organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o489-o490

3-(3-Cyano­benz­yl)-1-methyl-1H-imidazol-3-ium hexa­fluoro­phosphate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 January 2012; accepted 16 January 2012; online 21 January 2012)

In the title compound, C12H12N3+·PF6, the hexa­fluoro­phosphate anion is disordered over two orientations with refined site occupancies of 0.8071 (17) and 0.1929 (17). The dihedral angle between the imidazole and benzene rings in the cation is 71.26 (7)°. In the crystal, the cations and anions are linked by C—H⋯F and C—H⋯N hydrogen bonds into a three-dimensional network.

Related literature

For details and applications of N-heterocyclic carbenes, see: Hermann et al. (1997[Hermann, W. A., Gerstberger, G. & Spiegler, M. (1997). Organometallics, 16, 2209-2212.]); Wanzlick & Kleiner (1961[Wanzlick, W. H. & Kleiner, J. H. (1961). Angew. Chem. Int. Ed. Engl. 73, 493.]); Hermann & Köcher (1997[Hermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-2187.]); Baker et al. (2007[Baker, M. V., Brown, D. H., Hesler, V. J., Skelton, B. W. & White, A. H. (2007). Organometallics, 26, 250-252.]); Gade & Laponnaz (2007[Gade, L. H. & Laponnaz, S. B. (2007). Coord. Chem. Rev. 251, 718-725.]); Özdemir et al. (2005[Özdemir, I., Yasar, S. & Cetinkaya, B. (2005). Transition Met. Chem. 30, 831-835.]); Köcher & Hermann (1997[Köcher, C. & Hermann, W. A. (1997). J. Organomet. Chem. 532, 261-265.]); Cetinkaya et al. (1997[Cetinkaya, B., Özdemir, I., Bruneau, C. & Dixneuf, P. H. (1997). J. Mol. Catal. A Chem. 118, L1-L4.]). For a related structure, see: Haque et al. (2011[Haque, R. A., Ahmed, S. A., Zetty, Z. H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3462.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N3+·F6P

  • Mr = 343.22

  • Triclinic, [P \overline 1]

  • a = 5.9782 (1) Å

  • b = 8.7920 (1) Å

  • c = 14.1028 (2) Å

  • α = 77.975 (1)°

  • β = 83.279 (1)°

  • γ = 86.635 (1)°

  • V = 719.55 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.43 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.949

  • 14376 measured reflections

  • 5233 independent reflections

  • 4485 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.04

  • 5233 reflections

  • 246 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F1 0.95 2.46 3.240 (2) 139
C1—H1A⋯F5 0.95 2.27 3.1715 (18) 159
C2—H2A⋯F3i 0.95 2.46 3.250 (2) 140
C3—H3A⋯N3ii 0.95 2.49 3.3970 (19) 160
C4—H4B⋯F4iii 0.99 2.44 3.177 (2) 131
C6—H6A⋯F4 0.95 2.43 3.361 (2) 167
C10—H10A⋯N3ii 0.95 2.56 3.5019 (17) 170
C11—H11B⋯F6iv 0.98 2.53 3.400 (2) 148
C11—H11C⋯F1v 0.98 2.41 3.353 (2) 162
Symmetry codes: (i) x+1, y-1, z; (ii) -x+2, -y, -z+1; (iii) x+1, y, z; (iv) x, y-1, z; (v) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-heterocyclic carbenes (NHC) are stable singlet carbenes that are most frequently prepared via deprotonation of azolium salts. Their role as ligands in coordination and modern organometallic synthesis have been widespread, since the investigation of NHC chemistry by Wanzlick in the early 1960s. NHCs have been proven as an alternative to tertiary phosphines in homogeneous catalysis for the past decades, as they have the ability to bond with metals in a variety of oxidation states through their strong σ-donating and negligible π-accepting characters. Furthermore, they are easy to handle and have been shown to be remarkably stable towards air and moisture. NHC complexes with every transition metals have received considerable attention and their diverse applications particularly in the area of catalysis such as olefin metathesis, transfer hydrogenation, hydroformylation, and furan synthesis have been investigated.

The asymmetric unit of the title compound (Fig. 1) consists a 3-(3-cyanobenzyl)-1-methylimidazolium cation and a hexafluorophosphate anion. The hexafluorophosphate anion is disordered over two orientations with refined site occupancies of 0.8071 (17) and 0.1929 (17). The imidazole ring (N1/N2/C1–C3) is essentially planar with a maximum deviation of 0.003 (1) Å at atom N2. The dihedral angle between the imidazole ring and the benzene ring (C5–C10) is 71.26 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structure (Haque et al., 2011).

In the crystal structure (Fig. 2), the cations and anions are linked via C1—H1A···F1, C1—H1A···F5, C2—H2A···F3, C3—H3A···N3, C4—H4B···F4, C6—H6A···F4, C10—H10A···N3, C11—H11B···F6, and C11—H11C···F1 hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For details and applications of N-heterocyclic carbenes, see: Hermann et al. (1997); Wanzlick & Kleiner (1961); Hermann & Köcher (1997); Baker et al. (2007); Gade & Laponnaz (2007); Özdemir et al. (2005); Köcher & Hermann (1997); Cetinkaya et al. (1997). For a related structure, see: Haque et al. (2011). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 1-methylimidazole (0.9 g, 11.0 mmol) in 25 ml of 1,4-dioxane, 3-(bromomethyl)benzonitrile (2.2 g, 11.0 mmol) was added. The mixture was refluxed at 90 °C overnight. The product was isolated by removing the solvent under reduced pressure, and then washed with fresh 1,4-dioxane (2 x 3 ml). The resulting bromide salt was converted quantitatively to its hexafluorophosphate counterpart by metathesis reaction using KPF6 (1.9 g, 10.3 mmol) in 25 ml of methanol. The white precipitate was collected and washed with distilled water (2 x 3 ml) and then left to dry at ambient temperature. Yield: 1.7 g, (48%); M.p: 104–106 °C. Colourless blocks were obtained by slow evaporation of the salt solution in acetonitrile at ambient temperature.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.95, 0.98 or 0.99 Å). A rotating group model was applied to the methyl group. The hexafluorophosphate anion is disordered over two orientations with refined site occupancies of 0.8071 (17) and 0.1929 (17). In the final refinement, the outliners (5 - 4 9) and (5 - 2 10) were omitted. The same Uij parameters were used for atom pairs F5/F5X, F6/F6X and C9/C12.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The minor component is shown by the open bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the three-dimensional network. Only the major component is shown. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
3-(3-Cyanobenzyl)-1-methyl-1H-imidazol-3-ium hexafluorophosphate top
Crystal data top
C12H12N3+·F6PZ = 2
Mr = 343.22F(000) = 348
Triclinic, P1Dx = 1.584 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9782 (1) ÅCell parameters from 6359 reflections
b = 8.7920 (1) Åθ = 2.5–32.7°
c = 14.1028 (2) ŵ = 0.26 mm1
α = 77.975 (1)°T = 100 K
β = 83.279 (1)°Block, colourless
γ = 86.635 (1)°0.43 × 0.24 × 0.21 mm
V = 719.55 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
5233 independent reflections
Radiation source: fine-focus sealed tube4485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 32.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.897, Tmax = 0.949k = 1313
14376 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.372P]
where P = (Fo2 + 2Fc2)/3
5233 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.91 e Å3
21 restraintsΔρmin = 0.64 e Å3
Crystal data top
C12H12N3+·F6Pγ = 86.635 (1)°
Mr = 343.22V = 719.55 (2) Å3
Triclinic, P1Z = 2
a = 5.9782 (1) ÅMo Kα radiation
b = 8.7920 (1) ŵ = 0.26 mm1
c = 14.1028 (2) ÅT = 100 K
α = 77.975 (1)°0.43 × 0.24 × 0.21 mm
β = 83.279 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5233 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4485 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.949Rint = 0.019
14376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04721 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.91 e Å3
5233 reflectionsΔρmin = 0.64 e Å3
246 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.0915 (2)0.73349 (10)0.16370 (8)0.0173 (2)0.8071 (17)
F10.3566 (2)0.7033 (2)0.15625 (12)0.0487 (4)0.8071 (17)
F20.1025 (4)0.8343 (3)0.05737 (16)0.0487 (6)0.8071 (17)
F30.1762 (2)0.75757 (17)0.17710 (10)0.0374 (3)0.8071 (17)
F40.0797 (3)0.6287 (2)0.27361 (12)0.0451 (4)0.8071 (17)
F50.0591 (2)0.57833 (15)0.12519 (12)0.0465 (4)0.8071 (17)
F60.1151 (3)0.88412 (15)0.20813 (11)0.0484 (4)0.8071 (17)
P1X0.0958 (11)0.7363 (8)0.1577 (5)0.045 (2)0.1929 (17)
F1X0.3348 (10)0.8099 (9)0.1558 (4)0.0486 (16)0.1929 (17)
F2X0.0465 (16)0.8713 (10)0.0645 (7)0.0324 (16)0.1929 (17)
F3X0.1326 (12)0.6656 (11)0.1492 (5)0.077 (3)0.1929 (17)
F4X0.1509 (10)0.6010 (6)0.2425 (4)0.0288 (12)0.1929 (17)
F5X0.2115 (10)0.6342 (6)0.0790 (5)0.0465 (4)0.1929 (17)
F6X0.0153 (13)0.8381 (7)0.2262 (5)0.0484 (4)0.1929 (17)
N10.46336 (19)0.22118 (13)0.12431 (7)0.0216 (2)
N20.6288 (2)0.30531 (13)0.23067 (8)0.0233 (2)
N30.8071 (2)0.08439 (15)0.65425 (9)0.0290 (2)
C10.4607 (2)0.33312 (14)0.17476 (9)0.0229 (2)
H1A0.35580.41900.17150.027*
C20.6385 (2)0.11742 (16)0.14906 (9)0.0267 (3)
H2A0.67910.02620.12400.032*
C30.7419 (2)0.16950 (17)0.21571 (9)0.0270 (3)
H3A0.86860.12170.24650.032*
C40.6750 (3)0.39959 (17)0.30071 (10)0.0312 (3)
H4A0.61250.50670.28030.037*
H4B0.83990.40540.30040.037*
C50.5724 (2)0.33138 (14)0.40301 (9)0.0238 (2)
C60.3613 (3)0.38393 (16)0.43888 (10)0.0278 (3)
H6A0.28100.46430.39910.033*
C70.2671 (2)0.31960 (17)0.53257 (11)0.0288 (3)
H7A0.12380.35720.55650.035*
C80.3807 (2)0.20105 (16)0.59146 (10)0.0253 (3)
H8A0.31630.15700.65540.030*
C90.5913 (2)0.14774 (15)0.55501 (9)0.02253 (17)
C100.6883 (2)0.21320 (15)0.46148 (9)0.0222 (2)
H10A0.83290.17710.43790.027*
C110.3054 (3)0.21229 (18)0.05341 (10)0.0303 (3)
H11A0.19510.29960.05090.045*
H11B0.22690.11410.07320.045*
H11C0.38890.21720.01120.045*
C120.7105 (2)0.01965 (15)0.61205 (9)0.02253 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0196 (5)0.0133 (3)0.0188 (3)0.0025 (3)0.0025 (3)0.0035 (3)
F10.0187 (5)0.0593 (9)0.0658 (10)0.0012 (6)0.0014 (5)0.0109 (8)
F20.0589 (15)0.0616 (16)0.0208 (7)0.0189 (10)0.0030 (8)0.0067 (8)
F30.0226 (5)0.0446 (7)0.0422 (7)0.0100 (5)0.0036 (5)0.0058 (6)
F40.0442 (9)0.0523 (10)0.0318 (8)0.0136 (7)0.0165 (6)0.0179 (7)
F50.0475 (8)0.0333 (6)0.0690 (9)0.0102 (5)0.0183 (7)0.0302 (6)
F60.0702 (10)0.0290 (6)0.0559 (8)0.0030 (6)0.0275 (8)0.0211 (6)
P1X0.019 (3)0.053 (4)0.058 (4)0.001 (2)0.007 (2)0.000 (3)
F1X0.035 (3)0.060 (4)0.047 (3)0.026 (3)0.014 (2)0.010 (3)
F2X0.036 (4)0.023 (3)0.028 (3)0.010 (2)0.006 (2)0.008 (2)
F3X0.047 (4)0.112 (7)0.055 (4)0.054 (5)0.038 (3)0.056 (5)
F4X0.039 (3)0.027 (2)0.015 (2)0.012 (2)0.0012 (18)0.0023 (17)
F5X0.0475 (8)0.0333 (6)0.0690 (9)0.0102 (5)0.0183 (7)0.0302 (6)
F6X0.0702 (10)0.0290 (6)0.0559 (8)0.0030 (6)0.0275 (8)0.0211 (6)
N10.0237 (5)0.0234 (5)0.0160 (4)0.0022 (4)0.0016 (4)0.0014 (4)
N20.0265 (5)0.0237 (5)0.0181 (4)0.0015 (4)0.0018 (4)0.0006 (4)
N30.0273 (6)0.0320 (6)0.0274 (5)0.0024 (5)0.0061 (4)0.0048 (5)
C10.0261 (6)0.0206 (5)0.0200 (5)0.0030 (4)0.0013 (4)0.0012 (4)
C20.0310 (6)0.0268 (6)0.0196 (5)0.0097 (5)0.0008 (5)0.0035 (4)
C30.0251 (6)0.0329 (6)0.0198 (5)0.0077 (5)0.0013 (4)0.0011 (5)
C40.0437 (8)0.0280 (6)0.0221 (6)0.0134 (6)0.0048 (5)0.0014 (5)
C50.0313 (6)0.0211 (5)0.0203 (5)0.0053 (5)0.0054 (5)0.0045 (4)
C60.0348 (7)0.0232 (5)0.0273 (6)0.0041 (5)0.0112 (5)0.0068 (5)
C70.0285 (6)0.0296 (6)0.0297 (6)0.0070 (5)0.0034 (5)0.0111 (5)
C80.0268 (6)0.0275 (6)0.0217 (5)0.0018 (5)0.0006 (5)0.0074 (5)
C90.0234 (4)0.0245 (4)0.0208 (4)0.0005 (3)0.0034 (3)0.0066 (3)
C100.0222 (5)0.0242 (5)0.0213 (5)0.0022 (4)0.0029 (4)0.0067 (4)
C110.0322 (7)0.0357 (7)0.0237 (6)0.0039 (6)0.0067 (5)0.0046 (5)
C120.0234 (4)0.0245 (4)0.0208 (4)0.0005 (3)0.0034 (3)0.0066 (3)
Geometric parameters (Å, º) top
P1—F21.571 (2)C2—C31.351 (2)
P1—F11.5860 (17)C2—H2A0.9500
P1—F31.5964 (17)C3—H3A0.9500
P1—F61.5983 (15)C4—C51.5141 (19)
P1—F51.5993 (14)C4—H4A0.9900
P1—F41.6257 (18)C4—H4B0.9900
P1X—F6X1.523 (8)C5—C101.3899 (18)
P1X—F4X1.552 (8)C5—C61.394 (2)
P1X—F3X1.560 (8)C6—C71.391 (2)
P1X—F1X1.598 (8)C6—H6A0.9500
P1X—F2X1.619 (10)C7—C81.3875 (19)
P1X—F5X1.637 (8)C7—H7A0.9500
N1—C11.3275 (17)C8—C91.3959 (18)
N1—C21.3751 (17)C8—H8A0.9500
N1—C111.4695 (18)C9—C101.3970 (18)
N2—C11.3298 (17)C9—C121.4444 (18)
N2—C31.3799 (17)C10—H10A0.9500
N2—C41.4733 (18)C11—H11A0.9800
N3—C121.1471 (18)C11—H11B0.9800
C1—H1A0.9500C11—H11C0.9800
F2—P1—F192.46 (13)N2—C1—H1A125.6
F2—P1—F390.74 (12)C3—C2—N1107.16 (12)
F1—P1—F3176.79 (11)C3—C2—H2A126.4
F2—P1—F691.41 (12)N1—C2—H2A126.4
F1—P1—F690.49 (11)C2—C3—N2107.07 (12)
F3—P1—F689.64 (10)C2—C3—H3A126.5
F2—P1—F591.54 (13)N2—C3—H3A126.5
F1—P1—F591.14 (10)N2—C4—C5111.59 (11)
F3—P1—F588.56 (10)N2—C4—H4A109.3
F6—P1—F5176.57 (12)C5—C4—H4A109.3
F2—P1—F4179.81 (15)N2—C4—H4B109.3
F1—P1—F487.62 (10)C5—C4—H4B109.3
F3—P1—F489.18 (10)H4A—C4—H4B108.0
F6—P1—F488.76 (10)C10—C5—C6119.47 (12)
F5—P1—F488.29 (10)C10—C5—C4119.72 (13)
F6X—P1X—F4X93.3 (5)C6—C5—C4120.81 (13)
F6X—P1X—F3X92.6 (6)C7—C6—C5120.48 (12)
F4X—P1X—F3X92.2 (5)C7—C6—H6A119.8
F6X—P1X—F1X91.3 (5)C5—C6—H6A119.8
F4X—P1X—F1X91.2 (5)C8—C7—C6120.60 (13)
F3X—P1X—F1X174.7 (6)C8—C7—H7A119.7
F6X—P1X—F2X90.2 (5)C6—C7—H7A119.7
F4X—P1X—F2X176.5 (6)C7—C8—C9118.78 (12)
F3X—P1X—F2X87.9 (6)C7—C8—H8A120.6
F1X—P1X—F2X88.5 (6)C9—C8—H8A120.6
F6X—P1X—F5X176.9 (6)C8—C9—C10120.97 (12)
F4X—P1X—F5X89.9 (4)C8—C9—C12120.61 (12)
F3X—P1X—F5X87.1 (6)C10—C9—C12118.39 (12)
F1X—P1X—F5X88.8 (5)C5—C10—C9119.70 (12)
F2X—P1X—F5X86.6 (5)C5—C10—H10A120.2
C1—N1—C2108.59 (11)C9—C10—H10A120.2
C1—N1—C11125.08 (11)N1—C11—H11A109.5
C2—N1—C11126.33 (12)N1—C11—H11B109.5
C1—N2—C3108.33 (11)H11A—C11—H11B109.5
C1—N2—C4125.08 (12)N1—C11—H11C109.5
C3—N2—C4126.49 (12)H11A—C11—H11C109.5
N1—C1—N2108.85 (11)H11B—C11—H11C109.5
N1—C1—H1A125.6N3—C12—C9177.42 (14)
C2—N1—C1—N20.34 (14)N2—C4—C5—C695.13 (16)
C11—N1—C1—N2179.13 (12)C10—C5—C6—C70.3 (2)
C3—N2—C1—N10.48 (14)C4—C5—C6—C7179.33 (13)
C4—N2—C1—N1177.01 (11)C5—C6—C7—C80.7 (2)
C1—N1—C2—C30.07 (15)C6—C7—C8—C90.1 (2)
C11—N1—C2—C3179.40 (12)C7—C8—C9—C100.8 (2)
N1—C2—C3—N20.22 (15)C7—C8—C9—C12177.06 (13)
C1—N2—C3—C20.43 (15)C6—C5—C10—C90.52 (19)
C4—N2—C3—C2176.90 (12)C4—C5—C10—C9178.47 (12)
C1—N2—C4—C595.87 (16)C8—C9—C10—C51.09 (19)
C3—N2—C4—C580.04 (18)C12—C9—C10—C5176.79 (12)
N2—C4—C5—C1083.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F10.952.463.240 (2)139
C1—H1A···F50.952.273.1715 (18)159
C2—H2A···F3i0.952.463.250 (2)140
C3—H3A···N3ii0.952.493.3970 (19)160
C4—H4B···F4iii0.992.443.177 (2)131
C6—H6A···F40.952.433.361 (2)167
C10—H10A···N3ii0.952.563.5019 (17)170
C11—H11B···F6iv0.982.533.400 (2)148
C11—H11C···F1v0.982.413.353 (2)162
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H12N3+·F6P
Mr343.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9782 (1), 8.7920 (1), 14.1028 (2)
α, β, γ (°)77.975 (1), 83.279 (1), 86.635 (1)
V3)719.55 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.43 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.897, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
14376, 5233, 4485
Rint0.019
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.04
No. of reflections5233
No. of parameters246
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.64

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F10.952.463.240 (2)139
C1—H1A···F50.952.273.1715 (18)159
C2—H2A···F3i0.952.463.250 (2)140
C3—H3A···N3ii0.952.493.3970 (19)160
C4—H4B···F4iii0.992.443.177 (2)131
C6—H6A···F40.952.433.361 (2)167
C10—H10A···N3ii0.952.563.5019 (17)170
C11—H11B···F6iv0.982.533.400 (2)148
C11—H11C···F1v0.982.413.353 (2)162
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z.
 

Footnotes

Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University (RU) grant (1001/PFIZIK/811151). RAH and ZZH thank USM for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grant (1001/PKIMIA/813023). AWS thanks USM for the RU grant (1001/PKIMIA/843090).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaker, M. V., Brown, D. H., Hesler, V. J., Skelton, B. W. & White, A. H. (2007). Organometallics, 26, 250–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCetinkaya, B., Özdemir, I., Bruneau, C. & Dixneuf, P. H. (1997). J. Mol. Catal. A Chem. 118, L1–L4.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGade, L. H. & Laponnaz, S. B. (2007). Coord. Chem. Rev. 251, 718–725.  Web of Science CrossRef CAS Google Scholar
First citationHaque, R. A., Ahmed, S. A., Zetty, Z. H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHermann, W. A., Gerstberger, G. & Spiegler, M. (1997). Organometallics, 16, 2209–2212.  Google Scholar
First citationHermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.  CrossRef Web of Science Google Scholar
First citationKöcher, C. & Hermann, W. A. (1997). J. Organomet. Chem. 532, 261–265.  Google Scholar
First citationÖzdemir, I., Yasar, S. & Cetinkaya, B. (2005). Transition Met. Chem. 30, 831–835.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWanzlick, W. H. & Kleiner, J. H. (1961). Angew. Chem. Int. Ed. Engl. 73, 493.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o489-o490
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds