organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(5-Chloro-2-oxido­benzyl­­idene)aza­nium­yl]-2-methyl­propane-1,3-diol

aHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 23 December 2011; accepted 26 December 2011; online 7 January 2012)

The title compound, C11H14ClNO3, was prepared by the condensation of equimolar quanti­ties of 5-chloro­salicyl­aldehyde and 2-amino-2-methyl­propane-1,3-diol in methanol. In the crystal, it exists in the zwitterionic form, with nominal proton transfer from the phenol group to the imine N atom. This results in the formation of an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring. Inter­molecular O—H⋯O hydrogen bonds arise from the hy­droxy groups, forming (001) sheets.

Related literature

For a related structure we have reported recently and for background to Schiff bases, see: Wang et al. (2011[Wang, D.-Y., Meng, X.-F. & Ma, J.-J. (2011). Acta Cryst. E67, o3150.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14ClNO3

  • Mr = 243.68

  • Orthorhombic, P 21 21 21

  • a = 6.0019 (16) Å

  • b = 8.838 (3) Å

  • c = 21.555 (3) Å

  • V = 1143.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.968

  • 5744 measured reflections

  • 2105 independent reflections

  • 1745 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.076

  • S = 1.05

  • 2105 reflections

  • 155 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 842 Friedel pairs

  • Flack parameter: −0.06 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.90 (1) 1.84 (2) 2.606 (3) 142 (2)
O4—H4⋯O3i 0.85 (1) 1.87 (1) 2.680 (2) 160 (3)
O3—H3A⋯O1ii 0.85 (1) 1.80 (1) 2.648 (2) 176 (3)
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported the structures of a few Schiff base compounds (e.g. Wang et al., 2011). As a continuation of the work, we present here the crystal structure of the title compound, that was obtained as the product of the reaction of 5-chlorosalicylaldehyde with 2-amino-2-methylpropane-1,3-diol in methanol.

In the title compound, Fig. 1, there in an intramolecular N1—H1···O1 hydrogen bond (Table 1). The bond distances and angles are within normal ranges (Allen et al., 1987).

In the crystal of the compound, the Schiff base molecules are linked through intermolecular O—H···O hydrogen bond, to form (001) sheets. (Table 1 and Fig. 2).

Related literature top

For a related structure we have reported recently and for background to Schiff bases, see: Wang et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a methanol solution (10 ml) of 5-chlorosalicylaldehyde (0.1 mmol, 15.6 mg) and 2-amino-2-methylpropane-1,3-diol (0.1 mmol, 10.5 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The yellow crystalline solid was collected by filtration, washed with cold methanol and dried in air. Yellow blocks were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The NH and OH H-atoms were located in a difference Fourier map and were refined with distance restraints, N—H = 0.90 (1) Å, and O—H = 0.85 (1) Å. The C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Intramolecular N—H···O hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Fragments of (001) sheets moleucles of the title compound, viewed along the a axis.
2-[(5-Chloro-2-oxidobenzylidene)azaniumyl]-2-methylpropane-1,3-diol top
Crystal data top
C11H14ClNO3Dx = 1.416 Mg m3
Mr = 243.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1733 reflections
a = 6.0019 (16) Åθ = 2.5–24.2°
b = 8.838 (3) ŵ = 0.33 mm1
c = 21.555 (3) ÅT = 298 K
V = 1143.4 (5) Å3Block, yellow
Z = 40.13 × 0.12 × 0.10 mm
F(000) = 512
Data collection top
Bruker SMART 1K CCD
diffractometer
2105 independent reflections
Radiation source: fine-focus sealed tube1745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 57
Tmin = 0.959, Tmax = 0.968k = 1010
5744 measured reflectionsl = 2621
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.113P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2105 reflectionsΔρmax = 0.17 e Å3
155 parametersΔρmin = 0.15 e Å3
3 restraintsAbsolute structure: Flack (1983), 842 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (8)
Crystal data top
C11H14ClNO3V = 1143.4 (5) Å3
Mr = 243.68Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0019 (16) ŵ = 0.33 mm1
b = 8.838 (3) ÅT = 298 K
c = 21.555 (3) Å0.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1745 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.968Rint = 0.033
5744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.17 e Å3
S = 1.05Δρmin = 0.15 e Å3
2105 reflectionsAbsolute structure: Flack (1983), 842 Friedel pairs
155 parametersAbsolute structure parameter: 0.06 (8)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67835 (15)0.07637 (8)0.02077 (3)0.0613 (2)
N10.8677 (3)0.4851 (2)0.15414 (9)0.0356 (5)
O11.2095 (3)0.30421 (19)0.14623 (7)0.0422 (4)
O30.5214 (3)0.6832 (2)0.27003 (8)0.0462 (5)
O41.0926 (3)0.6167 (2)0.24842 (11)0.0609 (6)
C11.0897 (4)0.2197 (3)0.11037 (11)0.0350 (6)
C21.1701 (5)0.0789 (3)0.08645 (11)0.0442 (6)
H21.31070.04490.09810.053*
C31.0452 (5)0.0064 (3)0.04693 (12)0.0470 (7)
H31.10320.09650.03160.056*
C40.8320 (5)0.0388 (3)0.02898 (11)0.0412 (6)
C50.7447 (4)0.1709 (3)0.05062 (10)0.0366 (6)
H50.60310.20120.03830.044*
C60.8698 (4)0.2620 (3)0.09192 (10)0.0315 (5)
C70.7671 (4)0.3945 (3)0.11616 (10)0.0352 (6)
H70.62190.41700.10420.042*
C80.7731 (4)0.6211 (3)0.18423 (10)0.0350 (6)
C90.6345 (6)0.7147 (3)0.13884 (12)0.0603 (8)
H9A0.72020.73410.10210.090*
H9B0.59400.80890.15790.090*
H9C0.50200.65980.12800.090*
C100.6293 (4)0.5634 (3)0.23840 (11)0.0384 (6)
H10A0.51810.49380.22260.046*
H10B0.72290.50850.26740.046*
C110.9699 (4)0.7115 (3)0.20833 (12)0.0462 (7)
H11A1.06270.74460.17410.055*
H11B0.91800.80020.23060.055*
H3A0.603 (4)0.720 (3)0.2983 (10)0.069*
H41.215 (3)0.651 (3)0.2621 (12)0.069*
H11.005 (2)0.452 (3)0.1646 (11)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0825 (6)0.0435 (4)0.0579 (4)0.0035 (4)0.0139 (4)0.0124 (3)
N10.0328 (13)0.0364 (11)0.0375 (11)0.0047 (10)0.0019 (11)0.0049 (9)
O10.0355 (11)0.0420 (10)0.0492 (10)0.0030 (8)0.0089 (9)0.0012 (8)
O30.0260 (10)0.0535 (11)0.0593 (13)0.0027 (9)0.0050 (9)0.0220 (9)
O40.0310 (11)0.0618 (13)0.0897 (15)0.0013 (10)0.0201 (11)0.0092 (12)
C10.0362 (16)0.0340 (13)0.0349 (13)0.0015 (11)0.0023 (11)0.0063 (11)
C20.0376 (15)0.0406 (14)0.0543 (15)0.0119 (14)0.0050 (14)0.0048 (13)
C30.0590 (19)0.0330 (13)0.0491 (16)0.0070 (14)0.0076 (15)0.0023 (13)
C40.0514 (17)0.0346 (13)0.0376 (13)0.0026 (13)0.0027 (13)0.0006 (11)
C50.0362 (16)0.0358 (13)0.0377 (13)0.0003 (11)0.0001 (12)0.0000 (11)
C60.0285 (14)0.0331 (12)0.0329 (12)0.0010 (11)0.0026 (11)0.0009 (11)
C70.0318 (14)0.0378 (13)0.0360 (13)0.0002 (11)0.0009 (11)0.0011 (11)
C80.0351 (15)0.0286 (12)0.0412 (13)0.0039 (11)0.0039 (12)0.0041 (10)
C90.076 (2)0.0487 (16)0.0564 (17)0.0194 (16)0.0117 (16)0.0018 (14)
C100.0296 (14)0.0332 (12)0.0524 (15)0.0012 (12)0.0023 (12)0.0090 (12)
C110.0412 (17)0.0391 (14)0.0585 (17)0.0131 (13)0.0074 (15)0.0071 (13)
Geometric parameters (Å, º) top
Cl1—C41.743 (2)C4—C51.362 (3)
N1—C71.294 (3)C5—C61.416 (3)
N1—C81.479 (3)C5—H50.9300
N1—H10.903 (10)C6—C71.423 (3)
O1—C11.293 (3)C7—H70.9300
O3—C101.416 (3)C8—C111.517 (3)
O3—H3A0.847 (10)C8—C91.528 (3)
O4—C111.411 (3)C8—C101.539 (3)
O4—H40.847 (10)C9—H9A0.9600
C1—C61.428 (3)C9—H9B0.9600
C1—C21.431 (3)C9—H9C0.9600
C2—C31.362 (3)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.395 (4)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C7—N1—C8126.9 (2)C6—C7—H7118.7
C7—N1—H1112.7 (17)N1—C8—C11106.2 (2)
C8—N1—H1120.1 (17)N1—C8—C9111.61 (19)
C10—O3—H3A112 (2)C11—C8—C9111.0 (2)
C11—O4—H4117 (2)N1—C8—C10106.20 (18)
O1—C1—C6121.9 (2)C11—C8—C10110.55 (19)
O1—C1—C2122.0 (2)C9—C8—C10111.1 (2)
C6—C1—C2116.1 (2)C8—C9—H9A109.5
C3—C2—C1121.4 (2)C8—C9—H9B109.5
C3—C2—H2119.3H9A—C9—H9B109.5
C1—C2—H2119.3C8—C9—H9C109.5
C2—C3—C4121.3 (2)H9A—C9—H9C109.5
C2—C3—H3119.3H9B—C9—H9C109.5
C4—C3—H3119.3O3—C10—C8111.98 (19)
C5—C4—C3120.2 (2)O3—C10—H10A109.2
C5—C4—Cl1120.5 (2)C8—C10—H10A109.2
C3—C4—Cl1119.27 (19)O3—C10—H10B109.2
C4—C5—C6119.9 (2)C8—C10—H10B109.2
C4—C5—H5120.0H10A—C10—H10B107.9
C6—C5—H5120.0O4—C11—C8107.65 (19)
C5—C6—C7118.0 (2)O4—C11—H11A110.2
C5—C6—C1121.1 (2)C8—C11—H11A110.2
C7—C6—C1120.9 (2)O4—C11—H11B110.2
N1—C7—C6122.6 (2)C8—C11—H11B110.2
N1—C7—H7118.7H11A—C11—H11B108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.90 (1)1.84 (2)2.606 (3)142 (2)
O4—H4···O3i0.85 (1)1.87 (1)2.680 (2)160 (3)
O3—H3A···O1ii0.85 (1)1.80 (1)2.648 (2)176 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14ClNO3
Mr243.68
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.0019 (16), 8.838 (3), 21.555 (3)
V3)1143.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
5744, 2105, 1745
Rint0.033
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.076, 1.05
No. of reflections2105
No. of parameters155
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15
Absolute structureFlack (1983), 842 Friedel pairs
Absolute structure parameter0.06 (8)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.903 (10)1.837 (18)2.606 (3)142 (2)
O4—H4···O3i0.847 (10)1.870 (14)2.680 (2)160 (3)
O3—H3A···O1ii0.847 (10)1.802 (11)2.648 (2)176 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This project was sponsored by the Natural Development Foundation of Hebei Province (B2011204051), the Development Foundation of the Department of Education of Hebei Province (2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-Y., Meng, X.-F. & Ma, J.-J. (2011). Acta Cryst. E67, o3150.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds