organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o398-o399

(E)-1-(2,4-Di­nitro­phen­yl)-2-[1-(4-fluoro­phen­yl)ethyl­­idene]hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 7 January 2012; accepted 9 January 2012; online 14 January 2012)

The title compound, C14H11FN4O4, crystallizes with two essentially planar mol­ecules in the asymmetric unit; the dihedral angles between the benzene rings are 1.57 (15) and 6.17 (15)°. In each mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯F inter­actions into sheets lying parallel to (120). O⋯C [2.980 (4) Å] and O⋯N [2.892 (3) Å] short contacts also occur.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Chantrapromma et al. (2011[Chantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, o3499-o3500.]); Fun et al. (2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.]); Nilwanna et al. (2011[Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.]). For background to the bio­logical activity of hydro­zones, see: Cui et al. (2010[Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576-5584.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FN4O4

  • Mr = 318.27

  • Triclinic, [P \overline 1]

  • a = 8.8278 (3) Å

  • b = 10.9177 (4) Å

  • c = 15.2698 (6) Å

  • α = 100.649 (3)°

  • β = 104.948 (3)°

  • γ = 94.177 (3)°

  • V = 1386.10 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.32 × 0.30 × 0.04 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.996

  • 19163 measured reflections

  • 5084 independent reflections

  • 3438 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.144

  • S = 1.09

  • 5084 reflections

  • 425 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1NA⋯O1A 0.87 (3) 1.90 (3) 2.609 (3) 137 (3)
N2B—H1NB⋯O1B 0.84 (3) 2.01 (3) 2.603 (3) 128 (3)
C5A—H5A⋯O1B 0.95 2.48 3.329 (3) 148
C5B—H5B⋯O1Ai 0.95 2.46 3.253 (3) 141
C6A—H6A⋯O2B 0.95 2.44 3.260 (4) 144
C6B—H6B⋯O2Ai 0.95 2.44 3.305 (4) 151
C10A—H10A⋯O4Aii 0.95 2.53 3.466 (4) 169
C10B—H10B⋯O4Biii 0.95 2.43 3.379 (4) 174
C13B—H13B⋯O2Ai 0.95 2.58 3.487 (4) 159
C14B—H14E⋯F1Aiii 0.98 2.47 3.205 (4) 131
Symmetry codes: (i) x, y, z-1; (ii) x-1, y+1, z; (iii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones are well-known biological compounds with antibacterial, antifungal, antitumor, anti-inflammatory as well as antioxidant properties (e.g. Cui et al., 2010). During the course of our search for antioxidant and antityrosinase compounds, the title compound (I) was synthesized in order to study and compare its biological activity with those of related compounds (Chantrapromma et al., 2011; Fun et al., 2011; Nilwanna et al., 2011). Herein we report the synthesis and crystal structure of (I).

In Fig. 1, there are two crystallographic independent molecules A and B in the asymmetric unit of (I) with differences in bond angles. The molecular structure of (I), C14H11FN4O4 is essentially planar with the the dihedral angle between the 2,4-dinitrophenyl and the 2-fluorophenyl rings being 1.57 (15)° in molecule A and 6.17 (15)° in molecule B. The central ethylidenehydrazine bridge (N2/N1/C7/C14) is statistically planar with the torsion angles N2–N1–C7–C14 = 0.6 (4) and -0.2 (4)° in molecules A and B, repectively. The mean plane through this central bridge makes dihedral angles of 3.99 (19) and 4.67 (19)° with the 2,4-dinitrophenyl and 2-fluorophenyl rings, respectively in molecule A whereas the corresponding values are 3.20 (19) and 9.19 (19)° in molecule B. The two nitro groups of the 2,4-dinitrophenyl unit are almost co-planar with the attached benzene ring with the r.m.s. deviation of 0.0083 (3) Å for the twelve non H-atoms, and torsion angles O1–N3–C2–C1 = 0.8 (4)°, O2–N3–C2–C1 = -178.8 (3)°, O3–N4–C4–C3 = 0.7 (4)° and O4–N4–C4–C3 = -180.0 (3)° in molecule A; the corresponding values are 0.0258 (3) Å, 3.4 (4), -177.0 (3), 0.2 (4) and -179.0 (3)° in molecule B. In each molecule, intramolecular N—H···O hydrogen bond (Fig.1 and Table 1) generates S(6) ring motifs (Bernstein et al., 1995) which help to establish the planarity of the molecules. The bond distances are comparable with the related structures (Chantrapromma et al., 2011; Fun et al., 2011 and Nilwanna et al., 2011).

In the crystal (Fig. 2), the molecules are linked by weak C—H···O and C—H···F interactions (Table 1) into sheets parallel to the (120) plane. O3A···C4A[2.980 (4) Å; symmetry code 1-x, 1-y, 2-z] and O1A···N3B[2.892 (3) Å; symmetry code 1-x, 2-y, 2-z)] short contacts were observed.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2011); Fun et al. (2011); Nilwanna et al. (2011). For background to the biological activity of hydrozones, see: Cui et al. (2010). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98 %, 0.50 ml) was slowly added with stirring. 4-Fluoroacetophenone (0.25 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was stirred for 1 hr yielding an orange solid, which was filtered off and washed with methanol. Orange plates were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days, Mp. 507-508 K.

Refinement top

Amide H atom was located in a Fourier difference map and refined isotrpically. The remainning H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 65% probability displacement ellipsoids. The hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed approximately along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(2,4-Dinitrophenyl)-2-[1-(4-fluorophenyl)ethylidene]hydrazine top
Crystal data top
C14H11FN4O4Z = 4
Mr = 318.27F(000) = 656
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Melting point = 507–508 K
a = 8.8278 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9177 (4) ÅCell parameters from 5084 reflections
c = 15.2698 (6) Åθ = 1.4–25.5°
α = 100.649 (3)°µ = 0.12 mm1
β = 104.948 (3)°T = 100 K
γ = 94.177 (3)°Plate, orange
V = 1386.10 (9) Å30.32 × 0.30 × 0.04 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
5084 independent reflections
Radiation source: sealed tube3438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.962, Tmax = 0.996k = 1313
19163 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.5322P]
where P = (Fo2 + 2Fc2)/3
5084 reflections(Δ/σ)max = 0.001
425 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H11FN4O4γ = 94.177 (3)°
Mr = 318.27V = 1386.10 (9) Å3
Triclinic, P1Z = 4
a = 8.8278 (3) ÅMo Kα radiation
b = 10.9177 (4) ŵ = 0.12 mm1
c = 15.2698 (6) ÅT = 100 K
α = 100.649 (3)°0.32 × 0.30 × 0.04 mm
β = 104.948 (3)°
Data collection top
Bruker APEX DUO CCD
diffractometer
5084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3438 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.996Rint = 0.062
19163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.25 e Å3
5084 reflectionsΔρmin = 0.34 e Å3
425 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.1138 (2)1.38191 (18)0.72609 (13)0.0384 (5)
O1A0.3270 (2)0.92455 (19)1.22388 (13)0.0232 (5)
O2A0.4748 (3)0.7798 (2)1.25503 (14)0.0327 (6)
O3A0.6854 (2)0.54065 (19)1.03711 (14)0.0248 (5)
O4A0.6408 (3)0.5739 (2)0.89707 (14)0.0302 (6)
N1A0.2023 (3)1.0454 (2)0.99313 (15)0.0172 (6)
N2A0.2674 (3)0.9835 (2)1.06150 (17)0.0187 (6)
H1NA0.265 (4)0.999 (3)1.119 (2)0.046 (11)*
N3A0.4076 (3)0.8423 (2)1.20111 (16)0.0217 (6)
N4A0.6260 (3)0.5974 (2)0.97652 (17)0.0203 (6)
C1A0.3535 (3)0.8886 (3)1.04164 (19)0.0176 (7)
C2A0.4241 (3)0.8195 (3)1.10755 (18)0.0168 (7)
C3A0.5136 (3)0.7243 (3)1.08624 (19)0.0184 (7)
H3A0.56110.67951.13170.022*
C4A0.5318 (3)0.6963 (3)0.99885 (19)0.0173 (7)
C5A0.4620 (3)0.7613 (3)0.93140 (19)0.0186 (7)
H5A0.47530.74020.87080.022*
C6A0.3753 (3)0.8549 (3)0.95216 (19)0.0199 (7)
H6A0.32840.89840.90570.024*
C7A0.1274 (3)1.1388 (3)1.01561 (19)0.0196 (7)
C8A0.0606 (3)1.2029 (3)0.9396 (2)0.0199 (7)
C9A0.0301 (3)1.3018 (3)0.9510 (2)0.0233 (7)
H9A0.05151.32801.00900.028*
C10A0.0891 (4)1.3619 (3)0.8797 (2)0.0267 (8)
H10A0.15071.42870.88790.032*
C11A0.0561 (4)1.3223 (3)0.7965 (2)0.0260 (7)
C12A0.0323 (3)1.2265 (3)0.7816 (2)0.0256 (7)
H12A0.05301.20170.72330.031*
C13A0.0904 (4)1.1669 (3)0.8530 (2)0.0225 (7)
H13A0.15171.10020.84350.027*
C14A0.1104 (4)1.1822 (3)1.1112 (2)0.0260 (8)
H14A0.21501.19811.15630.039*
H14B0.04431.11711.12590.039*
H14C0.06081.25981.11410.039*
F1B0.8852 (2)0.33781 (18)0.22701 (13)0.0398 (5)
O1B0.4912 (3)0.8092 (2)0.72701 (13)0.0279 (5)
O2B0.3390 (3)0.9487 (2)0.75796 (13)0.0313 (6)
O3B0.0791 (2)1.1726 (2)0.53970 (14)0.0298 (5)
O4B0.0896 (3)1.1249 (2)0.39717 (14)0.0304 (6)
N1B0.5742 (3)0.6777 (2)0.49060 (16)0.0207 (6)
N2B0.5224 (3)0.7463 (2)0.56024 (18)0.0213 (6)
H1NB0.550 (4)0.730 (3)0.613 (2)0.037 (10)*
N3B0.3997 (3)0.8863 (2)0.70341 (16)0.0234 (6)
N4B0.1260 (3)1.1111 (2)0.47797 (17)0.0241 (6)
C1B0.4235 (3)0.8318 (3)0.54087 (19)0.0199 (7)
C2B0.3639 (3)0.9045 (3)0.60923 (18)0.0194 (7)
C3B0.2684 (3)0.9967 (3)0.5887 (2)0.0208 (7)
H3B0.23181.04570.63540.025*
C4B0.2279 (3)1.0158 (3)0.50028 (19)0.0186 (7)
C5B0.2787 (3)0.9430 (3)0.42980 (19)0.0206 (7)
H5B0.24670.95610.36820.025*
C6B0.3737 (3)0.8539 (3)0.45026 (19)0.0205 (7)
H6B0.40750.80510.40230.025*
C7B0.6699 (3)0.5988 (3)0.5147 (2)0.0205 (7)
C8B0.7261 (3)0.5269 (3)0.4389 (2)0.0223 (7)
C9B0.8137 (4)0.4275 (3)0.4514 (2)0.0252 (7)
H9B0.83790.40350.50960.030*
C10B0.8665 (4)0.3627 (3)0.3798 (2)0.0281 (8)
H10B0.92590.29460.38850.034*
C11B0.8308 (4)0.3995 (3)0.2966 (2)0.0279 (8)
C12B0.7444 (4)0.4969 (3)0.2808 (2)0.0301 (8)
H12B0.72120.52020.22230.036*
C13B0.6921 (4)0.5602 (3)0.3525 (2)0.0257 (7)
H13B0.63190.62760.34270.031*
C14B0.7249 (4)0.5802 (3)0.6127 (2)0.0298 (8)
H14D0.77310.66090.65440.045*
H14E0.80310.52070.61640.045*
H14F0.63450.54700.63120.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0397 (12)0.0405 (12)0.0411 (12)0.0156 (10)0.0087 (9)0.0230 (10)
O1A0.0298 (13)0.0258 (13)0.0175 (11)0.0094 (10)0.0126 (10)0.0029 (9)
O2A0.0506 (16)0.0371 (14)0.0176 (11)0.0195 (12)0.0133 (11)0.0129 (11)
O3A0.0231 (12)0.0232 (12)0.0298 (12)0.0056 (10)0.0068 (10)0.0096 (10)
O4A0.0372 (14)0.0340 (14)0.0250 (12)0.0134 (11)0.0178 (11)0.0037 (10)
N1A0.0149 (14)0.0205 (14)0.0192 (13)0.0068 (11)0.0063 (10)0.0076 (11)
N2A0.0236 (15)0.0207 (15)0.0161 (13)0.0090 (12)0.0095 (11)0.0063 (11)
N3A0.0271 (15)0.0229 (15)0.0169 (13)0.0028 (12)0.0085 (12)0.0054 (12)
N4A0.0187 (14)0.0190 (14)0.0237 (14)0.0021 (11)0.0076 (11)0.0038 (12)
C1A0.0160 (16)0.0187 (17)0.0193 (15)0.0001 (13)0.0071 (13)0.0048 (13)
C2A0.0199 (17)0.0186 (16)0.0120 (14)0.0012 (13)0.0060 (12)0.0015 (12)
C3A0.0144 (16)0.0181 (17)0.0208 (16)0.0017 (13)0.0011 (13)0.0058 (13)
C4A0.0160 (16)0.0166 (16)0.0204 (16)0.0020 (13)0.0078 (13)0.0024 (13)
C5A0.0211 (17)0.0215 (17)0.0157 (15)0.0023 (14)0.0094 (13)0.0042 (13)
C6A0.0204 (18)0.0230 (18)0.0174 (15)0.0016 (14)0.0064 (13)0.0057 (13)
C7A0.0141 (16)0.0236 (18)0.0208 (16)0.0004 (14)0.0061 (13)0.0030 (13)
C8A0.0139 (16)0.0203 (17)0.0236 (16)0.0003 (13)0.0039 (13)0.0025 (13)
C9A0.0217 (18)0.0205 (18)0.0293 (17)0.0019 (14)0.0125 (14)0.0018 (14)
C10A0.0190 (18)0.0195 (18)0.042 (2)0.0068 (14)0.0085 (15)0.0057 (15)
C11A0.0224 (18)0.0265 (19)0.0308 (18)0.0062 (15)0.0027 (14)0.0157 (15)
C12A0.0213 (18)0.033 (2)0.0248 (17)0.0045 (15)0.0081 (14)0.0097 (15)
C13A0.0235 (18)0.0224 (18)0.0249 (17)0.0064 (14)0.0100 (14)0.0072 (14)
C14A0.0309 (19)0.0259 (19)0.0244 (17)0.0087 (15)0.0131 (15)0.0037 (14)
F1B0.0374 (12)0.0395 (13)0.0394 (11)0.0146 (10)0.0131 (9)0.0070 (9)
O1B0.0352 (14)0.0316 (14)0.0193 (11)0.0074 (11)0.0068 (10)0.0108 (10)
O2B0.0405 (14)0.0401 (15)0.0168 (11)0.0054 (11)0.0161 (10)0.0033 (10)
O3B0.0299 (13)0.0322 (14)0.0301 (13)0.0082 (11)0.0157 (11)0.0009 (10)
O4B0.0368 (14)0.0355 (14)0.0229 (12)0.0156 (11)0.0084 (10)0.0115 (10)
N1B0.0231 (15)0.0203 (15)0.0197 (13)0.0030 (12)0.0090 (11)0.0022 (11)
N2B0.0254 (16)0.0256 (15)0.0150 (14)0.0051 (12)0.0070 (12)0.0066 (12)
N3B0.0272 (16)0.0280 (16)0.0153 (13)0.0014 (13)0.0083 (12)0.0039 (12)
N4B0.0222 (15)0.0267 (16)0.0245 (15)0.0020 (12)0.0104 (12)0.0033 (12)
C1B0.0191 (17)0.0210 (17)0.0194 (16)0.0026 (14)0.0048 (13)0.0064 (13)
C2B0.0232 (18)0.0238 (18)0.0118 (14)0.0012 (14)0.0071 (13)0.0037 (13)
C3B0.0188 (17)0.0236 (18)0.0211 (16)0.0006 (14)0.0104 (13)0.0010 (13)
C4B0.0173 (17)0.0217 (17)0.0192 (15)0.0034 (13)0.0081 (13)0.0057 (13)
C5B0.0218 (18)0.0250 (18)0.0154 (15)0.0016 (14)0.0061 (13)0.0042 (13)
C6B0.0256 (18)0.0225 (18)0.0144 (15)0.0010 (14)0.0093 (13)0.0017 (13)
C7B0.0159 (17)0.0215 (18)0.0231 (16)0.0005 (14)0.0016 (13)0.0084 (14)
C8B0.0166 (17)0.0236 (18)0.0257 (17)0.0000 (14)0.0032 (13)0.0080 (14)
C9B0.0223 (18)0.0210 (18)0.0309 (18)0.0027 (14)0.0033 (14)0.0079 (14)
C10B0.0176 (18)0.0217 (18)0.041 (2)0.0056 (14)0.0015 (15)0.0050 (15)
C11B0.0212 (18)0.0248 (19)0.0331 (19)0.0023 (15)0.0072 (15)0.0048 (15)
C12B0.032 (2)0.032 (2)0.0258 (17)0.0075 (16)0.0073 (15)0.0064 (15)
C13B0.0280 (19)0.0222 (18)0.0276 (17)0.0093 (15)0.0063 (15)0.0064 (14)
C14B0.032 (2)0.037 (2)0.0239 (17)0.0096 (16)0.0063 (15)0.0136 (15)
Geometric parameters (Å, º) top
F1A—C11A1.365 (3)F1B—C11B1.363 (3)
O1A—N3A1.241 (3)O1B—N3B1.246 (3)
O2A—N3A1.229 (3)O2B—N3B1.232 (3)
O3A—N4A1.235 (3)O3B—N4B1.233 (3)
O4A—N4A1.235 (3)O4B—N4B1.233 (3)
N1A—C7A1.296 (3)N1B—C7B1.286 (4)
N1A—N2A1.373 (3)N1B—N2B1.381 (3)
N2A—C1A1.364 (3)N2B—C1B1.345 (4)
N2A—H1NA0.87 (4)N2B—H1NB0.84 (3)
N3A—C2A1.451 (3)N3B—C2B1.445 (3)
N4A—C4A1.454 (3)N4B—C4B1.455 (4)
C1A—C2A1.412 (4)C1B—C6B1.411 (4)
C1A—C6A1.414 (4)C1B—C2B1.427 (4)
C2A—C3A1.392 (4)C2B—C3B1.388 (4)
C3A—C4A1.366 (4)C3B—C4B1.363 (4)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.397 (4)C4B—C5B1.405 (4)
C5A—C6A1.360 (4)C5B—C6B1.358 (4)
C5A—H5A0.9500C5B—H5B0.9500
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.480 (4)C7B—C8B1.491 (4)
C7A—C14A1.499 (4)C7B—C14B1.506 (4)
C8A—C9A1.402 (4)C8B—C9B1.391 (4)
C8A—C13A1.406 (4)C8B—C13B1.397 (4)
C9A—C10A1.382 (4)C9B—C10B1.392 (4)
C9A—H9A0.9500C9B—H9B0.9500
C10A—C11A1.376 (4)C10B—C11B1.370 (4)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.370 (4)C11B—C12B1.374 (4)
C12A—C13A1.377 (4)C12B—C13B1.384 (4)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C7A—N1A—N2A117.2 (2)C7B—N1B—N2B116.2 (2)
C1A—N2A—N1A118.9 (2)C1B—N2B—N1B119.9 (2)
C1A—N2A—H1NA113 (2)C1B—N2B—H1NB122 (2)
N1A—N2A—H1NA128 (2)N1B—N2B—H1NB118 (2)
O2A—N3A—O1A122.4 (2)O2B—N3B—O1B122.2 (2)
O2A—N3A—C2A118.7 (2)O2B—N3B—C2B118.5 (2)
O1A—N3A—C2A118.8 (2)O1B—N3B—C2B119.3 (2)
O3A—N4A—O4A123.5 (2)O3B—N4B—O4B123.3 (3)
O3A—N4A—C4A118.7 (2)O3B—N4B—C4B119.0 (2)
O4A—N4A—C4A117.8 (2)O4B—N4B—C4B117.7 (2)
N2A—C1A—C2A122.7 (2)N2B—C1B—C6B120.8 (3)
N2A—C1A—C6A120.4 (3)N2B—C1B—C2B122.7 (3)
C2A—C1A—C6A116.9 (3)C6B—C1B—C2B116.5 (3)
C3A—C2A—C1A121.7 (2)C3B—C2B—C1B121.6 (3)
C3A—C2A—N3A115.7 (2)C3B—C2B—N3B116.5 (2)
C1A—C2A—N3A122.5 (2)C1B—C2B—N3B121.9 (3)
C4A—C3A—C2A118.9 (3)C4B—C3B—C2B118.9 (3)
C4A—C3A—H3A120.6C4B—C3B—H3B120.6
C2A—C3A—H3A120.6C2B—C3B—H3B120.6
C3A—C4A—C5A121.1 (3)C3B—C4B—C5B121.5 (3)
C3A—C4A—N4A119.0 (3)C3B—C4B—N4B119.2 (3)
C5A—C4A—N4A119.9 (2)C5B—C4B—N4B119.3 (2)
C6A—C5A—C4A120.2 (3)C6B—C5B—C4B119.6 (3)
C6A—C5A—H5A119.9C6B—C5B—H5B120.2
C4A—C5A—H5A119.9C4B—C5B—H5B120.2
C5A—C6A—C1A121.2 (3)C5B—C6B—C1B121.8 (3)
C5A—C6A—H6A119.4C5B—C6B—H6B119.1
C1A—C6A—H6A119.4C1B—C6B—H6B119.1
N1A—C7A—C8A115.0 (2)N1B—C7B—C8B115.4 (3)
N1A—C7A—C14A123.6 (3)N1B—C7B—C14B123.2 (3)
C8A—C7A—C14A121.4 (3)C8B—C7B—C14B121.4 (3)
C9A—C8A—C13A117.7 (3)C9B—C8B—C13B118.4 (3)
C9A—C8A—C7A122.3 (3)C9B—C8B—C7B122.0 (3)
C13A—C8A—C7A119.9 (3)C13B—C8B—C7B119.6 (3)
C10A—C9A—C8A121.5 (3)C8B—C9B—C10B121.0 (3)
C10A—C9A—H9A119.3C8B—C9B—H9B119.5
C8A—C9A—H9A119.3C10B—C9B—H9B119.5
C11A—C10A—C9A118.1 (3)C11B—C10B—C9B118.4 (3)
C11A—C10A—H10A121.0C11B—C10B—H10B120.8
C9A—C10A—H10A121.0C9B—C10B—H10B120.8
F1A—C11A—C12A118.9 (3)F1B—C11B—C10B118.5 (3)
F1A—C11A—C10A118.2 (3)F1B—C11B—C12B118.8 (3)
C12A—C11A—C10A122.9 (3)C10B—C11B—C12B122.7 (3)
C11A—C12A—C13A118.6 (3)C11B—C12B—C13B118.3 (3)
C11A—C12A—H12A120.7C11B—C12B—H12B120.9
C13A—C12A—H12A120.7C13B—C12B—H12B120.9
C12A—C13A—C8A121.2 (3)C12B—C13B—C8B121.2 (3)
C12A—C13A—H13A119.4C12B—C13B—H13B119.4
C8A—C13A—H13A119.4C8B—C13B—H13B119.4
C7A—C14A—H14A109.5C7B—C14B—H14D109.5
C7A—C14A—H14B109.5C7B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C7A—C14A—H14C109.5C7B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C7A—N1A—N2A—C1A176.9 (3)C7B—N1B—N2B—C1B179.3 (3)
N1A—N2A—C1A—C2A179.7 (3)N1B—N2B—C1B—C6B1.1 (4)
N1A—N2A—C1A—C6A0.1 (4)N1B—N2B—C1B—C2B179.1 (3)
N2A—C1A—C2A—C3A179.0 (3)N2B—C1B—C2B—C3B176.6 (3)
C6A—C1A—C2A—C3A1.2 (4)C6B—C1B—C2B—C3B3.2 (4)
N2A—C1A—C2A—N3A1.4 (4)N2B—C1B—C2B—N3B3.3 (4)
C6A—C1A—C2A—N3A178.4 (3)C6B—C1B—C2B—N3B176.9 (3)
O2A—N3A—C2A—C3A1.6 (4)O2B—N3B—C2B—C3B3.1 (4)
O1A—N3A—C2A—C3A178.8 (3)O1B—N3B—C2B—C3B176.5 (3)
O2A—N3A—C2A—C1A178.8 (3)O2B—N3B—C2B—C1B177.0 (3)
O1A—N3A—C2A—C1A0.8 (4)O1B—N3B—C2B—C1B3.4 (4)
C1A—C2A—C3A—C4A0.7 (4)C1B—C2B—C3B—C4B1.6 (4)
N3A—C2A—C3A—C4A178.9 (3)N3B—C2B—C3B—C4B178.5 (3)
C2A—C3A—C4A—C5A0.2 (4)C2B—C3B—C4B—C5B1.0 (4)
C2A—C3A—C4A—N4A179.6 (2)C2B—C3B—C4B—N4B179.1 (3)
O3A—N4A—C4A—C3A0.7 (4)O3B—N4B—C4B—C3B0.2 (4)
O4A—N4A—C4A—C3A180.0 (3)O4B—N4B—C4B—C3B179.0 (3)
O3A—N4A—C4A—C5A179.5 (3)O3B—N4B—C4B—C5B178.4 (3)
O4A—N4A—C4A—C5A0.1 (4)O4B—N4B—C4B—C5B0.8 (4)
C3A—C4A—C5A—C6A0.5 (4)C3B—C4B—C5B—C6B1.8 (4)
N4A—C4A—C5A—C6A179.3 (3)N4B—C4B—C5B—C6B179.9 (3)
C4A—C5A—C6A—C1A0.0 (4)C4B—C5B—C6B—C1B0.0 (4)
N2A—C1A—C6A—C5A179.4 (3)N2B—C1B—C6B—C5B177.5 (3)
C2A—C1A—C6A—C5A0.8 (4)C2B—C1B—C6B—C5B2.4 (4)
N2A—N1A—C7A—C8A179.5 (2)N2B—N1B—C7B—C8B179.2 (2)
N2A—N1A—C7A—C14A0.6 (4)N2B—N1B—C7B—C14B0.2 (4)
N1A—C7A—C8A—C9A176.9 (3)N1B—C7B—C8B—C9B171.8 (3)
C14A—C7A—C8A—C9A4.1 (4)C14B—C7B—C8B—C9B9.2 (4)
N1A—C7A—C8A—C13A4.5 (4)N1B—C7B—C8B—C13B8.9 (4)
C14A—C7A—C8A—C13A174.5 (3)C14B—C7B—C8B—C13B170.2 (3)
C13A—C8A—C9A—C10A0.2 (4)C13B—C8B—C9B—C10B0.1 (4)
C7A—C8A—C9A—C10A178.8 (3)C7B—C8B—C9B—C10B179.3 (3)
C8A—C9A—C10A—C11A0.1 (4)C8B—C9B—C10B—C11B0.3 (5)
C9A—C10A—C11A—F1A179.8 (3)C9B—C10B—C11B—F1B178.7 (3)
C9A—C10A—C11A—C12A0.1 (5)C9B—C10B—C11B—C12B0.4 (5)
F1A—C11A—C12A—C13A179.9 (3)F1B—C11B—C12B—C13B178.9 (3)
C10A—C11A—C12A—C13A0.2 (5)C10B—C11B—C12B—C13B0.2 (5)
C11A—C12A—C13A—C8A0.1 (4)C11B—C12B—C13B—C8B0.2 (5)
C9A—C8A—C13A—C12A0.1 (4)C9B—C8B—C13B—C12B0.4 (5)
C7A—C8A—C13A—C12A178.7 (3)C7B—C8B—C13B—C12B179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O1A0.87 (3)1.90 (3)2.609 (3)137 (3)
N2B—H1NB···O1B0.84 (3)2.01 (3)2.603 (3)128 (3)
C5A—H5A···O1B0.952.483.329 (3)148
C5B—H5B···O1Ai0.952.463.253 (3)141
C6A—H6A···O2B0.952.443.260 (4)144
C6B—H6B···O2Ai0.952.443.305 (4)151
C10A—H10A···O4Aii0.952.533.466 (4)169
C10B—H10B···O4Biii0.952.433.379 (4)174
C13B—H13B···O2Ai0.952.583.487 (4)159
C14B—H14E···F1Aiii0.982.473.205 (4)131
Symmetry codes: (i) x, y, z1; (ii) x1, y+1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC14H11FN4O4
Mr318.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8278 (3), 10.9177 (4), 15.2698 (6)
α, β, γ (°)100.649 (3), 104.948 (3), 94.177 (3)
V3)1386.10 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.30 × 0.04
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
19163, 5084, 3438
Rint0.062
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.144, 1.09
No. of reflections5084
No. of parameters425
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O1A0.87 (3)1.90 (3)2.609 (3)137 (3)
N2B—H1NB···O1B0.84 (3)2.01 (3)2.603 (3)128 (3)
C5A—H5A···O1B0.952.483.329 (3)148
C5B—H5B···O1Ai0.952.463.253 (3)141
C6A—H6A···O2B0.952.443.260 (4)144
C6B—H6B···O2Ai0.952.443.305 (4)151
C10A—H10A···O4Aii0.952.533.466 (4)169
C10B—H10B···O4Biii0.952.433.379 (4)174
C13B—H13B···O2Ai0.952.583.487 (4)159
C14B—H14E···F1Aiii0.982.473.205 (4)131
Symmetry codes: (i) x, y, z1; (ii) x1, y+1, z; (iii) x+1, y1, z.
 

Footnotes

Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811151. BN thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. HKF thanks the King Saud University, Riyadh, Saudi Arabia, for the award of a visiting Professorship (December 23rd 2011 to January 14th 2012).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, o3499–o3500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o398-o399
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds