organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(2,4-di­fluoro­phen­yl)hydrazinyl­­idene]-3-oxo­butano­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 January 2012; accepted 9 January 2012; online 18 January 2012)

The asymmetric unit of the title compound, C12H12F2N2O3, contains two mol­ecules, both of which exist in an E conformation with respect to their C=N bonds [1.321 (6) and 1.310 (6) Å]. The mol­ecular conformations are supported by intra­molecular N—H⋯O hydrogen bonds, which generate S(6) rings. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds into layers lying parallel to (001). The crystal studied was an inversion twin with a 0.58 (1):0.42 (1) domain ratio.

Related literature

For the biological activity of oxobutano­ate derivatives, see: Billington et al. (1979[Billington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827-836.]); Stancho et al. (2008[Stancho, S., Georgi, M., Frank, J. & Ilia, M. (2008). Eur. J. Med. Chem. 43, 694-706.]). For the biological activity of pyrazole derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Girisha et al. (2010[Girisha, K.S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12F2N2O3

  • Mr = 270.24

  • Orthorhombic, P c a 21

  • a = 21.814 (4) Å

  • b = 9.0079 (15) Å

  • c = 13.188 (2) Å

  • V = 2591.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.38 × 0.32 × 0.31 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.964

  • 14829 measured reflections

  • 3855 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.219

  • S = 1.02

  • 3855 reflections

  • 356 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1NB⋯O2B 0.92 (4) 1.78 (4) 2.541 (5) 138 (4)
N1A—H1NA⋯O2A 0.86 (5) 1.88 (5) 2.547 (6) 133 (4)
C2A—H2AA⋯O2Ai 0.93 2.58 3.476 (7) 163
C4A—H4AA⋯O3Aii 0.93 2.45 3.375 (6) 173
C2B—H2BA⋯O2Bi 0.93 2.54 3.449 (6) 166
C4B—H4BA⋯O3Bii 0.93 2.46 3.380 (6) 170
C10A—H10A⋯F2Aiii 0.96 2.54 3.343 (9) 141
C10B—H10D⋯F2Biii 0.96 2.48 3.330 (7) 148
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y, z]; (iii) [x+{\script{1\over 2}}, -y+1, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of oxobutanoates are biologically important. 4-Methylthio-2- oxobutanoate was identified in the culture fluids of a range of bacteria, e.g. the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum (Billington et al., 1979). Some oxobutanoates exhibit cytotoxic properties (Stancho et al., 2008). Pyrazole derivatives are well established in the literatures as important biologically effective heterocyclic compounds (Rai et al., 2008). These derivatives are the subject of many research studies due to their widespread pharmacological activities such as anti-inflammatory (Girisha et al., 2010), antipyretic, antimicrobial (Isloor et al., 2009), and antiviral activities. The widely prescribed anti-inflammatory pyrazole derivatives, celecoxib and deracoxib, are selective COX-2 inhibitors with reduced ulcerogenic side effects. The title compound (I), ethyl-2-[(2,4-difluorophenyl)hydrazinylidene]-3-oxobutanoate, is an intermediate in the preparation of pyrazole derivative. Condensation of oxobutanoate with thiosemicarbazide in glacial acetic acid medium gave the required pyrazole derivatives.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), A and B, with comparable geometries. Both molecules exist in trans conformations with respect to the C7N2 bonds [C7AN2A = 1.321 (6) Å, C7BN2B = 1.310 (6) Å]. The crystal studied was an inversion twin with a 0.58 (1):0.42 (1) domain ratio. The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges. The molecular structure is stabilized by intramolecular N1A–H1NA···O2A and N1B–H1NB···O2B hydrogen bonds which generate S(6) ring motifs (Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked via C2A–H2AA···O2A, C4A–H4AA···O3A, C10A–H10A···F2A, C2B–H2BA···O2B, C4B–H4BA···O3B and C10B–H10D···F2B hydrogen bonds (Table 1) into infinite sheets lying parallel to the (001) plane.

Related literature top

For the biological activity of oxobutanoate derivatives, see: Billington et al. (1979); Stancho et al. (2008). For the biological activity of pyrazole derivatives, see: Rai et al. (2008); Girisha et al. (2010); Isloor et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by dissolving 2,4-difluoroaniline (0.01 mol) in dilute hydrochloric acid (10 ml) and cooled to 273K in an ice bath. To this, a cold solution of sodium nitrite (0.02 mol) was added. The resulting diazonium salt solution was filtered into a cold solution of ethyl acetoacetate (0.05 mol) and sodium acetate in ethanol. The separated yellow solid was filtered, washed with water and recrystallized from ethanol. Yellow blocks of (I) were obtained from DMF by slow evaporation.

Refinement top

Atoms H1NA and H1NB were located in a difference Fourier map and refined freely with N-H = 0.86 (6) and 0.92 (5) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The crystal studied was an inversion twin with a 0.58 (1):0.42 (1) domain ratio.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Ethyl 2-[(2,4-difluorophenyl)hydrazinylidene]-3-oxobutanoate top
Crystal data top
C12H12F2N2O3F(000) = 1120
Mr = 270.24Dx = 1.385 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3499 reflections
a = 21.814 (4) Åθ = 2.3–29.8°
b = 9.0079 (15) ŵ = 0.12 mm1
c = 13.188 (2) ÅT = 296 K
V = 2591.4 (8) Å3Block, yellow
Z = 80.38 × 0.32 × 0.31 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3855 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 29.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2530
Tmin = 0.957, Tmax = 0.964k = 1211
14829 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.1013P)2 + 0.7683P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3855 reflectionsΔρmax = 0.22 e Å3
356 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 3406 Friedel pairs
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H12F2N2O3V = 2591.4 (8) Å3
Mr = 270.24Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 21.814 (4) ŵ = 0.12 mm1
b = 9.0079 (15) ÅT = 296 K
c = 13.188 (2) Å0.38 × 0.32 × 0.31 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1903 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.964Rint = 0.058
14829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0651 restraint
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
3855 reflectionsΔρmin = 0.24 e Å3
356 parametersAbsolute structure: Flack (1983), 3406 Friedel pairs
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.02111 (12)0.0552 (3)0.4291 (4)0.0738 (10)
F2A0.01712 (16)0.4553 (4)0.4498 (5)0.1088 (16)
O1A0.31436 (14)0.0724 (4)0.4235 (4)0.0659 (10)
O2A0.16259 (16)0.2942 (4)0.4261 (4)0.0719 (11)
O3A0.34608 (17)0.1594 (5)0.4477 (5)0.0828 (14)
N1A0.14227 (16)0.0160 (5)0.4336 (4)0.0500 (10)
N2A0.20161 (16)0.0028 (5)0.4353 (4)0.0478 (10)
C1A0.1253 (2)0.2526 (6)0.4428 (6)0.0642 (16)
H1AA0.16730.27010.44420.077*
C2A0.0849 (3)0.3703 (6)0.4469 (6)0.0700 (15)
H2AA0.09910.46750.45100.084*
C3A0.0232 (2)0.3402 (6)0.4448 (6)0.0712 (16)
C4A0.0002 (2)0.2000 (6)0.4385 (6)0.0633 (13)
H4AA0.04230.18290.43650.076*
C5A0.0411 (2)0.0857 (6)0.4353 (5)0.0512 (11)
C6A0.10348 (19)0.1081 (6)0.4367 (4)0.0469 (11)
C7A0.2391 (2)0.1124 (5)0.4330 (5)0.0483 (11)
C8A0.3050 (2)0.0713 (6)0.4356 (5)0.0529 (13)
C9A0.3782 (2)0.1211 (7)0.4260 (6)0.0685 (16)
H9AA0.40240.06460.37790.082*
H9AB0.39520.10660.49320.082*
C11A0.2181 (2)0.2672 (6)0.4285 (5)0.0606 (13)
C12A0.2620 (3)0.3935 (6)0.4238 (10)0.104 (3)
H12A0.23970.48530.42200.156*
H12B0.28800.39170.48250.156*
H12C0.28660.38490.36380.156*
C10A0.3790 (4)0.2822 (9)0.3988 (8)0.113 (4)
H10A0.42040.31800.39990.169*
H10B0.35490.33690.44680.169*
H10C0.36220.29510.33210.169*
F1B0.12910 (11)0.0552 (3)0.1789 (3)0.0686 (8)
F2B0.16421 (16)0.4584 (4)0.1702 (5)0.1085 (14)
O1B0.16419 (13)0.0704 (4)0.1812 (4)0.0613 (10)
O2B0.01257 (17)0.2955 (4)0.1951 (5)0.0810 (14)
O3B0.19708 (15)0.1614 (4)0.1938 (4)0.0756 (12)
N1B0.00755 (16)0.0181 (4)0.1844 (4)0.0491 (9)
N2B0.05230 (15)0.0004 (4)0.1842 (4)0.0479 (9)
C1B0.0234 (2)0.2521 (6)0.1778 (6)0.0622 (13)
H1BA0.01870.26930.17880.075*
C2B0.0629 (2)0.3694 (6)0.1749 (7)0.0731 (16)
H2BA0.04820.46630.17250.088*
C3B0.1250 (2)0.3412 (6)0.1756 (6)0.0677 (15)
C4B0.1493 (2)0.2016 (6)0.1751 (5)0.0605 (13)
H4BA0.19140.18560.17210.073*
C5B0.1080 (2)0.0857 (5)0.1793 (5)0.0489 (11)
C6B0.04523 (19)0.1069 (5)0.1792 (5)0.0445 (10)
C7B0.0894 (2)0.1147 (5)0.1874 (4)0.0465 (10)
C8B0.1558 (2)0.0748 (6)0.1879 (5)0.0486 (11)
C9B0.2268 (2)0.1242 (6)0.1836 (7)0.0652 (14)
H9BA0.25010.08130.12810.078*
H9BB0.24630.09590.24690.078*
C11B0.0684 (2)0.2708 (6)0.1888 (5)0.0584 (12)
C12B0.1127 (3)0.3974 (6)0.1820 (8)0.0829 (18)
H12D0.09090.48950.18830.124*
H12E0.14220.38950.23570.124*
H12F0.13330.39440.11780.124*
C10B0.2255 (3)0.2861 (7)0.1742 (12)0.121 (3)
H10D0.26610.32490.18330.182*
H10E0.19880.32680.22490.182*
H10F0.21070.31280.10810.182*
H1NB0.0208 (19)0.115 (5)0.189 (4)0.045 (12)*
H1NA0.127 (2)0.104 (6)0.433 (5)0.056 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0420 (15)0.066 (2)0.114 (3)0.0146 (13)0.003 (2)0.001 (2)
F2A0.070 (2)0.079 (3)0.177 (5)0.0320 (18)0.000 (3)0.003 (3)
O1A0.0297 (15)0.057 (2)0.111 (3)0.0035 (15)0.002 (2)0.005 (2)
O2A0.052 (2)0.059 (2)0.104 (3)0.0139 (17)0.005 (3)0.002 (3)
O3A0.0406 (18)0.073 (3)0.134 (4)0.0115 (18)0.006 (2)0.008 (3)
N1A0.0301 (16)0.051 (2)0.069 (3)0.0065 (17)0.004 (2)0.001 (2)
N2A0.0309 (18)0.056 (2)0.056 (2)0.0023 (17)0.002 (2)0.001 (2)
C1A0.038 (2)0.059 (4)0.095 (4)0.007 (2)0.000 (3)0.005 (4)
C2A0.055 (3)0.058 (3)0.098 (4)0.002 (2)0.002 (4)0.002 (4)
C3A0.053 (3)0.066 (4)0.095 (4)0.019 (3)0.002 (4)0.003 (4)
C4A0.039 (2)0.075 (4)0.076 (3)0.004 (2)0.000 (3)0.004 (4)
C5A0.036 (2)0.059 (3)0.059 (3)0.004 (2)0.003 (3)0.003 (3)
C6A0.032 (2)0.054 (3)0.054 (3)0.0031 (19)0.002 (3)0.001 (3)
C7A0.036 (2)0.048 (2)0.061 (3)0.0008 (19)0.000 (3)0.000 (3)
C8A0.037 (2)0.061 (3)0.061 (3)0.001 (2)0.002 (3)0.003 (3)
C9A0.033 (2)0.076 (4)0.097 (4)0.010 (2)0.003 (3)0.006 (4)
C11A0.058 (3)0.051 (3)0.072 (3)0.002 (2)0.000 (3)0.003 (3)
C12A0.077 (5)0.049 (3)0.185 (9)0.007 (3)0.004 (6)0.008 (6)
C10A0.062 (4)0.084 (5)0.191 (11)0.021 (4)0.000 (5)0.006 (6)
F1B0.0406 (15)0.0605 (17)0.105 (2)0.0105 (13)0.004 (2)0.003 (2)
F2B0.073 (2)0.078 (2)0.175 (4)0.0353 (17)0.001 (3)0.003 (3)
O1B0.0300 (15)0.055 (2)0.099 (3)0.0035 (13)0.001 (2)0.003 (2)
O2B0.048 (2)0.057 (2)0.139 (4)0.0121 (16)0.006 (3)0.004 (3)
O3B0.0375 (17)0.065 (2)0.124 (4)0.0095 (15)0.001 (2)0.005 (3)
N1B0.0292 (17)0.046 (2)0.072 (2)0.0036 (15)0.003 (2)0.000 (3)
N2B0.0308 (16)0.058 (2)0.055 (2)0.0046 (16)0.001 (2)0.000 (2)
C1B0.042 (3)0.055 (3)0.089 (4)0.005 (2)0.002 (3)0.007 (3)
C2B0.051 (3)0.056 (3)0.112 (5)0.002 (2)0.005 (4)0.001 (4)
C3B0.052 (3)0.059 (3)0.093 (4)0.015 (2)0.002 (4)0.007 (4)
C4B0.041 (2)0.069 (3)0.072 (3)0.002 (2)0.004 (3)0.001 (3)
C5B0.039 (2)0.052 (3)0.056 (3)0.001 (2)0.006 (3)0.001 (3)
C6B0.033 (2)0.050 (2)0.051 (2)0.0036 (17)0.003 (3)0.001 (3)
C7B0.037 (2)0.048 (2)0.055 (3)0.0013 (19)0.001 (3)0.003 (3)
C8B0.036 (2)0.052 (3)0.058 (3)0.0005 (19)0.001 (3)0.006 (3)
C9B0.028 (2)0.075 (3)0.093 (4)0.009 (2)0.001 (3)0.000 (4)
C11B0.051 (3)0.055 (3)0.069 (3)0.005 (2)0.001 (3)0.002 (3)
C12B0.064 (3)0.049 (3)0.136 (5)0.001 (3)0.009 (5)0.002 (5)
C10B0.069 (4)0.063 (4)0.232 (10)0.026 (3)0.017 (7)0.000 (7)
Geometric parameters (Å, º) top
F1A—C5A1.345 (6)F1B—C5B1.350 (5)
F2A—C3A1.362 (6)F2B—C3B1.360 (6)
O1A—C8A1.320 (7)O1B—C8B1.324 (6)
O1A—C9A1.460 (6)O1B—C9B1.450 (5)
O2A—C11A1.236 (6)O2B—C11B1.241 (6)
O3A—C8A1.208 (6)O3B—C8B1.194 (6)
N1A—N2A1.306 (5)N1B—N2B1.315 (5)
N1A—C6A1.403 (6)N1B—C6B1.396 (6)
N1A—H1NA0.86 (6)N1B—H1NB0.92 (5)
N2A—C7A1.321 (6)N2B—C7B1.310 (6)
C1A—C2A1.379 (8)C1B—C2B1.364 (8)
C1A—C6A1.389 (7)C1B—C6B1.392 (7)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.373 (8)C2B—C3B1.379 (7)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.365 (8)C3B—C4B1.365 (8)
C4A—C5A1.370 (7)C4B—C5B1.381 (7)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.375 (6)C5B—C6B1.383 (6)
C7A—C11A1.469 (7)C7B—C11B1.479 (7)
C7A—C8A1.485 (7)C7B—C8B1.492 (6)
C9A—C10A1.495 (10)C9B—C10B1.464 (8)
C9A—H9AA0.9700C9B—H9BA0.9700
C9A—H9AB0.9700C9B—H9BB0.9700
C11A—C12A1.488 (8)C11B—C12B1.497 (7)
C12A—H12A0.9600C12B—H12D0.9600
C12A—H12B0.9600C12B—H12E0.9600
C12A—H12C0.9600C12B—H12F0.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C8A—O1A—C9A116.1 (4)C8B—O1B—C9B117.3 (3)
N2A—N1A—C6A119.6 (4)N2B—N1B—C6B119.1 (4)
N2A—N1A—H1NA120 (3)N2B—N1B—H1NB115 (3)
C6A—N1A—H1NA121 (3)C6B—N1B—H1NB126 (3)
N1A—N2A—C7A120.8 (4)C7B—N2B—N1B121.2 (4)
C2A—C1A—C6A120.3 (5)C2B—C1B—C6B120.8 (5)
C2A—C1A—H1AA119.9C2B—C1B—H1BA119.6
C6A—C1A—H1AA119.9C6B—C1B—H1BA119.6
C3A—C2A—C1A118.2 (5)C1B—C2B—C3B118.5 (5)
C3A—C2A—H2AA120.9C1B—C2B—H2BA120.7
C1A—C2A—H2AA120.9C3B—C2B—H2BA120.7
F2A—C3A—C4A117.7 (5)F2B—C3B—C4B118.0 (5)
F2A—C3A—C2A118.8 (5)F2B—C3B—C2B118.3 (5)
C4A—C3A—C2A123.5 (5)C4B—C3B—C2B123.5 (5)
C3A—C4A—C5A116.7 (5)C3B—C4B—C5B116.3 (4)
C3A—C4A—H4AA121.6C3B—C4B—H4BA121.9
C5A—C4A—H4AA121.6C5B—C4B—H4BA121.9
F1A—C5A—C4A119.8 (4)F1B—C5B—C4B119.3 (4)
F1A—C5A—C6A117.4 (4)F1B—C5B—C6B117.9 (4)
C4A—C5A—C6A122.8 (5)C4B—C5B—C6B122.8 (4)
C5A—C6A—C1A118.5 (5)C5B—C6B—C1B118.0 (4)
C5A—C6A—N1A118.7 (4)C5B—C6B—N1B118.1 (4)
C1A—C6A—N1A122.8 (4)C1B—C6B—N1B123.8 (4)
N2A—C7A—C11A123.6 (4)N2B—C7B—C11B123.8 (4)
N2A—C7A—C8A113.8 (4)N2B—C7B—C8B114.2 (4)
C11A—C7A—C8A122.6 (4)C11B—C7B—C8B122.0 (4)
O3A—C8A—O1A123.1 (5)O3B—C8B—O1B123.0 (4)
O3A—C8A—C7A123.9 (5)O3B—C8B—C7B125.1 (5)
O1A—C8A—C7A113.0 (4)O1B—C8B—C7B111.9 (4)
O1A—C9A—C10A107.3 (5)O1B—C9B—C10B108.2 (4)
O1A—C9A—H9AA110.3O1B—C9B—H9BA110.1
C10A—C9A—H9AA110.3C10B—C9B—H9BA110.1
O1A—C9A—H9AB110.3O1B—C9B—H9BB110.1
C10A—C9A—H9AB110.3C10B—C9B—H9BB110.1
H9AA—C9A—H9AB108.5H9BA—C9B—H9BB108.4
O2A—C11A—C7A119.6 (5)O2B—C11B—C7B118.4 (5)
O2A—C11A—C12A118.6 (5)O2B—C11B—C12B120.0 (5)
C7A—C11A—C12A121.8 (5)C7B—C11B—C12B121.6 (4)
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C9A—C10A—H10A109.5C9B—C10B—H10D109.5
C9A—C10A—H10B109.5C9B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C9A—C10A—H10C109.5C9B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C6A—N1A—N2A—C7A179.7 (6)C6B—N1B—N2B—C7B178.9 (6)
C6A—C1A—C2A—C3A0.0 (12)C6B—C1B—C2B—C3B1.4 (12)
C1A—C2A—C3A—F2A179.3 (7)C1B—C2B—C3B—F2B178.4 (7)
C1A—C2A—C3A—C4A0.2 (13)C1B—C2B—C3B—C4B2.6 (13)
F2A—C3A—C4A—C5A178.9 (7)F2B—C3B—C4B—C5B179.2 (7)
C2A—C3A—C4A—C5A0.7 (12)C2B—C3B—C4B—C5B3.3 (12)
C3A—C4A—C5A—F1A180.0 (7)C3B—C4B—C5B—F1B179.9 (6)
C3A—C4A—C5A—C6A1.0 (10)C3B—C4B—C5B—C6B3.0 (11)
F1A—C5A—C6A—C1A179.8 (6)F1B—C5B—C6B—C1B178.9 (6)
C4A—C5A—C6A—C1A0.9 (10)C4B—C5B—C6B—C1B1.9 (10)
F1A—C5A—C6A—N1A1.3 (9)F1B—C5B—C6B—N1B3.5 (9)
C4A—C5A—C6A—N1A179.7 (6)C4B—C5B—C6B—N1B179.5 (6)
C2A—C1A—C6A—C5A0.4 (10)C2B—C1B—C6B—C5B1.1 (11)
C2A—C1A—C6A—N1A179.2 (7)C2B—C1B—C6B—N1B178.5 (7)
N2A—N1A—C6A—C5A179.7 (5)N2B—N1B—C6B—C5B179.8 (6)
N2A—N1A—C6A—C1A0.8 (9)N2B—N1B—C6B—C1B2.7 (10)
N1A—N2A—C7A—C11A0.1 (10)N1B—N2B—C7B—C11B1.7 (9)
N1A—N2A—C7A—C8A179.9 (5)N1B—N2B—C7B—C8B179.3 (5)
C9A—O1A—C8A—O3A0.3 (10)C9B—O1B—C8B—O3B1.4 (9)
C9A—O1A—C8A—C7A179.6 (6)C9B—O1B—C8B—C7B178.4 (6)
N2A—C7A—C8A—O3A169.7 (7)N2B—C7B—C8B—O3B177.5 (6)
C11A—C7A—C8A—O3A10.1 (11)C11B—C7B—C8B—O3B3.4 (10)
N2A—C7A—C8A—O1A10.2 (9)N2B—C7B—C8B—O1B2.3 (8)
C11A—C7A—C8A—O1A170.0 (6)C11B—C7B—C8B—O1B176.8 (5)
C8A—O1A—C9A—C10A173.4 (6)C8B—O1B—C9B—C10B179.4 (8)
N2A—C7A—C11A—O2A0.5 (11)N2B—C7B—C11B—O2B5.7 (10)
C8A—C7A—C11A—O2A179.8 (7)C8B—C7B—C11B—O2B175.2 (6)
N2A—C7A—C11A—C12A178.7 (8)N2B—C7B—C11B—C12B173.8 (7)
C8A—C7A—C11A—C12A1.6 (12)C8B—C7B—C11B—C12B5.2 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1NB···O2B0.92 (4)1.78 (4)2.541 (5)138 (4)
N1A—H1NA···O2A0.86 (5)1.88 (5)2.547 (6)133 (4)
C2A—H2AA···O2Ai0.932.583.476 (7)163
C4A—H4AA···O3Aii0.932.453.375 (6)173
C2B—H2BA···O2Bi0.932.543.449 (6)166
C4B—H4BA···O3Bii0.932.463.380 (6)170
C10A—H10A···F2Aiii0.962.543.343 (9)141
C10B—H10D···F2Biii0.962.483.330 (7)148
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y, z; (iii) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H12F2N2O3
Mr270.24
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)21.814 (4), 9.0079 (15), 13.188 (2)
V3)2591.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.32 × 0.31
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
14829, 3855, 1903
Rint0.058
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.219, 1.02
No. of reflections3855
No. of parameters356
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24
Absolute structureFlack (1983), 3406 Friedel pairs

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1NB···O2B0.92 (4)1.78 (4)2.541 (5)138 (4)
N1A—H1NA···O2A0.86 (5)1.88 (5)2.547 (6)133 (4)
C2A—H2AA···O2Ai0.932.583.476 (7)163
C4A—H4AA···O3Aii0.932.453.375 (6)173
C2B—H2BA···O2Bi0.932.543.449 (6)166
C4B—H4BA···O3Bii0.932.463.380 (6)170
C10A—H10A···F2Aiii0.962.543.343 (9)141
C10B—H10D···F2Biii0.962.483.330 (7)148
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y, z; (iii) x+1/2, y+1, z.
 

Footnotes

Visiting Professor, College of Pharmacy King Saud University Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBillington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827–836.  CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirisha, K.S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStancho, S., Georgi, M., Frank, J. & Ilia, M. (2008). Eur. J. Med. Chem. 43, 694–706.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds