organic compounds
Morpholin-4-ium hydrogen tartrate
aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com
In the title molecular salt, C4H10NO+·C4H5O6−, the morpholinium cation adopts a chair conformation. The conformation of the C—C—C—C backbone of the monotartrate anion is close to anti [torsion angle = 173.18 (17)°], which is supported by two intramolecular O—H⋯O hydrogen bonds. In the crystal, the components are linked by N—H—O and O—H—O hydrogen bonds, generating (001) sheets.
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811055759/hb6576sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055759/hb6576Isup2.hkl
0.87 g (0.01 mol) of morpholine was firstly dissolved in 30 ml of ethanol, to which 1.50 g (0.01 mol) of tartaric acid was added at ambient temperature. Colourless blocks were obtained by the slow evaporation of the above solution after 3 days in air.
The ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct occurring within the measured temperature (below the melting point).
of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (The
is indeterminate based on the present model. H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride.Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. | |
Fig. 2. Crystal structure of the title compound with view along the b axis. Intermolecular interactions are shown as dashed lines. |
C4H10NO+·C4H5O6− | F(000) = 504 |
Mr = 237.21 | Dx = 1.453 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1903 reflections |
a = 7.2601 (15) Å | θ = 3.4–26.4° |
b = 9.1716 (18) Å | µ = 0.13 mm−1 |
c = 16.283 (3) Å | T = 293 K |
V = 1084.2 (4) Å3 | Block, colourless |
Z = 4 | 0.36 × 0.32 × 0.28 mm |
Rigaku Mercury2 diffractometer | 1747 reflections with I > \2s(I) |
Radiation source: fine-focus sealed tube | Rint = 0.060 |
Graphite monochromator | θmax = 25°, θmin = 3.1° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −10→10 |
Tmin = 0.954, Tmax = 0.966 | l = −19→19 |
8960 measured reflections | 3 standard reflections every 180 reflections |
1903 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0363P)2 + 0.0989P] where P = (Fo2 + 2Fc2)/3 |
1903 reflections | (Δ/σ)max = 0.095 |
146 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C4H10NO+·C4H5O6− | V = 1084.2 (4) Å3 |
Mr = 237.21 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.2601 (15) Å | µ = 0.13 mm−1 |
b = 9.1716 (18) Å | T = 293 K |
c = 16.283 (3) Å | 0.36 × 0.32 × 0.28 mm |
Rigaku Mercury2 diffractometer | 1747 reflections with I > \2s(I) |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | Rint = 0.060 |
Tmin = 0.954, Tmax = 0.966 | 3 standard reflections every 180 reflections |
8960 measured reflections | intensity decay: none |
1903 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.14 e Å−3 |
1903 reflections | Δρmin = −0.20 e Å−3 |
146 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O7 | 0.3787 (3) | 0.3058 (2) | 0.55071 (10) | 0.0542 (5) | |
N1 | 0.4758 (3) | 0.4978 (2) | 0.68097 (11) | 0.0426 (5) | |
H1A | 0.4382 | 0.4480 | 0.7256 | 0.051* | |
H1B | 0.5249 | 0.5827 | 0.6979 | 0.051* | |
C1 | 0.3161 (4) | 0.5269 (3) | 0.62661 (15) | 0.0510 (7) | |
H1C | 0.3541 | 0.5882 | 0.5811 | 0.061* | |
H1D | 0.2210 | 0.5780 | 0.6570 | 0.061* | |
C2 | 0.2413 (4) | 0.3847 (3) | 0.59447 (15) | 0.0508 (7) | |
H2A | 0.1973 | 0.3262 | 0.6400 | 0.061* | |
H2B | 0.1378 | 0.4039 | 0.5584 | 0.061* | |
C3 | 0.5307 (4) | 0.2735 (3) | 0.60333 (15) | 0.0519 (7) | |
H3A | 0.6219 | 0.2178 | 0.5731 | 0.062* | |
H3B | 0.4885 | 0.2143 | 0.6490 | 0.062* | |
C4 | 0.6178 (4) | 0.4113 (3) | 0.63583 (16) | 0.0504 (7) | |
H4A | 0.7186 | 0.3871 | 0.6725 | 0.060* | |
H4B | 0.6668 | 0.4684 | 0.5907 | 0.060* | |
O1 | 0.4383 (2) | 0.75847 (19) | 0.31549 (10) | 0.0494 (5) | |
H1 | 0.3531 | 0.7781 | 0.2843 | 0.074* | |
O2 | 0.08530 (19) | 0.71085 (17) | 0.31349 (8) | 0.0358 (4) | |
O3 | 0.08075 (18) | 0.60421 (18) | 0.43779 (9) | 0.0394 (4) | |
O4 | 0.73405 (19) | 0.46475 (19) | 0.31136 (9) | 0.0418 (4) | |
O5 | 0.73379 (19) | 0.58152 (19) | 0.43315 (9) | 0.0410 (4) | |
H5 | 0.8459 | 0.5815 | 0.4269 | 0.062* | |
O6 | 0.3670 (2) | 0.44104 (19) | 0.31002 (10) | 0.0474 (5) | |
H6 | 0.4483 | 0.4105 | 0.2796 | 0.071* | |
C5 | 0.6557 (3) | 0.5186 (2) | 0.36993 (13) | 0.0312 (5) | |
C6 | 0.4477 (3) | 0.5161 (3) | 0.37717 (12) | 0.0304 (5) | |
H6A | 0.4145 | 0.4652 | 0.4280 | 0.036* | |
C7 | 0.3714 (3) | 0.6722 (2) | 0.38132 (13) | 0.0304 (5) | |
H7 | 0.4082 | 0.7168 | 0.4335 | 0.036* | |
C8 | 0.1603 (3) | 0.6624 (2) | 0.37789 (13) | 0.0284 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O7 | 0.0728 (12) | 0.0500 (12) | 0.0397 (9) | 0.0035 (11) | −0.0084 (9) | −0.0083 (9) |
N1 | 0.0568 (12) | 0.0357 (12) | 0.0351 (10) | −0.0088 (10) | 0.0062 (9) | −0.0021 (9) |
C1 | 0.0662 (17) | 0.0440 (17) | 0.0427 (13) | 0.0129 (14) | 0.0084 (12) | 0.0050 (12) |
C2 | 0.0513 (15) | 0.0540 (18) | 0.0472 (14) | 0.0009 (14) | −0.0056 (12) | 0.0016 (12) |
C3 | 0.0590 (16) | 0.0467 (18) | 0.0499 (15) | 0.0103 (14) | −0.0012 (13) | −0.0094 (13) |
C4 | 0.0462 (15) | 0.0577 (18) | 0.0472 (14) | −0.0024 (14) | 0.0061 (12) | −0.0044 (13) |
O1 | 0.0317 (8) | 0.0551 (12) | 0.0614 (11) | −0.0088 (8) | 0.0021 (8) | 0.0244 (9) |
O2 | 0.0332 (8) | 0.0366 (9) | 0.0377 (8) | 0.0004 (7) | −0.0087 (7) | 0.0026 (7) |
O3 | 0.0229 (8) | 0.0569 (11) | 0.0384 (8) | −0.0009 (7) | 0.0019 (7) | 0.0068 (8) |
O4 | 0.0298 (8) | 0.0526 (11) | 0.0429 (9) | 0.0040 (8) | 0.0065 (7) | −0.0073 (8) |
O5 | 0.0211 (7) | 0.0579 (11) | 0.0441 (9) | 0.0001 (7) | 0.0015 (7) | −0.0070 (8) |
O6 | 0.0299 (8) | 0.0554 (11) | 0.0568 (10) | 0.0005 (8) | 0.0002 (8) | −0.0227 (9) |
C5 | 0.0257 (10) | 0.0330 (13) | 0.0349 (11) | 0.0021 (10) | 0.0013 (9) | 0.0033 (10) |
C6 | 0.0255 (10) | 0.0337 (13) | 0.0318 (11) | −0.0008 (10) | 0.0023 (8) | −0.0002 (10) |
C7 | 0.0244 (10) | 0.0323 (13) | 0.0344 (11) | −0.0025 (10) | −0.0003 (8) | 0.0031 (10) |
C8 | 0.0255 (10) | 0.0245 (12) | 0.0351 (11) | 0.0000 (10) | −0.0015 (9) | −0.0034 (10) |
O7—C2 | 1.423 (3) | C4—H4B | 0.9700 |
O7—C3 | 1.428 (3) | O1—C7 | 1.418 (2) |
N1—C1 | 1.483 (3) | O1—H1 | 0.8203 |
N1—C4 | 1.494 (3) | O2—C8 | 1.263 (2) |
N1—H1A | 0.9006 | O3—C8 | 1.253 (2) |
N1—H1B | 0.8996 | O4—C5 | 1.216 (2) |
C1—C2 | 1.507 (4) | O5—C5 | 1.309 (2) |
C1—H1C | 0.9700 | O5—H5 | 0.8200 |
C1—H1D | 0.9700 | O6—C6 | 1.419 (2) |
C2—H2A | 0.9700 | O6—H6 | 0.8198 |
C2—H2B | 0.9700 | C5—C6 | 1.515 (3) |
C3—C4 | 1.510 (4) | C6—C7 | 1.536 (3) |
C3—H3A | 0.9700 | C6—H6A | 0.9800 |
C3—H3B | 0.9700 | C7—C8 | 1.536 (3) |
C4—H4A | 0.9700 | C7—H7 | 0.9800 |
C2—O7—C3 | 110.29 (17) | N1—C4—H4A | 109.9 |
C1—N1—C4 | 109.97 (18) | C3—C4—H4A | 109.9 |
C1—N1—H1A | 109.6 | N1—C4—H4B | 109.9 |
C4—N1—H1A | 109.7 | C3—C4—H4B | 109.9 |
C1—N1—H1B | 109.7 | H4A—C4—H4B | 108.3 |
C4—N1—H1B | 109.7 | C7—O1—H1 | 109.4 |
H1A—N1—H1B | 108.2 | C5—O5—H5 | 109.4 |
N1—C1—C2 | 109.5 (2) | C6—O6—H6 | 109.5 |
N1—C1—H1C | 109.8 | O4—C5—O5 | 126.37 (18) |
C2—C1—H1C | 109.8 | O4—C5—C6 | 121.5 (2) |
N1—C1—H1D | 109.8 | O5—C5—C6 | 112.16 (18) |
C2—C1—H1D | 109.8 | O6—C6—C5 | 111.03 (17) |
H1C—C1—H1D | 108.2 | O6—C6—C7 | 109.70 (17) |
O7—C2—C1 | 111.2 (2) | C5—C6—C7 | 110.44 (18) |
O7—C2—H2A | 109.4 | O6—C6—H6A | 108.5 |
C1—C2—H2A | 109.4 | C5—C6—H6A | 108.5 |
O7—C2—H2B | 109.4 | C7—C6—H6A | 108.5 |
C1—C2—H2B | 109.4 | O1—C7—C6 | 111.28 (16) |
H2A—C2—H2B | 108.0 | O1—C7—C8 | 110.32 (17) |
O7—C3—C4 | 111.1 (2) | C6—C7—C8 | 107.67 (18) |
O7—C3—H3A | 109.4 | O1—C7—H7 | 109.2 |
C4—C3—H3A | 109.4 | C6—C7—H7 | 109.2 |
O7—C3—H3B | 109.4 | C8—C7—H7 | 109.2 |
C4—C3—H3B | 109.4 | O3—C8—O2 | 126.69 (18) |
H3A—C3—H3B | 108.0 | O3—C8—C7 | 117.18 (18) |
N1—C4—C3 | 109.1 (2) | O2—C8—C7 | 116.10 (19) |
C4—N1—C1—C2 | 56.0 (3) | O5—C5—C6—C7 | 61.0 (2) |
C3—O7—C2—C1 | 60.4 (3) | O6—C6—C7—O1 | −70.5 (2) |
N1—C1—C2—O7 | −58.4 (3) | C5—C6—C7—O1 | 52.2 (2) |
C2—O7—C3—C4 | −60.4 (3) | O6—C6—C7—C8 | 50.5 (2) |
C1—N1—C4—C3 | −55.9 (3) | C5—C6—C7—C8 | 173.18 (17) |
O7—C3—C4—N1 | 58.0 (3) | O1—C7—C8—O3 | −171.64 (18) |
O4—C5—C6—O6 | 1.9 (3) | C6—C7—C8—O3 | 66.7 (2) |
O5—C5—C6—O6 | −177.08 (17) | O1—C7—C8—O2 | 10.1 (3) |
O4—C5—C6—C7 | −120.0 (2) | C6—C7—C8—O2 | −111.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.90 | 2.05 | 2.918 (3) | 162 |
N1—H1B···O2ii | 0.90 | 1.95 | 2.790 (3) | 154 |
O1—H1···O2 | 0.82 | 2.09 | 2.600 (2) | 120 |
O1—H1···O4iii | 0.82 | 2.40 | 3.068 (2) | 139 |
O5—H5···O3iv | 0.82 | 1.73 | 2.529 (2) | 165 |
O6—H6···O4 | 0.82 | 2.20 | 2.674 (2) | 117 |
O6—H6···O1v | 0.82 | 2.24 | 2.996 (2) | 153 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x+1/2, −y+3/2, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C4H10NO+·C4H5O6− |
Mr | 237.21 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 7.2601 (15), 9.1716 (18), 16.283 (3) |
V (Å3) | 1084.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.36 × 0.32 × 0.28 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.954, 0.966 |
No. of measured, independent and observed [I > \2s(I)] reflections | 8960, 1903, 1747 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.097, 1.17 |
No. of reflections | 1903 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.20 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.90 | 2.05 | 2.918 (3) | 162 |
N1—H1B···O2ii | 0.90 | 1.95 | 2.790 (3) | 154 |
O1—H1···O2 | 0.82 | 2.09 | 2.600 (2) | 120 |
O1—H1···O4iii | 0.82 | 2.40 | 3.068 (2) | 139 |
O5—H5···O3iv | 0.82 | 1.73 | 2.529 (2) | 165 |
O6—H6···O4 | 0.82 | 2.20 | 2.674 (2) | 117 |
O6—H6···O1v | 0.82 | 2.24 | 2.996 (2) | 153 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x+1/2, −y+3/2, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.
References
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ruble, J. R., Hite, G. & Soares, J. R. (1976). Acta Cryst. B32, 136–140. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.