organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-hy­dr­oxy-N-(4-methyl­phen­yl)benzamide

aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 8 January 2012; accepted 8 January 2012; online 14 January 2012)

In the title compound, C14H12ClNO2, the dihedral angle between the aromatic rings is 14.87 (11)° and an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating C(6) chains propagating along the c-axis direction.

Related literature

For related structures, see: Raza et al. (2010[Raza, A. R., Nisar, B., Tahir, M. N. & Shamshad, S. (2010). Acta Cryst. E66, o2922.], 2011[Raza, A. R., Nisar, B. & Tahir, M. N. (2011). Acta Cryst. E67, o2253.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO2

  • Mr = 261.70

  • Monoclinic, P 21 /c

  • a = 13.8553 (12) Å

  • b = 7.6197 (7) Å

  • c = 12.0114 (11) Å

  • β = 104.937 (5)°

  • V = 1225.23 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.34 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.] Tmin = 0.979, Tmax = 0.988

  • 10366 measured reflections

  • 2988 independent reflections

  • 1832 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.163

  • S = 1.02

  • 2988 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.96 2.658 (3) 138
O1—H1A⋯O2i 0.82 1.85 2.664 (2) 173
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structures of (II) i.e., 2-hydroxy-N-(4-methylphenyl)benzamide (Raza et al., 2011) and (III) i.e., N-(4-chlorophenyl)-2-hydroxybenzamide (Raza et al., 2010) which are related to the title compound (I, Fig. 1). This compound has been prepared as a precursor for the synthesis of symmetric as well as asymmetric benzoxazepines.

In (I), the 3-chlorophenol group A (C1–C6/CL1/O1) and 4-methylanilinic group B (C8—C14) are roughly planar with r. m. s. deviations of 0.014 and 0.031 Å, respectively. The dihedral angle between A/B is 14.87 (11)°. The central formamide moiety C (O2/C7/N1) is of course planar. The dihedral angle between A/C and B/C is 7.59 (24)° and 18.74 (24)°, respectively. There exist intramolecular H-bondings of N—H···O and C—H···O types (Table 1, Fig. 1) completing S(6) ring motifs (Bernstein et al., 1995). There exists inter-molecular H-bondings of O—H···O type (Table 1, Fig. 2) due to which the molecules are linked in the form of one dimensional polymeric chains extending along the crystallographic c axis.

Related literature top

For related structures, see: Raza et al. (2010, 2011). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The solution of 4-methylaniline (0.38 g, 4.0 mmol, 0.75 eq) in dry CHCl3 and dry Et3N (1 ml, 0.73 g, 7.0 mmol, 1.5 eq) was added slowly at room temperature to a mixture of 4-chloro-2-hydroxybenzoic acid (0.83 g, 5.0 mmol, 1 eq), SOCl2 (3.24 ml, 5.28 g, 44.0 mmol, 1.2 eq) and catalytic amount of dimethylformamide (1 drop) followed by 4 h reflux. After completion of reaction, the reaction mixture was cooled to room temperature, neutralized with aqueous NaHCO3 (10%), extracted with CHCl3 (3×25 ml). The organic layer was combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford crude product. The column chromatographic purification with 5% EtOAc in hexane (2 L) over a silica gel packed column (23 cm length) afforded the title compound I as a white crystalline solid in the 18–59th fractions (50 ml each).

Refinement top

Although H atoms were appeared in difference Fourier map but were positioned geometrically with (O–H = 0.82, N–H = 0.86 and C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for hydroxy & methyl H-atoms and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line indicate the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing showing polymeric chains extending along the c-axis.
4-Chloro-2-hydroxy-N-(4-methylphenyl)benzamide top
Crystal data top
C14H12ClNO2F(000) = 544
Mr = 261.70Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1243 reflections
a = 13.8553 (12) Åθ = 1.1–27.9°
b = 7.6197 (7) ŵ = 0.30 mm1
c = 12.0114 (11) ÅT = 296 K
β = 104.937 (5)°Block, colorless
V = 1225.23 (19) Å30.34 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2988 independent reflections
Radiation source: fine-focus sealed tube1832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 7.6 pixels mm-1θmax = 28.3°, θmin = 3.0°
ω scansh = 1817
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.979, Tmax = 0.988l = 1515
10366 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.1504P]
where P = (Fo2 + 2Fc2)/3
2988 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12ClNO2V = 1225.23 (19) Å3
Mr = 261.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8553 (12) ŵ = 0.30 mm1
b = 7.6197 (7) ÅT = 296 K
c = 12.0114 (11) Å0.34 × 0.14 × 0.12 mm
β = 104.937 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1832 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.048
10366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2988 reflectionsΔρmin = 0.21 e Å3
165 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34725 (5)0.76527 (10)0.20816 (6)0.0577 (3)
O10.02457 (12)0.6924 (3)0.03254 (14)0.0433 (6)
O20.00477 (12)0.9612 (3)0.26357 (13)0.0429 (6)
N10.11035 (14)0.8338 (3)0.17119 (16)0.0362 (7)
C10.06586 (16)0.8587 (3)0.07420 (18)0.0307 (7)
C20.06343 (17)0.7590 (3)0.02354 (19)0.0309 (7)
C30.15057 (17)0.7321 (3)0.1100 (2)0.0369 (8)
C40.23926 (18)0.8024 (3)0.1004 (2)0.0395 (8)
C50.24347 (18)0.9064 (4)0.0066 (2)0.0433 (9)
C60.15738 (17)0.9312 (3)0.0788 (2)0.0378 (8)
C70.01973 (17)0.8882 (3)0.17747 (19)0.0330 (7)
C80.20016 (17)0.8321 (3)0.25990 (19)0.0336 (7)
C90.21756 (18)0.9335 (3)0.3585 (2)0.0398 (8)
C100.30691 (19)0.9134 (4)0.4426 (2)0.0442 (9)
C110.38017 (19)0.7971 (4)0.4309 (2)0.0447 (9)
C120.36287 (19)0.7055 (4)0.3288 (2)0.0498 (9)
C130.27424 (19)0.7211 (3)0.2442 (2)0.0440 (8)
C140.4741 (2)0.7698 (4)0.5263 (3)0.0643 (11)
H10.114270.795380.105180.0435*
H1A0.018080.653370.097690.0649*
H30.148780.666250.174660.0443*
H50.303170.957840.001910.0519*
H60.160000.999040.142290.0454*
H90.170071.014070.368520.0478*
H100.317810.980820.509240.0531*
H120.412240.630920.316480.0598*
H130.264520.656580.176470.0528*
H14A0.529710.752800.493450.0964*
H14B0.466410.668140.570410.0964*
H14C0.485960.870990.575500.0964*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0388 (4)0.0747 (6)0.0499 (4)0.0043 (3)0.0061 (3)0.0010 (4)
O10.0351 (9)0.0606 (12)0.0338 (10)0.0033 (8)0.0084 (7)0.0120 (9)
O20.0414 (10)0.0602 (12)0.0272 (9)0.0023 (9)0.0092 (7)0.0060 (8)
N10.0368 (11)0.0452 (13)0.0260 (10)0.0010 (9)0.0068 (8)0.0022 (9)
C10.0343 (12)0.0321 (13)0.0252 (12)0.0021 (10)0.0070 (9)0.0041 (10)
C20.0314 (12)0.0324 (13)0.0294 (12)0.0004 (9)0.0089 (9)0.0042 (10)
C30.0388 (13)0.0418 (15)0.0294 (13)0.0043 (11)0.0078 (10)0.0026 (10)
C40.0348 (13)0.0446 (15)0.0358 (14)0.0041 (11)0.0034 (10)0.0053 (11)
C50.0346 (14)0.0503 (17)0.0444 (15)0.0045 (11)0.0093 (11)0.0018 (12)
C60.0395 (13)0.0400 (14)0.0341 (13)0.0025 (11)0.0098 (10)0.0020 (11)
C70.0386 (13)0.0331 (13)0.0284 (12)0.0039 (10)0.0108 (10)0.0054 (10)
C80.0352 (12)0.0374 (14)0.0276 (12)0.0045 (10)0.0071 (10)0.0026 (10)
C90.0386 (14)0.0428 (15)0.0374 (14)0.0022 (11)0.0088 (11)0.0047 (11)
C100.0453 (15)0.0510 (17)0.0338 (14)0.0094 (12)0.0056 (11)0.0053 (12)
C110.0385 (14)0.0516 (16)0.0394 (15)0.0056 (12)0.0017 (11)0.0051 (12)
C120.0364 (14)0.0592 (18)0.0513 (17)0.0051 (12)0.0066 (12)0.0047 (14)
C130.0418 (14)0.0518 (16)0.0381 (14)0.0005 (12)0.0098 (11)0.0089 (12)
C140.0489 (18)0.074 (2)0.057 (2)0.0018 (15)0.0098 (14)0.0058 (16)
Geometric parameters (Å, º) top
Cl1—C41.731 (3)C9—C101.390 (4)
O1—C21.351 (3)C10—C111.382 (4)
O2—C71.238 (3)C11—C121.377 (4)
O1—H1A0.8200C11—C141.510 (4)
N1—C71.343 (3)C12—C131.383 (4)
N1—C81.414 (3)C3—H30.9300
N1—H10.8600C5—H50.9300
C1—C71.496 (3)C6—H60.9300
C1—C61.397 (3)C9—H90.9300
C1—C21.406 (3)C10—H100.9300
C2—C31.390 (3)C12—H120.9300
C3—C41.372 (3)C13—H130.9300
C4—C51.391 (3)C14—H14A0.9600
C5—C61.371 (3)C14—H14B0.9600
C8—C131.380 (3)C14—H14C0.9600
C8—C91.382 (3)
C2—O1—H1A109.00C10—C11—C12116.9 (2)
C7—N1—C8127.9 (2)C12—C11—C14121.6 (3)
C7—N1—H1116.00C11—C12—C13121.9 (3)
C8—N1—H1116.00C8—C13—C12120.2 (2)
C2—C1—C6117.6 (2)C2—C3—H3120.00
C2—C1—C7126.1 (2)C4—C3—H3120.00
C6—C1—C7116.2 (2)C4—C5—H5121.00
C1—C2—C3120.0 (2)C6—C5—H5121.00
O1—C2—C1119.1 (2)C1—C6—H6119.00
O1—C2—C3120.9 (2)C5—C6—H6119.00
C2—C3—C4120.3 (2)C8—C9—H9120.00
Cl1—C4—C3119.57 (18)C10—C9—H9120.00
Cl1—C4—C5119.4 (2)C9—C10—H10119.00
C3—C4—C5121.1 (2)C11—C10—H10119.00
C4—C5—C6118.3 (2)C11—C12—H12119.00
C1—C6—C5122.6 (2)C13—C12—H12119.00
N1—C7—C1117.4 (2)C8—C13—H13120.00
O2—C7—C1119.5 (2)C12—C13—H13120.00
O2—C7—N1123.1 (2)C11—C14—H14A109.00
N1—C8—C9124.5 (2)C11—C14—H14B109.00
N1—C8—C13116.3 (2)C11—C14—H14C110.00
C9—C8—C13119.2 (2)H14A—C14—H14B109.00
C8—C9—C10119.2 (2)H14A—C14—H14C109.00
C9—C10—C11122.5 (2)H14B—C14—H14C110.00
C10—C11—C14121.5 (2)
C8—N1—C7—O26.7 (4)C2—C3—C4—Cl1179.23 (18)
C8—N1—C7—C1173.7 (2)C2—C3—C4—C52.2 (4)
C7—N1—C8—C920.6 (4)Cl1—C4—C5—C6178.8 (2)
C7—N1—C8—C13159.8 (2)C3—C4—C5—C62.7 (4)
C6—C1—C2—O1177.7 (2)C4—C5—C6—C11.1 (4)
C6—C1—C2—C31.5 (3)N1—C8—C9—C10176.5 (2)
C7—C1—C2—O15.5 (4)C13—C8—C9—C103.9 (4)
C7—C1—C2—C3175.4 (2)N1—C8—C13—C12177.2 (2)
C2—C1—C6—C51.0 (4)C9—C8—C13—C123.1 (4)
C7—C1—C6—C5176.2 (2)C8—C9—C10—C110.9 (4)
C2—C1—C7—O2171.4 (2)C9—C10—C11—C122.7 (4)
C2—C1—C7—N18.9 (3)C9—C10—C11—C14176.4 (3)
C6—C1—C7—O25.5 (3)C10—C11—C12—C133.5 (4)
C6—C1—C7—N1174.1 (2)C14—C11—C12—C13175.6 (3)
O1—C2—C3—C4179.2 (2)C11—C12—C13—C80.7 (4)
C1—C2—C3—C40.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.658 (3)138
O1—H1A···O2i0.821.852.664 (2)173
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO2
Mr261.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8553 (12), 7.6197 (7), 12.0114 (11)
β (°) 104.937 (5)
V3)1225.23 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.34 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10366, 2988, 1832
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.163, 1.02
No. of reflections2988
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.658 (3)138
O1—H1A···O2i0.821.852.664 (2)173
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20–819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2011). Acta Cryst. E67, o2253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B., Tahir, M. N. & Shamshad, S. (2010). Acta Cryst. E66, o2922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds