organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2,4,4,6,6-Penta­chloro-1,3,5,2λ5,4λ5,6λ5-tri­aza­triphosphinin-2-yl)aza­nid­yl]pyridinium

aDepartment of Chemistry, College of Education Samarra, University of Tikrit, Tikrit 43001, Iraq, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 December 2011; accepted 3 January 2012; online 7 January 2012)

The title compound, C5H5Cl5N5P3, crystallizes as a zwitterion in which the pyridine N atom is protonated. An S(6) ring motif is formed via an intra­molecular C—H⋯N hydrogen bond. The triaza­triphosphinine ring adopts an envelope conformation, with one N atom displaced by 0.145 (1) Å from the other atoms. In the crystal, N—H⋯N and C—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers containing one R22(7) ring motif and two R22(8) ring motifs.

Related literature

For background to the reactions of hexa­chloro­cyclo­triphosphazene, see: Polder & Wagner (1976[Polder, W. & Wagner, A. J. (1976). Cryst. Struct. Commun. 5, 253-257.]). For a related structure, see: Coles et al. (2007[Coles, S. J., Davies, D. B., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2007). Acta Cryst. E63, o3753.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5Cl5N5P3

  • Mr = 405.30

  • Monoclinic, P 21 /c

  • a = 8.8677 (1) Å

  • b = 14.7225 (2) Å

  • c = 12.3564 (2) Å

  • β = 119.355 (1)°

  • V = 1406.05 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 100 K

  • 0.59 × 0.38 × 0.36 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.499, Tmax = 0.640

  • 19432 measured reflections

  • 5116 independent reflections

  • 4806 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.09

  • 5116 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1⋯N4i 0.84 2.16 2.9949 (14) 177
C2—H2A⋯N3 0.93 2.55 3.1538 (19) 123
C5—H5A⋯N1i 0.93 2.50 3.2220 (16) 135
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hexachlorocyclotriphosphazene is an inorganic six-membered cyclic compound consisting of alternating phosphorous and nitrogen atoms. It can also be considered as a trimer of azaphosphoryldichloride (NPCl2), which can be readily formed by the reaction of phosphorous pentachloride and ammonium chloride in chlorobenzene. The results of the reaction of phosphazene derivatives with nucleophile reagent strongly depend on reaction conditions whereas a series of various substitution derivatives can be formed (e.g. Polder & Wagner, 1976).

The title compound (Fig. 1), crystallizes as a zwitterion in which the pyridine N atom is protonated. An S(6) ring motif is formed via an intramolecular C2—H2A···N3 hydrogen bond (Table 1). The triazatriphosphinine ring (P1/N2/P2/N3/P3/N1) adopts an envelope conformation with the puckering parameters (Cremer & Pople, 1975), Q = 0.2087 Å; Θ = 138.0 (2)°; ϕ = 3.7 (4)° and it is comparable to a related stucture (Coles et al., 2007). In the crystal (Fig. 2), N5—H1···N4 and C5—H5A···N1 hydrogen bonds (Table 1) link the molecules to form one R22(7) ring motif and two R22(8) ring motifs.

Related literature top

For background to the reactions of hexachlorocyclotriphosphazene, see: Polder & Wagner (1976). For a related structure, see: Coles et al. (2007). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hexachlorocyclotriphosphazene (0.5 g, 0.07 mol), 2-aminopyridine (0.26 g, 0.14 mol) and triethyl amine (0.14 g, 0.07 mol) were stirred in acetone at -80°C in liquid nitrogen bath for 5 h under anhydrous conditions. The obtained triethylammoniumchloride was filtered off under nitrogen and washed with fresh acetone and the solvent reduced to the minimum. Further, 10 ml of dried acetone was added the yield of the title product after deep freezing crystalization was about 60–66%. Colourless blocks were obtained by the slow evaporation of solvent at freezing temperature of acetone. M.p.: 455 K.

Refinement top

The N-bound hydrogen atom was located from the difference Fourier map and was fixed at their found positions with a riding model with Uiso(H) = 1.2 Ueq(N) [N–H= 0.8354 Å]. The remaining hydrogen atoms were positioned geometrically and were refined with a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 Å]. Four outliners were omitted for the final refinement, 3 16 4, 3 19 6, -3 16 7 and -3 19 9.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-[(2,4,4,6,6-Pentachloro-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin- 2-yl)azanidyl]pyridinium top
Crystal data top
C5H5Cl5N5P3F(000) = 800
Mr = 405.30Dx = 1.915 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9860 reflections
a = 8.8677 (1) Åθ = 2.4–32.6°
b = 14.7225 (2) ŵ = 1.36 mm1
c = 12.3564 (2) ÅT = 100 K
β = 119.355 (1)°Block, colourless
V = 1406.05 (3) Å30.59 × 0.38 × 0.36 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5116 independent reflections
Radiation source: fine-focus sealed tube4806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 32.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1113
Tmin = 0.499, Tmax = 0.640k = 2219
19432 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0211P)2 + 1.0751P]
where P = (Fo2 + 2Fc2)/3
5116 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C5H5Cl5N5P3V = 1406.05 (3) Å3
Mr = 405.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8677 (1) ŵ = 1.36 mm1
b = 14.7225 (2) ÅT = 100 K
c = 12.3564 (2) Å0.59 × 0.38 × 0.36 mm
β = 119.355 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4806 reflections with I > 2σ(I)
Tmin = 0.499, Tmax = 0.640Rint = 0.017
19432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.09Δρmax = 0.54 e Å3
5116 reflectionsΔρmin = 0.39 e Å3
163 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.37616 (5)0.29414 (2)0.46163 (3)0.02552 (7)
Cl21.44578 (4)0.19325 (3)0.27089 (3)0.02419 (7)
Cl30.89064 (4)0.22782 (2)0.05598 (3)0.02220 (7)
Cl40.77111 (4)0.35825 (2)0.08438 (3)0.02138 (6)
Cl50.99461 (4)0.00326 (2)0.13895 (3)0.01986 (6)
P11.25273 (4)0.22143 (2)0.30552 (3)0.01580 (6)
P20.92671 (4)0.25229 (2)0.11553 (3)0.01506 (6)
P30.99248 (4)0.09616 (2)0.25490 (3)0.01336 (6)
N11.18802 (13)0.13083 (8)0.33652 (9)0.01774 (19)
N21.12016 (15)0.28591 (8)0.19854 (10)0.0216 (2)
N30.85908 (13)0.17106 (8)0.16243 (9)0.01651 (18)
N40.93798 (13)0.04813 (7)0.34645 (9)0.01398 (17)
N50.75893 (13)0.03097 (7)0.39730 (9)0.01419 (17)
H10.84570.03600.46770.017*
C10.78001 (15)0.01276 (8)0.30878 (10)0.01275 (18)
C20.63220 (16)0.01682 (9)0.18857 (10)0.0171 (2)
H2A0.63940.04590.12440.021*
C30.47895 (16)0.02188 (10)0.16644 (11)0.0200 (2)
H3A0.38330.01900.08730.024*
C40.46472 (16)0.06569 (10)0.26157 (11)0.0212 (2)
H4A0.36080.09160.24690.025*
C50.60793 (16)0.06919 (9)0.37649 (11)0.0190 (2)
H5A0.60180.09810.44120.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02946 (16)0.02404 (16)0.01697 (12)0.00508 (12)0.00667 (11)0.00396 (11)
Cl20.02044 (14)0.03211 (18)0.02312 (13)0.00176 (12)0.01309 (11)0.00253 (12)
Cl30.02719 (15)0.02464 (15)0.01649 (12)0.00050 (12)0.01203 (11)0.00132 (10)
Cl40.02328 (14)0.01568 (13)0.02180 (13)0.00245 (10)0.00843 (11)0.00085 (10)
Cl50.02308 (14)0.02248 (15)0.01536 (11)0.00251 (11)0.01046 (10)0.00064 (10)
P10.01431 (13)0.01830 (15)0.01237 (12)0.00312 (11)0.00467 (10)0.00161 (10)
P20.01528 (13)0.01473 (14)0.01295 (12)0.00074 (10)0.00522 (10)0.00284 (10)
P30.01322 (12)0.01484 (14)0.01122 (11)0.00054 (10)0.00537 (9)0.00243 (9)
N10.0139 (4)0.0200 (5)0.0156 (4)0.0022 (4)0.0043 (3)0.0049 (4)
N20.0172 (5)0.0210 (5)0.0194 (4)0.0042 (4)0.0035 (4)0.0070 (4)
N30.0144 (4)0.0170 (5)0.0160 (4)0.0001 (4)0.0058 (3)0.0054 (3)
N40.0145 (4)0.0157 (4)0.0117 (4)0.0018 (3)0.0063 (3)0.0015 (3)
N50.0137 (4)0.0160 (5)0.0116 (4)0.0016 (3)0.0053 (3)0.0008 (3)
C10.0149 (5)0.0120 (5)0.0117 (4)0.0001 (4)0.0067 (4)0.0003 (3)
C20.0157 (5)0.0227 (6)0.0115 (4)0.0004 (4)0.0055 (4)0.0017 (4)
C30.0157 (5)0.0275 (6)0.0135 (4)0.0016 (5)0.0045 (4)0.0007 (4)
C40.0156 (5)0.0282 (7)0.0172 (5)0.0055 (5)0.0059 (4)0.0005 (4)
C50.0172 (5)0.0228 (6)0.0162 (5)0.0041 (4)0.0075 (4)0.0028 (4)
Geometric parameters (Å, º) top
Cl1—P11.9987 (4)N4—C11.3456 (15)
Cl2—P12.0011 (5)N5—C51.3558 (16)
Cl3—P22.0146 (4)N5—C11.3589 (14)
Cl4—P21.9912 (5)N5—H10.8354
Cl5—P32.0548 (4)C1—C21.4209 (15)
P1—N11.5719 (11)C2—C31.3718 (18)
P1—N21.5834 (11)C2—H2A0.9300
P2—N31.5705 (11)C3—C41.3996 (18)
P2—N21.5858 (11)C3—H3A0.9300
P3—N41.5967 (10)C4—C51.3652 (17)
P3—N11.6031 (11)C4—H4A0.9300
P3—N31.6111 (11)C5—H5A0.9300
N1—P1—N2120.13 (6)P2—N3—P3120.16 (7)
N1—P1—Cl1108.18 (4)C1—N4—P3123.48 (8)
N2—P1—Cl1108.41 (5)C5—N5—C1123.83 (10)
N1—P1—Cl2109.20 (5)C5—N5—H1118.7
N2—P1—Cl2107.98 (5)C1—N5—H1117.4
Cl1—P1—Cl2101.32 (2)N4—C1—N5115.82 (10)
N3—P2—N2119.12 (6)N4—C1—C2128.01 (10)
N3—P2—Cl4108.31 (4)N5—C1—C2116.17 (10)
N2—P2—Cl4107.93 (5)C3—C2—C1120.46 (11)
N3—P2—Cl3111.07 (4)C3—C2—H2A119.8
N2—P2—Cl3107.45 (5)C1—C2—H2A119.8
Cl4—P2—Cl3101.487 (19)C2—C3—C4120.82 (11)
N4—P3—N1107.76 (5)C2—C3—H3A119.6
N4—P3—N3115.69 (6)C4—C3—H3A119.6
N1—P3—N3114.83 (6)C5—C4—C3118.04 (12)
N4—P3—Cl5106.73 (4)C5—C4—H4A121.0
N1—P3—Cl5106.78 (5)C3—C4—H4A121.0
N3—P3—Cl5104.34 (4)N5—C5—C4120.68 (11)
P1—N1—P3121.89 (7)N5—C5—H5A119.7
P1—N2—P2118.55 (7)C4—C5—H5A119.7
N2—P1—N1—P35.48 (12)N1—P3—N3—P224.81 (10)
Cl1—P1—N1—P3130.57 (7)Cl5—P3—N3—P291.71 (7)
Cl2—P1—N1—P3119.97 (7)N1—P3—N4—C1178.60 (10)
N4—P3—N1—P1144.81 (8)N3—P3—N4—C148.55 (12)
N3—P3—N1—P114.28 (11)Cl5—P3—N4—C167.03 (10)
Cl5—P3—N1—P1100.84 (8)P3—N4—C1—N5175.77 (9)
N1—P1—N2—P26.08 (12)P3—N4—C1—C25.33 (18)
Cl1—P1—N2—P2131.06 (7)C5—N5—C1—N4178.77 (12)
Cl2—P1—N2—P2119.94 (7)C5—N5—C1—C20.27 (18)
N3—P2—N2—P116.53 (12)N4—C1—C2—C3178.84 (13)
Cl4—P2—N2—P1140.46 (7)N5—C1—C2—C30.06 (18)
Cl3—P2—N2—P1110.81 (8)C1—C2—C3—C40.3 (2)
N2—P2—N3—P326.66 (11)C2—C3—C4—C50.4 (2)
Cl4—P2—N3—P3150.41 (6)C1—N5—C5—C40.1 (2)
Cl3—P2—N3—P398.96 (7)C3—C4—C5—N50.2 (2)
N4—P3—N3—P2151.37 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···N4i0.842.162.9949 (14)177
C2—H2A···N30.932.553.1538 (19)123
C5—H5A···N1i0.932.503.2220 (16)135
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H5Cl5N5P3
Mr405.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.8677 (1), 14.7225 (2), 12.3564 (2)
β (°) 119.355 (1)
V3)1406.05 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.59 × 0.38 × 0.36
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.499, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
19432, 5116, 4806
Rint0.017
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.09
No. of reflections5116
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···N4i0.842.162.9949 (14)177
C2—H2A···N30.932.553.1538 (19)123
C5—H5A···N1i0.932.503.2220 (16)135
Symmetry code: (i) x+2, y, z+1.
 

Footnotes

Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

We thank the University of Tikrit for research leave (for SSA) and Universiti Sains Malaysia (USM) for the Research University Fund (1001/PKIMIA/811157) and RU grant (1001/PKIMIA/813023) (to RAH and ZZH). HKF and WSL thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColes, S. J., Davies, D. B., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2007). Acta Cryst. E63, o3753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPolder, W. & Wagner, A. J. (1976). Cryst. Struct. Commun. 5, 253–257.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds