organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro-6,8-di­nitro­quinazolin-4(3H)-one acetic acid monosolvate

aDepartment of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: ypz_99@yahoo.com.cn

(Received 23 December 2011; accepted 26 December 2011; online 7 January 2012)

In the title compound, C8H3ClN4O5·C2H4O2, both the nitro groups are close to perpendicular [dihedral angles = 67.62 (15) and 86.73 (12)°] to the almost planar quinazoline unit [r.m.s. deviation = 0.014Å]. In the crystal, both the quinazoline and acetic acid mol­ecules form inversion dimers linked by pairs of N—H⋯O and O—H⋯O hydrogen bonds, respectively. R22(8) loops arise in each case.

Related literature

For background to the biological properties of quinazoline derivatives, see: Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Declera, E. (1999). Pharm. Acta Helv. 74, 11-17.]); Tereshima et al. (1995[Tereshima, K., Shimamura, H., Kawase, A., Tanaka, Y., Tanimura, T., Ishizuka, Y. & Sato, M. (1995). Chem. Pharm. Bull. 45, 2021-2023.]); Wolfe et al. (1990[Wolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. S. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161-166.]). For a related structure, see: Srinivasan et al. (2011[Srinivasan, T., Suhitha, S., Priya, M. G. R., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2928.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H3ClN4O5·C2H4O2

  • Mr = 330.65

  • Triclinic, [P \overline 1]

  • a = 7.3041 (12) Å

  • b = 9.3952 (16) Å

  • c = 9.6850 (16) Å

  • α = 83.813 (2)°

  • β = 88.172 (2)°

  • γ = 89.033 (2)°

  • V = 660.35 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 4758 measured reflections

  • 2332 independent reflections

  • 1810 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.05

  • 2332 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.86 1.97 2.827 (3) 173
O6—H100⋯O7ii 0.83 1.86 2.665 (3) 163
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) -x+2, -y+2, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background to the biological properties of quinazoline derivatives, see: Pandeya et al. (1999); Tereshima et al. (1995); Wolfe et al. (1990). For a related structure, see: Srinivasan et al. (2011). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

7-Chloro-quinazolin-4(3H)-one(18.0 g, 100 mmol) was added portionwise to a stirred mixture of concentrated sulfuric acid (60 ml) and fuming nitric acid (60 ml) which had been cooled to 273 K. The mixture was stirred at ambient temperature for 1 h and then heated to 373 K for 4 h. Then it was poured into 800 g crush ice. The precipitate was isolated, washed with water and dried. Recrystallization from acetic acid gives 7-chloro-6,8-dinitroquinazolin-4(3H)-one (14.1 g, 52.1%). Yellow blocks were obtained by slow evaporation of an acetic acid solution at room temperature. m.p.:573 K (decomp.) 1H-NMR (DMSO– d6, δ (p.p.m.)): 13.2 (1H, brs), 8.89 (1H, s), 8.44 (1H, s), CI—MS (m/e): 271.5 (M+1).

Refinement top

H atoms bonded to C and N atoms were placed in calculated positions (C—H = 0.93–0.96 Å and N—H = 0.86 Å) and included in the riding model approximation. For all H atoms Uiso (H) = 1.2Uiso (C, N) or 1.5Uiso (C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view of the title compound, viewed down the c axis.
7-Chloro-6,8-dinitroquinazolin-4(3H)-one acetic acid monosolvate top
Crystal data top
C8H3ClN4O5·C2H4O2Z = 2
Mr = 330.65F(000) = 336
Triclinic, P1Dx = 1.663 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3041 (12) ÅCell parameters from 30 reflections
b = 9.3952 (16) Åθ = 3–25°
c = 9.6850 (16) ŵ = 0.33 mm1
α = 83.813 (2)°T = 293 K
β = 88.172 (2)°Block, yellow
γ = 89.033 (2)°0.25 × 0.23 × 0.21 mm
V = 660.35 (19) Å3
Data collection top
Rigaku SCXmini
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.1°
Graphite monochromatorh = 88
ω scansk = 1111
4758 measured reflectionsl = 1111
2332 independent reflections3 standard reflections every 150 reflections
1810 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.2567P]
where P = (Fo2 + 2Fc2)/3
2332 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C8H3ClN4O5·C2H4O2γ = 89.033 (2)°
Mr = 330.65V = 660.35 (19) Å3
Triclinic, P1Z = 2
a = 7.3041 (12) ÅMo Kα radiation
b = 9.3952 (16) ŵ = 0.33 mm1
c = 9.6850 (16) ÅT = 293 K
α = 83.813 (2)°0.25 × 0.23 × 0.21 mm
β = 88.172 (2)°
Data collection top
Rigaku SCXmini
diffractometer
Rint = 0.023
4758 measured reflections3 standard reflections every 150 reflections
2332 independent reflections intensity decay: none
1810 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
2332 reflectionsΔρmin = 0.32 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45451 (9)0.28014 (8)0.85154 (7)0.0573 (3)
C10.0819 (3)0.4157 (2)0.6577 (2)0.0366 (5)
C20.0022 (3)0.5048 (3)0.7415 (3)0.0410 (6)
H20.05160.59220.75730.049*
C30.1646 (3)0.4627 (3)0.8006 (3)0.0417 (6)
C40.2506 (3)0.3322 (3)0.7788 (2)0.0406 (6)
C50.1668 (3)0.2480 (2)0.6936 (3)0.0400 (6)
C60.0007 (3)0.2851 (2)0.6312 (2)0.0386 (6)
C70.2288 (3)0.2322 (3)0.4948 (3)0.0474 (6)
H70.28230.17140.43850.057*
C80.2573 (3)0.4555 (3)0.5944 (2)0.0399 (6)
C90.6882 (5)0.8879 (4)0.7816 (4)0.0864 (11)
H9A0.72940.91900.68830.130*
H9B0.56960.92910.79900.130*
H9C0.68070.78540.79360.130*
C100.8197 (4)0.9348 (3)0.8806 (3)0.0577 (7)
N10.2488 (3)0.5589 (3)0.8899 (3)0.0516 (6)
N20.2536 (3)0.1115 (2)0.6652 (2)0.0469 (5)
N30.0740 (3)0.1927 (2)0.5468 (2)0.0473 (5)
N40.3205 (3)0.3552 (2)0.5155 (2)0.0424 (5)
H4A0.42420.37120.47680.051*
O10.3420 (2)0.56686 (18)0.6085 (2)0.0546 (5)
O20.3030 (4)0.6707 (3)0.8373 (3)0.0982 (9)
O30.2565 (4)0.5191 (4)1.0109 (3)0.1116 (11)
O40.3643 (3)0.1136 (2)0.5693 (2)0.0664 (6)
O50.2093 (3)0.0052 (2)0.7389 (2)0.0735 (6)
O60.8157 (3)1.0667 (2)0.8998 (2)0.0722 (6)
H1000.90961.08940.93680.087*
O70.9282 (3)0.8452 (2)0.9401 (2)0.0691 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0381 (4)0.0782 (5)0.0559 (5)0.0006 (3)0.0151 (3)0.0054 (3)
C10.0351 (12)0.0392 (12)0.0357 (13)0.0021 (10)0.0042 (10)0.0032 (10)
C20.0410 (14)0.0386 (12)0.0440 (14)0.0034 (10)0.0038 (11)0.0063 (10)
C30.0399 (13)0.0480 (14)0.0387 (13)0.0109 (11)0.0032 (11)0.0097 (11)
C40.0329 (13)0.0504 (14)0.0383 (13)0.0033 (11)0.0033 (11)0.0023 (11)
C50.0368 (13)0.0403 (13)0.0431 (14)0.0001 (10)0.0039 (11)0.0049 (11)
C60.0369 (13)0.0394 (12)0.0398 (13)0.0043 (10)0.0034 (11)0.0049 (10)
C70.0445 (15)0.0473 (14)0.0529 (16)0.0007 (12)0.0117 (13)0.0140 (12)
C80.0369 (13)0.0418 (13)0.0412 (14)0.0029 (11)0.0079 (11)0.0030 (11)
C90.092 (3)0.080 (2)0.090 (3)0.004 (2)0.037 (2)0.009 (2)
C100.0504 (17)0.0579 (18)0.0637 (19)0.0042 (14)0.0068 (14)0.0007 (14)
N10.0443 (13)0.0635 (15)0.0504 (15)0.0095 (11)0.0075 (11)0.0179 (12)
N20.0406 (12)0.0462 (13)0.0546 (14)0.0049 (10)0.0073 (11)0.0084 (11)
N30.0451 (12)0.0459 (12)0.0537 (13)0.0001 (10)0.0124 (10)0.0154 (10)
N40.0346 (11)0.0472 (11)0.0470 (12)0.0002 (9)0.0135 (9)0.0090 (9)
O10.0483 (11)0.0442 (10)0.0745 (13)0.0110 (8)0.0226 (10)0.0169 (9)
O20.132 (2)0.0697 (15)0.0967 (19)0.0419 (15)0.0373 (17)0.0089 (14)
O30.135 (3)0.154 (3)0.0519 (15)0.075 (2)0.0054 (16)0.0282 (16)
O40.0610 (13)0.0697 (13)0.0686 (14)0.0091 (10)0.0139 (11)0.0138 (11)
O50.0827 (16)0.0466 (11)0.0875 (16)0.0069 (10)0.0103 (13)0.0048 (11)
O60.0634 (13)0.0667 (14)0.0885 (16)0.0045 (10)0.0276 (12)0.0107 (12)
O70.0586 (12)0.0571 (12)0.0892 (16)0.0049 (10)0.0190 (12)0.0094 (11)
Geometric parameters (Å, º) top
Cl1—C41.710 (2)C8—O11.225 (3)
C1—C21.390 (3)C8—N41.371 (3)
C1—C61.399 (3)C9—C101.482 (4)
C1—C81.463 (3)C9—H9A0.9600
C2—C31.368 (3)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.402 (3)C10—O71.253 (4)
C3—N11.471 (3)C10—O61.273 (3)
C4—C51.367 (3)N1—O21.186 (3)
C5—C61.404 (3)N1—O31.193 (3)
C5—N21.470 (3)N2—O51.206 (3)
C6—N31.380 (3)N2—O41.210 (3)
C7—N31.285 (3)N4—H4A0.8600
C7—N41.356 (3)O6—H1000.8254
C7—H70.9300
C2—C1—C6120.8 (2)O1—C8—C1124.6 (2)
C2—C1—C8121.1 (2)N4—C8—C1113.4 (2)
C6—C1—C8118.0 (2)C10—C9—H9A109.5
C3—C2—C1119.4 (2)C10—C9—H9B109.5
C3—C2—H2120.3H9A—C9—H9B109.5
C1—C2—H2120.3C10—C9—H9C109.5
C2—C3—C4122.0 (2)H9A—C9—H9C109.5
C2—C3—N1118.0 (2)H9B—C9—H9C109.5
C4—C3—N1120.0 (2)O7—C10—O6123.4 (3)
C5—C4—C3117.3 (2)O7—C10—C9119.6 (3)
C5—C4—Cl1120.62 (19)O6—C10—C9117.0 (3)
C3—C4—Cl1122.05 (19)O2—N1—O3124.5 (3)
C4—C5—C6123.1 (2)O2—N1—C3117.9 (2)
C4—C5—N2119.3 (2)O3—N1—C3117.5 (3)
C6—C5—N2117.6 (2)O5—N2—O4124.6 (2)
N3—C6—C1124.0 (2)O5—N2—C5117.7 (2)
N3—C6—C5118.7 (2)O4—N2—C5117.7 (2)
C1—C6—C5117.3 (2)C7—N3—C6115.4 (2)
N3—C7—N4125.3 (2)C7—N4—C8123.8 (2)
N3—C7—H7117.3C7—N4—H4A118.1
N4—C7—H7117.3C8—N4—H4A118.1
O1—C8—N4122.0 (2)C10—O6—H100111.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.861.972.827 (3)173
O6—H100···O7ii0.831.862.665 (3)163
Symmetry codes: (i) x1, y+1, z+1; (ii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC8H3ClN4O5·C2H4O2
Mr330.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3041 (12), 9.3952 (16), 9.6850 (16)
α, β, γ (°)83.813 (2), 88.172 (2), 89.033 (2)
V3)660.35 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4758, 2332, 1810
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.05
No. of reflections2332
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.861.972.827 (3)173
O6—H100···O7ii0.831.862.665 (3)163
Symmetry codes: (i) x1, y+1, z+1; (ii) x+2, y+2, z+2.
 

Acknowledgements

The author gratefully acknowledges financial support by the Natural Science Foundation of Jiangsu Province (BK2009293).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Declera, E. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, T., Suhitha, S., Priya, M. G. R., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTereshima, K., Shimamura, H., Kawase, A., Tanaka, Y., Tanimura, T., Ishizuka, Y. & Sato, M. (1995). Chem. Pharm. Bull. 45, 2021–2023.  Google Scholar
First citationWolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. S. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161–166.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds