organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(4-chloro­phen­yl)-1,3-di­methyl­piperidin-4-one O-benzyl­oxime

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 9 January 2012; accepted 18 January 2012; online 25 January 2012)

The piperidin-4-one ring in the title compound, C26H26Cl2N2O, exists in a chair conformation with equatorial orientations of the methyl and 4-chlorophenyl groups. The C atom bonded to the oxime group is statistically planar (bond-angle sum = 360.0°) although the C—C=N bond angles are very different [117.83 (15) and 127.59 (15)°]. The dihedral angle between the chloro­phenyl rings is 54.75 (4)°. In the crystal, mol­ecules inter­act via van der Waals forces.

Related literature

For the synthesis and biological activity of piperidin-4-one derivatives, see: Parthiban et al. (2008[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2008). Spectrochim. Acta Part A, 70, 11-24.]). For related structures see: Parthiban et al. (2009a[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981-2985.],b[Parthiban, P., Rani, M. & Kabilan, S. (2009b). Monatsh. Chem. 140, 287-301.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26Cl2N2O

  • Mr = 453.39

  • Monoclinic, P 21 /n

  • a = 7.6461 (2) Å

  • b = 18.5051 (5) Å

  • c = 16.7172 (5) Å

  • β = 91.130 (1)°

  • V = 2364.89 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.23 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.957

  • 32534 measured reflections

  • 7702 independent reflections

  • 4010 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.02

  • 7702 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The piperidin-4-one nucleus is an important class of pharmacophore due to its broad spectrum of biological actions ranging from antibacterial to anticancer (e.g. Parthiban et al., 2009a). On account of its biological significance, isolaton from the natural products as well as synthesis of new molecules, and their stereochemical analysis are considered as important in the field of medicinal chemistry. Hence, we synthesized the title compound by a successive double Mannich condensation and thus obtained piperidin-4-one was further condensed with O-benzylhydroxylamine to make the oxime ether derivative of the piperidone. Thus the obtained crystal of the unsymmetrical molecule was undertaken for this study to explore its stereochemistry in the solid-state, since the E/Z isomerization plays a mjor role during oximation.

The crystallographic analysis of the title compound indicated that the piperidone ring N1—C1—C2—C3—C4—C5 adopts a chair conformation with the deviation of ring atoms N1 and C3 from the best plane C1—C2—C4—C5 by -0.593 and 0.683 Å, respectively. According to Nardelli (Nardelli, 1983), the smallest displacement asymmetry parameters q2 and q3 are 0.067 (17) and 0.557 (18) Å, respectively. According to Cremer and Pople (Cremer & Pople, 1975), the ring puckering parameters such as total puckering amplitude QT and phase angle θ are 0.560 (18) Å and 6.74 (17)°. Thus, all parameters strongly support the near ideal chair conformation for the piperidone ring.

The torsion angles of C3—C2—C1—C6 and C3—C4—C5—C20 of the 4-chlorophenyl rings are 176 (3) and 178.6 (3)° and they are orientated at an angle of 54.75 (4)° with respect to one another. In the crystal, the molecules interact by van der Waals' forces.

Related literature top

For the synthesis and biological activity of piperidin-4-one derivatives, see: Parthiban et al. (2008). For related structures see: Parthiban et al. (2009a,b). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The 2,6-bis(4-chlorophenyl)-1,3-dimethylpiperidin-4-one O-benzyloxime was synthesized by one-pot using 4-chlorobenzaldehyde (0.1 mol, 14.06 g), butan-2-one (0.05 mol, 3.61 g, 4.48 ml) and ammonium acetate (0.05 mol, 2.85 g) in a 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude piperidin-4-one was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. Then the pure product was N-methylated by methyl iodide using anhydrous potasssium carbonate in dry acetone. Thus the obtained N-methylpiperidin-4-one was condensed with O-benzylhydroxylamine hydrochloride using sodium acetate trihydrate as a base in ethanol (Parthiban et al. (2008, 2009b). Colourless blocks of the title compound were obtained by slow evaporation from ethanol.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, methine C—H = 0.98 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms atUiso(H) = 1.5Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anistropic displacement representation of the title molecule with atoms represented with 30% probability ellipsoids.
2,6-Bis(4-chlorophenyl)-1,3-dimethylpiperidin-4-one O-benzyloxime top
Crystal data top
C26H26Cl2N2OF(000) = 952
Mr = 453.39Dx = 1.273 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6502 reflections
a = 7.6461 (2) Åθ = 2.4–25.0°
b = 18.5051 (5) ŵ = 0.30 mm1
c = 16.7172 (5) ÅT = 298 K
β = 91.130 (1)°Block, colourless
V = 2364.89 (11) Å30.23 × 0.19 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7702 independent reflections
Radiation source: fine-focus sealed tube4010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 31.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1011
Tmin = 0.935, Tmax = 0.957k = 2727
32534 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.3655P]
where P = (Fo2 + 2Fc2)/3
7702 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H26Cl2N2OV = 2364.89 (11) Å3
Mr = 453.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6461 (2) ŵ = 0.30 mm1
b = 18.5051 (5) ÅT = 298 K
c = 16.7172 (5) Å0.23 × 0.19 × 0.15 mm
β = 91.130 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7702 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4010 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.957Rint = 0.037
32534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
7702 reflectionsΔρmin = 0.21 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42343 (19)0.32793 (8)0.56014 (10)0.0414 (4)
H10.47230.32930.50640.050*
C20.2500 (2)0.37081 (9)0.55816 (11)0.0445 (4)
H20.20580.37190.61280.053*
C30.1169 (2)0.33229 (9)0.50667 (11)0.0448 (4)
C40.0966 (2)0.25380 (10)0.52509 (13)0.0545 (5)
H4A0.01920.23150.48560.065*
H4B0.04500.24810.57730.065*
C50.2753 (2)0.21664 (9)0.52438 (11)0.0466 (4)
H50.32320.22200.47080.056*
C60.55190 (19)0.36477 (8)0.61703 (10)0.0402 (4)
C70.7020 (2)0.39609 (10)0.58833 (11)0.0500 (4)
H70.72680.39200.53430.060*
C80.8164 (2)0.43352 (10)0.63860 (12)0.0537 (5)
H80.91690.45450.61840.064*
C90.7802 (2)0.43934 (9)0.71775 (11)0.0477 (4)
C100.6325 (2)0.40840 (10)0.74877 (11)0.0524 (4)
H100.60900.41230.80300.063*
C110.5195 (2)0.37142 (10)0.69761 (11)0.0498 (4)
H110.41930.35050.71810.060*
C120.2795 (2)0.44860 (9)0.53218 (13)0.0585 (5)
H12A0.33130.44910.48030.088*
H12B0.35630.47210.57010.088*
H12C0.16950.47360.52970.088*
C130.1626 (3)0.36716 (12)0.34792 (13)0.0639 (5)
H13A0.08390.36500.30320.077*
H13B0.17690.41730.36320.077*
C140.3364 (2)0.33482 (9)0.32492 (10)0.0451 (4)
C150.4831 (3)0.37759 (12)0.32269 (13)0.0614 (5)
H150.47360.42640.33510.074*
C160.6439 (3)0.34904 (18)0.30229 (18)0.0930 (9)
H160.74210.37870.30050.112*
C170.6596 (4)0.2789 (2)0.28508 (19)0.1076 (11)
H170.76870.25970.27170.129*
C180.5152 (5)0.23537 (15)0.28717 (18)0.1031 (10)
H180.52640.18650.27540.124*
C190.3534 (3)0.26358 (12)0.30663 (15)0.0745 (6)
H190.25540.23380.30730.089*
C200.2544 (2)0.13702 (9)0.54100 (11)0.0461 (4)
C210.1951 (3)0.11215 (10)0.61296 (12)0.0601 (5)
H210.16800.14520.65280.072*
C220.1750 (3)0.03941 (10)0.62753 (13)0.0611 (5)
H220.13560.02340.67680.073*
C230.2136 (2)0.00899 (9)0.56869 (12)0.0513 (5)
C240.2715 (3)0.01343 (10)0.49649 (13)0.0579 (5)
H240.29670.02000.45680.069*
C250.2924 (2)0.08673 (10)0.48284 (12)0.0538 (4)
H250.33280.10230.43370.065*
C260.5667 (2)0.21413 (11)0.58121 (14)0.0665 (6)
H26A0.55170.16490.59800.100*
H26B0.64740.23800.61710.100*
H26C0.61160.21500.52800.100*
N10.39675 (17)0.25164 (7)0.58210 (9)0.0436 (3)
N20.03573 (17)0.36870 (8)0.45354 (9)0.0483 (4)
O10.09336 (16)0.32633 (7)0.41361 (8)0.0594 (4)
Cl10.92535 (7)0.48578 (3)0.78064 (4)0.07529 (19)
Cl20.19251 (8)0.10122 (3)0.58698 (4)0.0769 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0416 (8)0.0420 (9)0.0404 (10)0.0022 (6)0.0017 (7)0.0006 (7)
C20.0414 (8)0.0415 (9)0.0502 (11)0.0025 (6)0.0042 (7)0.0001 (7)
C30.0390 (8)0.0437 (9)0.0515 (11)0.0023 (6)0.0046 (7)0.0026 (8)
C40.0500 (9)0.0464 (10)0.0663 (13)0.0052 (7)0.0168 (8)0.0068 (9)
C50.0552 (9)0.0434 (9)0.0409 (10)0.0009 (7)0.0062 (8)0.0000 (7)
C60.0374 (7)0.0412 (9)0.0418 (10)0.0023 (6)0.0009 (7)0.0025 (7)
C70.0435 (8)0.0630 (11)0.0436 (11)0.0010 (7)0.0040 (7)0.0033 (8)
C80.0383 (8)0.0656 (12)0.0572 (13)0.0093 (7)0.0001 (8)0.0096 (9)
C90.0461 (8)0.0442 (9)0.0521 (12)0.0036 (7)0.0125 (8)0.0054 (8)
C100.0549 (10)0.0620 (11)0.0401 (10)0.0060 (8)0.0024 (8)0.0024 (8)
C110.0453 (9)0.0592 (11)0.0449 (11)0.0096 (7)0.0027 (7)0.0052 (8)
C120.0523 (10)0.0420 (9)0.0806 (15)0.0003 (8)0.0111 (9)0.0008 (9)
C130.0535 (10)0.0740 (14)0.0634 (14)0.0084 (9)0.0160 (9)0.0198 (11)
C140.0466 (8)0.0503 (10)0.0382 (10)0.0013 (7)0.0065 (7)0.0043 (8)
C150.0599 (11)0.0626 (12)0.0615 (14)0.0067 (9)0.0031 (9)0.0003 (10)
C160.0477 (11)0.123 (2)0.108 (2)0.0021 (13)0.0107 (12)0.0303 (18)
C170.0874 (19)0.133 (3)0.101 (2)0.0501 (19)0.0415 (16)0.033 (2)
C180.140 (3)0.0683 (16)0.100 (2)0.0419 (18)0.0212 (19)0.0091 (15)
C190.0850 (15)0.0540 (12)0.0843 (18)0.0041 (11)0.0014 (13)0.0030 (11)
C200.0525 (9)0.0421 (9)0.0433 (11)0.0008 (7)0.0084 (8)0.0030 (8)
C210.0899 (14)0.0454 (10)0.0451 (12)0.0020 (9)0.0042 (10)0.0079 (9)
C220.0856 (14)0.0463 (11)0.0517 (13)0.0003 (9)0.0085 (10)0.0008 (9)
C230.0512 (9)0.0381 (9)0.0645 (13)0.0019 (7)0.0047 (9)0.0020 (8)
C240.0670 (11)0.0476 (10)0.0590 (13)0.0039 (8)0.0014 (10)0.0141 (9)
C250.0634 (11)0.0513 (11)0.0466 (11)0.0017 (8)0.0005 (9)0.0015 (9)
C260.0542 (10)0.0541 (11)0.0904 (17)0.0145 (8)0.0181 (10)0.0080 (11)
N10.0446 (7)0.0390 (7)0.0470 (9)0.0029 (5)0.0086 (6)0.0018 (6)
N20.0398 (7)0.0491 (8)0.0557 (10)0.0008 (6)0.0079 (6)0.0019 (7)
O10.0562 (7)0.0554 (8)0.0658 (9)0.0072 (6)0.0249 (6)0.0111 (6)
Cl10.0766 (3)0.0786 (4)0.0696 (4)0.0275 (3)0.0249 (3)0.0053 (3)
Cl20.0885 (4)0.0405 (3)0.1022 (5)0.0008 (2)0.0140 (3)0.0008 (3)
Geometric parameters (Å, º) top
C1—N11.474 (2)C13—C141.500 (2)
C1—C61.516 (2)C13—H13A0.9700
C1—C21.545 (2)C13—H13B0.9700
C1—H10.9800C14—C191.359 (3)
C2—C31.500 (2)C14—C151.373 (3)
C2—C121.522 (2)C15—C161.375 (3)
C2—H20.9800C15—H150.9300
C3—N21.268 (2)C16—C171.334 (4)
C3—C41.493 (2)C16—H160.9300
C4—C51.529 (2)C17—C181.367 (4)
C4—H4A0.9700C17—H170.9300
C4—H4B0.9700C18—C191.376 (4)
C5—N11.476 (2)C18—H180.9300
C5—C201.508 (2)C19—H190.9300
C5—H50.9800C20—C211.373 (3)
C6—C71.380 (2)C20—C251.381 (2)
C6—C111.380 (3)C21—C221.377 (3)
C7—C81.387 (3)C21—H210.9300
C7—H70.9300C22—C231.367 (3)
C8—C91.361 (3)C22—H220.9300
C8—H80.9300C23—C241.359 (3)
C9—C101.377 (2)C23—Cl21.7420 (18)
C9—Cl11.7405 (17)C24—C251.385 (3)
C10—C111.384 (2)C24—H240.9300
C10—H100.9300C25—H250.9300
C11—H110.9300C26—N11.473 (2)
C12—H12A0.9600C26—H26A0.9600
C12—H12B0.9600C26—H26B0.9600
C12—H12C0.9600C26—H26C0.9600
C13—O11.426 (2)N2—O11.4172 (17)
N1—C1—C6111.45 (13)O1—C13—H13A110.2
N1—C1—C2111.98 (13)C14—C13—H13A110.2
C6—C1—C2109.13 (13)O1—C13—H13B110.2
N1—C1—H1108.0C14—C13—H13B110.2
C6—C1—H1108.0H13A—C13—H13B108.5
C2—C1—H1108.0C19—C14—C15118.59 (18)
C3—C2—C12112.86 (14)C19—C14—C13121.68 (18)
C3—C2—C1109.90 (13)C15—C14—C13119.73 (17)
C12—C2—C1111.10 (14)C14—C15—C16120.8 (2)
C3—C2—H2107.6C14—C15—H15119.6
C12—C2—H2107.6C16—C15—H15119.6
C1—C2—H2107.6C17—C16—C15120.2 (2)
N2—C3—C4127.59 (15)C17—C16—H16119.9
N2—C3—C2117.83 (15)C15—C16—H16119.9
C4—C3—C2114.58 (14)C16—C17—C18120.0 (2)
C3—C4—C5109.83 (14)C16—C17—H17120.0
C3—C4—H4A109.7C18—C17—H17120.0
C5—C4—H4A109.7C17—C18—C19120.3 (2)
C3—C4—H4B109.7C17—C18—H18119.9
C5—C4—H4B109.7C19—C18—H18119.9
H4A—C4—H4B108.2C14—C19—C18120.2 (2)
N1—C5—C20112.08 (13)C14—C19—H19119.9
N1—C5—C4110.38 (14)C18—C19—H19119.9
C20—C5—C4109.87 (14)C21—C20—C25117.94 (16)
N1—C5—H5108.1C21—C20—C5121.79 (16)
C20—C5—H5108.1C25—C20—C5120.27 (17)
C4—C5—H5108.1C20—C21—C22121.51 (18)
C7—C6—C11117.92 (16)C20—C21—H21119.2
C7—C6—C1120.25 (16)C22—C21—H21119.2
C11—C6—C1121.74 (14)C23—C22—C21119.12 (19)
C6—C7—C8121.20 (17)C23—C22—H22120.4
C6—C7—H7119.4C21—C22—H22120.4
C8—C7—H7119.4C24—C23—C22121.20 (17)
C9—C8—C7119.39 (16)C24—C23—Cl2119.21 (15)
C9—C8—H8120.3C22—C23—Cl2119.58 (16)
C7—C8—H8120.3C23—C24—C25119.08 (18)
C8—C9—C10121.14 (16)C23—C24—H24120.5
C8—C9—Cl1119.13 (13)C25—C24—H24120.5
C10—C9—Cl1119.72 (15)C20—C25—C24121.15 (19)
C9—C10—C11118.64 (17)C20—C25—H25119.4
C9—C10—H10120.7C24—C25—H25119.4
C11—C10—H10120.7N1—C26—H26A109.5
C6—C11—C10121.70 (16)N1—C26—H26B109.5
C6—C11—H11119.2H26A—C26—H26B109.5
C10—C11—H11119.2N1—C26—H26C109.5
C2—C12—H12A109.5H26A—C26—H26C109.5
C2—C12—H12B109.5H26B—C26—H26C109.5
H12A—C12—H12B109.5C26—N1—C1108.81 (13)
C2—C12—H12C109.5C26—N1—C5109.30 (13)
H12A—C12—H12C109.5C1—N1—C5110.24 (12)
H12B—C12—H12C109.5C3—N2—O1111.28 (13)
O1—C13—C14107.43 (15)N2—O1—C13108.31 (13)
N1—C1—C2—C352.12 (19)C15—C16—C17—C180.5 (5)
C6—C1—C2—C3176.00 (14)C16—C17—C18—C190.3 (5)
N1—C1—C2—C12177.75 (15)C15—C14—C19—C180.6 (3)
C6—C1—C2—C1258.36 (19)C13—C14—C19—C18178.8 (2)
C12—C2—C3—N25.6 (2)C17—C18—C19—C140.8 (4)
C1—C2—C3—N2130.26 (16)N1—C5—C20—C2158.7 (2)
C12—C2—C3—C4174.34 (16)C4—C5—C20—C2164.4 (2)
C1—C2—C3—C449.7 (2)N1—C5—C20—C25122.32 (17)
N2—C3—C4—C5127.31 (19)C4—C5—C20—C25114.57 (19)
C2—C3—C4—C552.7 (2)C25—C20—C21—C220.4 (3)
C3—C4—C5—N157.3 (2)C5—C20—C21—C22179.46 (18)
C3—C4—C5—C20178.63 (15)C20—C21—C22—C230.5 (3)
N1—C1—C6—C7121.89 (17)C21—C22—C23—C240.1 (3)
C2—C1—C6—C7113.91 (17)C21—C22—C23—Cl2178.84 (16)
N1—C1—C6—C1161.4 (2)C22—C23—C24—C250.4 (3)
C2—C1—C6—C1162.8 (2)Cl2—C23—C24—C25178.37 (15)
C11—C6—C7—C80.4 (3)C21—C20—C25—C240.0 (3)
C1—C6—C7—C8176.39 (16)C5—C20—C25—C24178.99 (16)
C6—C7—C8—C90.1 (3)C23—C24—C25—C200.5 (3)
C7—C8—C9—C100.3 (3)C6—C1—N1—C2658.49 (18)
C7—C8—C9—Cl1179.50 (14)C2—C1—N1—C26178.93 (15)
C8—C9—C10—C110.5 (3)C6—C1—N1—C5178.34 (13)
Cl1—C9—C10—C11179.66 (14)C2—C1—N1—C559.08 (18)
C7—C6—C11—C100.2 (3)C20—C5—N1—C2656.2 (2)
C1—C6—C11—C10176.52 (16)C4—C5—N1—C26179.07 (15)
C9—C10—C11—C60.2 (3)C20—C5—N1—C1175.80 (14)
O1—C13—C14—C1955.0 (3)C4—C5—N1—C161.38 (18)
O1—C13—C14—C15124.4 (2)C4—C3—N2—O14.0 (3)
C19—C14—C15—C160.1 (3)C2—C3—N2—O1176.00 (14)
C13—C14—C15—C16179.6 (2)C3—N2—O1—C13172.17 (17)
C14—C15—C16—C170.6 (4)C14—C13—O1—N2160.21 (15)

Experimental details

Crystal data
Chemical formulaC26H26Cl2N2O
Mr453.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.6461 (2), 18.5051 (5), 16.7172 (5)
β (°) 91.130 (1)
V3)2364.89 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.23 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.935, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
32534, 7702, 4010
Rint0.037
(sin θ/λ)max1)0.732
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.152, 1.02
No. of reflections7702
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the BK21.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2008). Spectrochim. Acta Part A, 70, 11–24.  CrossRef CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Rani, M. & Kabilan, S. (2009b). Monatsh. Chem. 140, 287–301.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds