7)
N3—C2—C3122.93 (12)C7—C8—C9119.26 (11)
N3—C2—C1119.54 (12)C8i—C8—C9120.95 (6)
C3—C2—C1117.49 (12)O1—C9—O2124.30 (11)
C2—C3—C4121.61 (13)O1—C9—C8117.67 (11)
C2—C3—H2118.0 (10)O2—C9—C8117.99 (11)
C4—C3—H2120.4 (10)H11—O1W—H12105.6 (19)
C5—C4—C3119.14 (13)
C5—N1—C1—N2178.22 (13)C3—C4—C5—N10.3 (2)
C5—N1—C1—C20.2 (2)C1—N1—C5—C40.6 (2)
N2—C1—C2—N31.5 (2)C6i—C6—C7—C80.9 (2)
N1—C1—C2—N3176.36 (12)C6—C7—C8—C8i0.9 (2)
N2—C1—C2—C3179.27 (13)C6—C7—C8—C9177.35 (12)
N1—C1—C2—C31.39 (18)C7—C8—C9—O1126.40 (13)
N3—C2—C3—C4175.91 (14)C8i—C8—C9—O150.01 (19)
C1—C2—C3—C41.8 (2)C7—C8—C9—O251.38 (16)
C2—C3—C4—C50.9 (2)C8i—C8—C9—O2132.22 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C8/C6A–C8A and N1/C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H5···O2ii0.90 (2)2.03 (2)2.9155 (19)169.0 (18)
N1—H6···O2iii0.98 (2)1.790 (19)2.7565 (18)170.3 (19)
N2—H7···O1iii0.92 (2)1.99 (2)2.8976 (19)168.1 (19)
N3—H9···O1Wiv0.89 (2)2.09 (2)2.978 (2)179 (3)
N3—H10···O2ii0.89 (2)2.23 (2)3.078 (2)158.8 (17)
O1W—H11···O1v0.95 (3)1.86 (3)2.7878 (18)165 (3)
O1W—H12···O1vi0.92 (2)1.99 (2)2.8641 (18)158.2 (19)
C3—H2···O1Wvii0.984 (17)2.516 (18)3.369 (2)145.0 (14)
C4—H8···Cg1iv1.01 (2)2.76 (2)3.629 (2)144.3 (15)
C6—H3···Cg2viii0.959 (18)2.568 (18)3.497 (2)163.4 (14)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y+1, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x1/2, y+1/2, z; (viii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula2C5H8N3+·C8H4O4·2H2O
Mr420.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.795 (5), 13.083 (4), 11.012 (4)
β (°) 115.194 (5)
V3)2059.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.36 × 0.03
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.958, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
10343, 2955, 2148
Rint0.042
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.04
No. of reflections2955
No. of parameters184
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C8/C6A–C8A and N1/C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H5···O2i0.90 (2)2.03 (2)2.9155 (19)169.0 (18)
N1—H6···O2ii0.98 (2)1.790 (19)2.7565 (18)170.3 (19)
N2—H7···O1ii0.92 (2)1.99 (2)2.8976 (19)168.1 (19)
N3—H9···O1Wiii0.89 (2)2.09 (2)2.978 (2)179 (3)
N3—H10···O2i0.89 (2)2.23 (2)3.078 (2)158.8 (17)
O1W—H11···O1iv0.95 (3)1.86 (3)2.7878 (18)165 (3)
O1W—H12···O1v0.92 (2)1.99 (2)2.8641 (18)158.2 (19)
C3—H2···O1Wvi0.984 (17)2.516 (18)3.369 (2)145.0 (14)
C4—H8···Cg1iii1.01 (2)2.76 (2)3.629 (2)144.3 (15)
C6—H3···Cg2vii0.959 (18)2.568 (18)3.497 (2)163.4 (14)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x1/2, y+1/2, z; (vii) x+1/2, y+3/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH, JHG and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBanerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1418–o1419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1480–o1481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds