organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o478-o479

10-(4-Methyl­benzyl­­idene)anthracen-9(10H)-one

aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 4 January 2012; accepted 9 January 2012; online 21 January 2012)

In the title compound, C22H16O, the six-membered ring within the anthrone moiety adopts a shallow boat conformation, with puckering parameters Q = 0.2860 (17) Å, Θ = 99.1 (3)° and Φ = 114.8 (3)°. The dihedral angle between the outer benzene rings is 26.53 (8)°. The mean plane through the anthrone ring system makes a dihedral angle of 38.73 (6)° with the pendant benzene ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains propagating along the c-axis direction and weak C—H⋯π inter­actions further consolidate the structure.

Related literature

For a related structure and background to anthrone derivatives, see: Arumugam et al. (2011[Arumugam, N., Almansour, A. I., Karama, U., Rosli, M. M. & Razak, I. A. (2011). Acta Cryst. E67, o2251.]). For related structures, see: Wen & Li (2008[Wen, Z.-G. & Li, J.-M. (2008). Acta Cryst. E64, o1931.]); Zhou et al. (2004[Zhou, W., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o1234-o1235.]). For the synthesis, see: Prinz et al. (2003[Prinz, H., Ishii, Y., Hirano, T., Stoiber, T., Camacho Gomez, J. A., Schmidt, P., Dussmann, H., Burger, A. M., Prehn, J. H., Gunther, E. G., Unger, E. & Umezawa, K. (2003). J. Med. Chem. 46, 3382-3394.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16O

  • Mr = 296.35

  • Orthorhombic, P n a 21

  • a = 7.2959 (1) Å

  • b = 16.3853 (2) Å

  • c = 13.0028 (2) Å

  • V = 1554.43 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.33 × 0.27 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 20184 measured reflections

  • 2757 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.09

  • 2757 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2319 Friedel pairs

  • Flack parameter: 0 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.95 2.35 3.275 (2) 164
C22—H22CCg1ii 0.98 2.94 3.726 (2) 138
C17—H17ACg2iii 0.95 2.76 3.5073 (16) 136
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [-x, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of anthrone derivatives (Arumugam et al., 2011), we have undertaken the X-ray crystal structure determination of the title compound, (I).

In the molecular structure (Fig 1), the six-membered ring (C1/C6–C8/C13/C14) within the anthracene moiety adopts a boat conformation with puckering parameters Q= 0.2860 (17) Å, Θ= 99.1 (3)° and Φ= 114.8 (3)° (Cremer & Pople, 1975). This differs from the planar anthracene ring reported in related structure (Arumugam et al., 2011). The mean plane through the anthracene ring (C1–C14) makes a dihedral angle of 38.73 (6)° with the phenyl ring (C16–C21). The bond lengths and angles are comparable those in the related structure (Wen & Li, 2008; Zhou et al., 2004).

The crystal packing is shown in Fig. 2. The molecules are linked by the intermolecular C3—H3A···O1 hydrogen bonds (Table 1) into infinite one dimensional zigzag chain along the c-axis. In addition, the crystal structure are further stabilized by the intermolecular C22—H22C···Cg1 and C17—H17A···Cg2 (Table 1) interactions (Cg1 and Cg2 are the centroids of C1–C6 and C16–C21 rings, respectively).

Related literature top

For a related structure and background to anthrone derivatives, see: Arumugam et al. (2011). For related structures, see: Wen & Li (2008); Zhou et al. (2004). For the synthesis, see: Prinz et al. (2003). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized as reported (Prinz et al., 2003) and crystallized EtOAc by slow evaporation technique.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating group model was applied to the methyl groups. A total of 2319 Freidel pairs were used to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
10-(4-Methylbenzylidene)anthracen-9(10H)-one top
Crystal data top
C22H16OF(000) = 624
Mr = 296.35Dx = 1.266 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8371 reflections
a = 7.2959 (1) Åθ = 3.1–31.7°
b = 16.3853 (2) ŵ = 0.08 mm1
c = 13.0028 (2) ÅT = 100 K
V = 1554.43 (4) Å3Block, yellow
Z = 40.33 × 0.27 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2757 independent reflections
Radiation source: fine-focus sealed tube2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 31.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.975, Tmax = 0.985k = 2421
20184 measured reflectionsl = 1917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.1277P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
2757 reflectionsΔρmax = 0.40 e Å3
209 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 2319 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Crystal data top
C22H16OV = 1554.43 (4) Å3
Mr = 296.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.2959 (1) ŵ = 0.08 mm1
b = 16.3853 (2) ÅT = 100 K
c = 13.0028 (2) Å0.33 × 0.27 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2757 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2575 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.030
20184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.122Δρmax = 0.40 e Å3
S = 1.09Δρmin = 0.19 e Å3
2757 reflectionsAbsolute structure: Flack (1983), 2319 Friedel pairs
209 parametersAbsolute structure parameter: 0 (10)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22961 (18)0.09172 (9)0.36336 (11)0.0332 (3)
C10.34392 (19)0.11506 (9)0.63231 (12)0.0204 (3)
C20.4267 (2)0.07120 (10)0.71248 (13)0.0249 (3)
H2A0.43570.09490.77890.030*
C30.4956 (2)0.00689 (11)0.69531 (15)0.0297 (4)
H3A0.55270.03570.75000.036*
C40.4818 (2)0.04321 (11)0.59886 (16)0.0311 (4)
H4A0.52700.09690.58800.037*
C50.4016 (2)0.00049 (10)0.51897 (15)0.0274 (3)
H5A0.39170.02500.45300.033*
C60.3352 (2)0.07847 (10)0.53448 (12)0.0223 (3)
C70.2696 (2)0.12531 (10)0.44437 (12)0.0234 (3)
C80.2672 (2)0.21516 (11)0.45515 (12)0.0239 (3)
C90.2547 (3)0.26344 (13)0.36613 (16)0.0328 (4)
H9A0.24150.23810.30080.039*
C100.2613 (3)0.34737 (13)0.37306 (18)0.0384 (5)
H10A0.25140.37990.31290.046*
C110.2828 (2)0.38405 (12)0.46872 (18)0.0351 (4)
H11A0.29050.44180.47330.042*
C120.2931 (2)0.33765 (10)0.55740 (16)0.0281 (3)
H12A0.30710.36380.62210.034*
C130.2829 (2)0.25202 (10)0.55238 (13)0.0227 (3)
C140.2792 (2)0.20019 (9)0.64518 (12)0.0203 (3)
C150.2111 (2)0.23176 (9)0.73396 (12)0.0223 (3)
H15A0.19040.28900.73250.027*
C160.1643 (2)0.19219 (9)0.83166 (12)0.0220 (3)
C170.2006 (2)0.23303 (10)0.92404 (14)0.0274 (3)
H17A0.25770.28510.92240.033*
C180.1542 (2)0.19832 (12)1.01808 (13)0.0293 (3)
H18A0.18280.22651.07990.035*
C190.0662 (2)0.12249 (11)1.02327 (13)0.0269 (3)
C200.0247 (2)0.08341 (10)0.93057 (13)0.0240 (3)
H20A0.03850.03270.93210.029*
C210.0736 (2)0.11680 (9)0.83647 (12)0.0223 (3)
H21A0.04540.08840.77480.027*
C220.0189 (3)0.08462 (15)1.12512 (15)0.0386 (4)
H22A0.07380.11681.18070.058*
H22B0.06650.02871.12760.058*
H22C0.11460.08361.13350.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (6)0.0475 (7)0.0215 (5)0.0048 (5)0.0009 (5)0.0047 (5)
C10.0160 (6)0.0216 (6)0.0235 (6)0.0018 (4)0.0013 (5)0.0038 (5)
C20.0206 (6)0.0296 (7)0.0245 (6)0.0027 (6)0.0003 (6)0.0064 (6)
C30.0224 (6)0.0301 (7)0.0364 (9)0.0063 (6)0.0030 (6)0.0117 (7)
C40.0247 (7)0.0260 (7)0.0425 (9)0.0062 (6)0.0062 (7)0.0039 (7)
C50.0226 (7)0.0275 (7)0.0321 (8)0.0018 (6)0.0051 (6)0.0029 (6)
C60.0172 (6)0.0272 (7)0.0225 (6)0.0009 (5)0.0019 (5)0.0028 (5)
C70.0178 (6)0.0317 (7)0.0207 (7)0.0026 (5)0.0025 (5)0.0010 (6)
C80.0181 (6)0.0317 (7)0.0219 (7)0.0035 (5)0.0034 (5)0.0074 (6)
C90.0257 (7)0.0466 (10)0.0261 (7)0.0071 (7)0.0057 (6)0.0138 (8)
C100.0300 (8)0.0449 (10)0.0403 (10)0.0085 (7)0.0091 (7)0.0259 (9)
C110.0244 (8)0.0312 (8)0.0495 (11)0.0028 (6)0.0096 (7)0.0173 (8)
C120.0205 (7)0.0250 (7)0.0387 (9)0.0004 (5)0.0062 (6)0.0080 (7)
C130.0164 (6)0.0252 (7)0.0264 (7)0.0012 (5)0.0019 (5)0.0071 (6)
C140.0168 (6)0.0221 (6)0.0221 (6)0.0005 (4)0.0005 (5)0.0030 (5)
C150.0225 (7)0.0215 (6)0.0227 (7)0.0007 (5)0.0008 (5)0.0006 (5)
C160.0219 (7)0.0242 (6)0.0198 (6)0.0007 (5)0.0010 (6)0.0011 (5)
C170.0260 (7)0.0315 (8)0.0249 (7)0.0038 (6)0.0009 (6)0.0060 (6)
C180.0264 (8)0.0416 (9)0.0198 (7)0.0010 (6)0.0008 (6)0.0062 (6)
C190.0205 (7)0.0394 (8)0.0208 (6)0.0018 (6)0.0013 (6)0.0031 (6)
C200.0208 (6)0.0272 (7)0.0239 (7)0.0019 (5)0.0011 (6)0.0025 (6)
C210.0224 (6)0.0235 (6)0.0210 (6)0.0001 (5)0.0020 (5)0.0002 (5)
C220.0322 (9)0.0613 (12)0.0224 (8)0.0067 (8)0.0017 (7)0.0081 (8)
Geometric parameters (Å, º) top
O1—C71.224 (2)C11—H11A0.9500
C1—C21.403 (2)C12—C131.407 (2)
C1—C61.408 (2)C12—H12A0.9500
C1—C141.482 (2)C13—C141.476 (2)
C2—C31.393 (2)C14—C151.359 (2)
C2—H2A0.9500C15—C161.467 (2)
C3—C41.392 (3)C15—H15A0.9500
C3—H3A0.9500C16—C171.400 (2)
C4—C51.382 (3)C16—C211.403 (2)
C4—H4A0.9500C17—C181.390 (2)
C5—C61.396 (2)C17—H17A0.9500
C5—H5A0.9500C18—C191.400 (3)
C6—C71.480 (2)C18—H18A0.9500
C7—C81.479 (2)C19—C201.398 (2)
C8—C131.406 (2)C19—C221.503 (3)
C8—C91.405 (2)C20—C211.387 (2)
C9—C101.379 (3)C20—H20A0.9500
C9—H9A0.9500C21—H21A0.9500
C10—C111.390 (4)C22—H22A0.9800
C10—H10A0.9500C22—H22B0.9800
C11—C121.383 (3)C22—H22C0.9800
C2—C1—C6118.21 (14)C13—C12—H12A119.8
C2—C1—C14122.37 (15)C8—C13—C12118.33 (15)
C6—C1—C14119.25 (14)C8—C13—C14119.12 (14)
C3—C2—C1120.46 (16)C12—C13—C14122.48 (15)
C3—C2—H2A119.8C15—C14—C13118.82 (13)
C1—C2—H2A119.8C15—C14—C1124.79 (14)
C4—C3—C2120.73 (15)C13—C14—C1116.33 (14)
C4—C3—H3A119.6C14—C15—C16130.74 (13)
C2—C3—H3A119.6C14—C15—H15A114.6
C5—C4—C3119.43 (15)C16—C15—H15A114.6
C5—C4—H4A120.3C17—C16—C21118.16 (14)
C3—C4—H4A120.3C17—C16—C15119.18 (13)
C4—C5—C6120.50 (17)C21—C16—C15122.54 (14)
C4—C5—H5A119.8C18—C17—C16120.85 (15)
C6—C5—H5A119.8C18—C17—H17A119.6
C5—C6—C1120.63 (15)C16—C17—H17A119.6
C5—C6—C7118.58 (15)C17—C18—C19121.12 (15)
C1—C6—C7120.60 (14)C17—C18—H18A119.4
O1—C7—C8121.76 (15)C19—C18—H18A119.4
O1—C7—C6121.69 (15)C20—C19—C18117.66 (15)
C8—C7—C6116.42 (14)C20—C19—C22121.40 (16)
C13—C8—C9120.29 (16)C18—C19—C22120.94 (16)
C13—C8—C7120.79 (13)C21—C20—C19121.62 (14)
C9—C8—C7118.89 (16)C21—C20—H20A119.2
C10—C9—C8120.4 (2)C19—C20—H20A119.2
C10—C9—H9A119.8C20—C21—C16120.53 (15)
C8—C9—H9A119.8C20—C21—H21A119.7
C9—C10—C11119.57 (17)C16—C21—H21A119.7
C9—C10—H10A120.2C19—C22—H22A109.5
C11—C10—H10A120.2C19—C22—H22B109.5
C12—C11—C10120.96 (17)H22A—C22—H22B109.5
C12—C11—H11A119.5C19—C22—H22C109.5
C10—C11—H11A119.5H22A—C22—H22C109.5
C11—C12—C13120.45 (18)H22B—C22—H22C109.5
C11—C12—H12A119.8
C6—C1—C2—C30.9 (2)C9—C8—C13—C14174.59 (15)
C14—C1—C2—C3176.04 (15)C7—C8—C13—C147.4 (2)
C1—C2—C3—C40.8 (3)C11—C12—C13—C81.7 (2)
C2—C3—C4—C51.2 (3)C11—C12—C13—C14175.30 (15)
C3—C4—C5—C60.1 (3)C8—C13—C14—C15150.02 (15)
C4—C5—C6—C11.8 (2)C12—C13—C14—C1527.0 (2)
C4—C5—C6—C7173.23 (15)C8—C13—C14—C127.30 (19)
C2—C1—C6—C52.2 (2)C12—C13—C14—C1155.71 (14)
C14—C1—C6—C5177.49 (14)C2—C1—C14—C1532.6 (2)
C2—C1—C6—C7172.75 (14)C6—C1—C14—C15152.29 (16)
C14—C1—C6—C72.6 (2)C2—C1—C14—C13150.25 (14)
C5—C6—C7—O118.3 (2)C6—C1—C14—C1324.9 (2)
C1—C6—C7—O1166.66 (15)C13—C14—C15—C16169.27 (16)
C5—C6—C7—C8157.66 (14)C1—C14—C15—C167.8 (3)
C1—C6—C7—C817.4 (2)C14—C15—C16—C17142.24 (19)
O1—C7—C8—C13169.11 (15)C14—C15—C16—C2141.8 (3)
C6—C7—C8—C1314.9 (2)C21—C16—C17—C182.4 (2)
O1—C7—C8—C912.8 (2)C15—C16—C17—C18178.48 (17)
C6—C7—C8—C9163.10 (15)C16—C17—C18—C191.5 (3)
C13—C8—C9—C101.3 (3)C17—C18—C19—C200.7 (3)
C7—C8—C9—C10176.73 (16)C17—C18—C19—C22179.07 (18)
C8—C9—C10—C110.8 (3)C18—C19—C20—C212.0 (2)
C9—C10—C11—C121.6 (3)C22—C19—C20—C21177.81 (17)
C10—C11—C12—C130.3 (3)C19—C20—C21—C161.1 (2)
C9—C8—C13—C122.5 (2)C17—C16—C21—C201.1 (2)
C7—C8—C13—C12175.48 (14)C15—C16—C21—C20177.09 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.952.353.275 (2)164
C22—H22C···Cg1ii0.982.943.726 (2)138
C17—H17A···Cg2iii0.952.763.5073 (16)136
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H16O
Mr296.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)7.2959 (1), 16.3853 (2), 13.0028 (2)
V3)1554.43 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
20184, 2757, 2575
Rint0.030
(sin θ/λ)max1)0.741
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.09
No. of reflections2757
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.19
Absolute structureFlack (1983), 2319 Friedel pairs
Absolute structure parameter0 (10)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.952.353.275 (2)164
C22—H22C···Cg1ii0.982.943.726 (2)138
C17—H17A···Cg2iii0.952.763.5073 (16)136
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: anatarajan@ksu.edu.sa.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. SA and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811151.

References

First citationArumugam, N., Almansour, A. I., Karama, U., Rosli, M. M. & Razak, I. A. (2011). Acta Cryst. E67, o2251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPrinz, H., Ishii, Y., Hirano, T., Stoiber, T., Camacho Gomez, J. A., Schmidt, P., Dussmann, H., Burger, A. M., Prehn, J. H., Gunther, E. G., Unger, E. & Umezawa, K. (2003). J. Med. Chem. 46, 3382–3394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Z.-G. & Li, J.-M. (2008). Acta Cryst. E64, o1931.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhou, W., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o1234–o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o478-o479
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds