organic compounds
3-(3-Cyanobenzyl)-1-methyl-1H-imidazol-3-ium hexafluorophosphate
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C12H12N3+·PF6−, the hexafluorophosphate anion is disordered over two orientations with refined site occupancies of 0.8071 (17) and 0.1929 (17). The dihedral angle between the imidazole and benzene rings in the cation is 71.26 (7)°. In the crystal, the cations and anions are linked by C—H⋯F and C—H⋯N hydrogen bonds into a three-dimensional network.
Related literature
For details and applications of N-heterocyclic see: Hermann et al. (1997); Wanzlick & Kleiner (1961); Hermann & Köcher (1997); Baker et al. (2007); Gade & Laponnaz (2007); Özdemir et al. (2005); Köcher & Hermann (1997); Cetinkaya et al. (1997). For a related structure, see: Haque et al. (2011). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812001882/hb6605sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812001882/hb6605Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812001882/hb6605Isup3.cml
To a solution of 1-methylimidazole (0.9 g, 11.0 mmol) in 25 ml of 1,4-dioxane, 3-(bromomethyl)benzonitrile (2.2 g, 11.0 mmol) was added. The mixture was refluxed at 90 °C overnight. The product was isolated by removing the solvent under reduced pressure, and then washed with fresh 1,4-dioxane (2 x 3 ml). The resulting bromide salt was converted quantitatively to its hexafluorophosphate counterpart by metathesis reaction using KPF6 (1.9 g, 10.3 mmol) in 25 ml of methanol. The white precipitate was collected and washed with distilled water (2 x 3 ml) and then left to dry at ambient temperature. Yield: 1.7 g, (48%); M.p: 104–106 °C. Colourless blocks were obtained by slow evaporation of the salt solution in acetonitrile at ambient temperature.
All the H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.95, 0.98 or 0.99 Å). A rotating group model was applied to the methyl group. The hexafluorophosphate anion is disordered over two orientations with refined site occupancies of 0.8071 (17) and 0.1929 (17). In the final
the outliners (5 - 4 9) and (5 - 2 10) were omitted. The same Uij parameters were used for atom pairs F5/F5X, F6/F6X and C9/C12.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The minor component is shown by the open bonds. | |
Fig. 2. The crystal packing of the title compound, showing the three-dimensional network. Only the major component is shown. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
C12H12N3+·F6P− | Z = 2 |
Mr = 343.22 | F(000) = 348 |
Triclinic, P1 | Dx = 1.584 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.9782 (1) Å | Cell parameters from 6359 reflections |
b = 8.7920 (1) Å | θ = 2.5–32.7° |
c = 14.1028 (2) Å | µ = 0.26 mm−1 |
α = 77.975 (1)° | T = 100 K |
β = 83.279 (1)° | Block, colourless |
γ = 86.635 (1)° | 0.43 × 0.24 × 0.21 mm |
V = 719.55 (2) Å3 |
Bruker SMART APEXII CCD diffractometer | 5233 independent reflections |
Radiation source: fine-focus sealed tube | 4485 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ϕ and ω scans | θmax = 32.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.897, Tmax = 0.949 | k = −13→13 |
14376 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0569P)2 + 0.372P] where P = (Fo2 + 2Fc2)/3 |
5233 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 0.91 e Å−3 |
21 restraints | Δρmin = −0.64 e Å−3 |
C12H12N3+·F6P− | γ = 86.635 (1)° |
Mr = 343.22 | V = 719.55 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.9782 (1) Å | Mo Kα radiation |
b = 8.7920 (1) Å | µ = 0.26 mm−1 |
c = 14.1028 (2) Å | T = 100 K |
α = 77.975 (1)° | 0.43 × 0.24 × 0.21 mm |
β = 83.279 (1)° |
Bruker SMART APEXII CCD diffractometer | 5233 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4485 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.949 | Rint = 0.019 |
14376 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 21 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.91 e Å−3 |
5233 reflections | Δρmin = −0.64 e Å−3 |
246 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.0915 (2) | 0.73349 (10) | 0.16370 (8) | 0.0173 (2) | 0.8071 (17) |
F1 | 0.3566 (2) | 0.7033 (2) | 0.15625 (12) | 0.0487 (4) | 0.8071 (17) |
F2 | 0.1025 (4) | 0.8343 (3) | 0.05737 (16) | 0.0487 (6) | 0.8071 (17) |
F3 | −0.1762 (2) | 0.75757 (17) | 0.17710 (10) | 0.0374 (3) | 0.8071 (17) |
F4 | 0.0797 (3) | 0.6287 (2) | 0.27361 (12) | 0.0451 (4) | 0.8071 (17) |
F5 | 0.0591 (2) | 0.57833 (15) | 0.12519 (12) | 0.0465 (4) | 0.8071 (17) |
F6 | 0.1151 (3) | 0.88412 (15) | 0.20813 (11) | 0.0484 (4) | 0.8071 (17) |
P1X | 0.0958 (11) | 0.7363 (8) | 0.1577 (5) | 0.045 (2) | 0.1929 (17) |
F1X | 0.3348 (10) | 0.8099 (9) | 0.1558 (4) | 0.0486 (16) | 0.1929 (17) |
F2X | 0.0465 (16) | 0.8713 (10) | 0.0645 (7) | 0.0324 (16) | 0.1929 (17) |
F3X | −0.1326 (12) | 0.6656 (11) | 0.1492 (5) | 0.077 (3) | 0.1929 (17) |
F4X | 0.1509 (10) | 0.6010 (6) | 0.2425 (4) | 0.0288 (12) | 0.1929 (17) |
F5X | 0.2115 (10) | 0.6342 (6) | 0.0790 (5) | 0.0465 (4) | 0.1929 (17) |
F6X | −0.0153 (13) | 0.8381 (7) | 0.2262 (5) | 0.0484 (4) | 0.1929 (17) |
N1 | 0.46336 (19) | 0.22118 (13) | 0.12431 (7) | 0.0216 (2) | |
N2 | 0.6288 (2) | 0.30531 (13) | 0.23067 (8) | 0.0233 (2) | |
N3 | 0.8071 (2) | −0.08439 (15) | 0.65425 (9) | 0.0290 (2) | |
C1 | 0.4607 (2) | 0.33312 (14) | 0.17476 (9) | 0.0229 (2) | |
H1A | 0.3558 | 0.4190 | 0.1715 | 0.027* | |
C2 | 0.6385 (2) | 0.11742 (16) | 0.14906 (9) | 0.0267 (3) | |
H2A | 0.6791 | 0.0262 | 0.1240 | 0.032* | |
C3 | 0.7419 (2) | 0.16950 (17) | 0.21571 (9) | 0.0270 (3) | |
H3A | 0.8686 | 0.1217 | 0.2465 | 0.032* | |
C4 | 0.6750 (3) | 0.39959 (17) | 0.30071 (10) | 0.0312 (3) | |
H4A | 0.6125 | 0.5067 | 0.2803 | 0.037* | |
H4B | 0.8399 | 0.4054 | 0.3004 | 0.037* | |
C5 | 0.5724 (2) | 0.33138 (14) | 0.40301 (9) | 0.0238 (2) | |
C6 | 0.3613 (3) | 0.38393 (16) | 0.43888 (10) | 0.0278 (3) | |
H6A | 0.2810 | 0.4643 | 0.3991 | 0.033* | |
C7 | 0.2671 (2) | 0.31960 (17) | 0.53257 (11) | 0.0288 (3) | |
H7A | 0.1238 | 0.3572 | 0.5565 | 0.035* | |
C8 | 0.3807 (2) | 0.20105 (16) | 0.59146 (10) | 0.0253 (3) | |
H8A | 0.3163 | 0.1570 | 0.6554 | 0.030* | |
C9 | 0.5913 (2) | 0.14774 (15) | 0.55501 (9) | 0.02253 (17) | |
C10 | 0.6883 (2) | 0.21320 (15) | 0.46148 (9) | 0.0222 (2) | |
H10A | 0.8329 | 0.1771 | 0.4379 | 0.027* | |
C11 | 0.3054 (3) | 0.21229 (18) | 0.05341 (10) | 0.0303 (3) | |
H11A | 0.1951 | 0.2996 | 0.0509 | 0.045* | |
H11B | 0.2269 | 0.1141 | 0.0732 | 0.045* | |
H11C | 0.3889 | 0.2172 | −0.0112 | 0.045* | |
C12 | 0.7105 (2) | 0.01965 (15) | 0.61205 (9) | 0.02253 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0196 (5) | 0.0133 (3) | 0.0188 (3) | 0.0025 (3) | −0.0025 (3) | −0.0035 (3) |
F1 | 0.0187 (5) | 0.0593 (9) | 0.0658 (10) | −0.0012 (6) | 0.0014 (5) | −0.0109 (8) |
F2 | 0.0589 (15) | 0.0616 (16) | 0.0208 (7) | −0.0189 (10) | −0.0030 (8) | 0.0067 (8) |
F3 | 0.0226 (5) | 0.0446 (7) | 0.0422 (7) | 0.0100 (5) | −0.0036 (5) | −0.0058 (6) |
F4 | 0.0442 (9) | 0.0523 (10) | 0.0318 (8) | −0.0136 (7) | −0.0165 (6) | 0.0179 (7) |
F5 | 0.0475 (8) | 0.0333 (6) | 0.0690 (9) | 0.0102 (5) | −0.0183 (7) | −0.0302 (6) |
F6 | 0.0702 (10) | 0.0290 (6) | 0.0559 (8) | 0.0030 (6) | −0.0275 (8) | −0.0211 (6) |
P1X | 0.019 (3) | 0.053 (4) | 0.058 (4) | 0.001 (2) | −0.007 (2) | 0.000 (3) |
F1X | 0.035 (3) | 0.060 (4) | 0.047 (3) | −0.026 (3) | −0.014 (2) | 0.010 (3) |
F2X | 0.036 (4) | 0.023 (3) | 0.028 (3) | 0.010 (2) | 0.006 (2) | 0.008 (2) |
F3X | 0.047 (4) | 0.112 (7) | 0.055 (4) | −0.054 (5) | −0.038 (3) | 0.056 (5) |
F4X | 0.039 (3) | 0.027 (2) | 0.015 (2) | 0.012 (2) | −0.0012 (18) | 0.0023 (17) |
F5X | 0.0475 (8) | 0.0333 (6) | 0.0690 (9) | 0.0102 (5) | −0.0183 (7) | −0.0302 (6) |
F6X | 0.0702 (10) | 0.0290 (6) | 0.0559 (8) | 0.0030 (6) | −0.0275 (8) | −0.0211 (6) |
N1 | 0.0237 (5) | 0.0234 (5) | 0.0160 (4) | 0.0022 (4) | −0.0016 (4) | −0.0014 (4) |
N2 | 0.0265 (5) | 0.0237 (5) | 0.0181 (4) | −0.0015 (4) | −0.0018 (4) | −0.0006 (4) |
N3 | 0.0273 (6) | 0.0320 (6) | 0.0274 (5) | 0.0024 (5) | −0.0061 (4) | −0.0048 (5) |
C1 | 0.0261 (6) | 0.0206 (5) | 0.0200 (5) | 0.0030 (4) | −0.0013 (4) | −0.0012 (4) |
C2 | 0.0310 (6) | 0.0268 (6) | 0.0196 (5) | 0.0097 (5) | 0.0008 (5) | −0.0035 (4) |
C3 | 0.0251 (6) | 0.0329 (6) | 0.0198 (5) | 0.0077 (5) | −0.0013 (4) | −0.0011 (5) |
C4 | 0.0437 (8) | 0.0280 (6) | 0.0221 (6) | −0.0134 (6) | −0.0048 (5) | −0.0014 (5) |
C5 | 0.0313 (6) | 0.0211 (5) | 0.0203 (5) | −0.0053 (5) | −0.0054 (5) | −0.0045 (4) |
C6 | 0.0348 (7) | 0.0232 (5) | 0.0273 (6) | 0.0041 (5) | −0.0112 (5) | −0.0068 (5) |
C7 | 0.0285 (6) | 0.0296 (6) | 0.0297 (6) | 0.0070 (5) | −0.0034 (5) | −0.0111 (5) |
C8 | 0.0268 (6) | 0.0275 (6) | 0.0217 (5) | 0.0018 (5) | −0.0006 (5) | −0.0074 (5) |
C9 | 0.0234 (4) | 0.0245 (4) | 0.0208 (4) | −0.0005 (3) | −0.0034 (3) | −0.0066 (3) |
C10 | 0.0222 (5) | 0.0242 (5) | 0.0213 (5) | −0.0022 (4) | −0.0029 (4) | −0.0067 (4) |
C11 | 0.0322 (7) | 0.0357 (7) | 0.0237 (6) | −0.0039 (6) | −0.0067 (5) | −0.0046 (5) |
C12 | 0.0234 (4) | 0.0245 (4) | 0.0208 (4) | −0.0005 (3) | −0.0034 (3) | −0.0066 (3) |
P1—F2 | 1.571 (2) | C2—C3 | 1.351 (2) |
P1—F1 | 1.5860 (17) | C2—H2A | 0.9500 |
P1—F3 | 1.5964 (17) | C3—H3A | 0.9500 |
P1—F6 | 1.5983 (15) | C4—C5 | 1.5141 (19) |
P1—F5 | 1.5993 (14) | C4—H4A | 0.9900 |
P1—F4 | 1.6257 (18) | C4—H4B | 0.9900 |
P1X—F6X | 1.523 (8) | C5—C10 | 1.3899 (18) |
P1X—F4X | 1.552 (8) | C5—C6 | 1.394 (2) |
P1X—F3X | 1.560 (8) | C6—C7 | 1.391 (2) |
P1X—F1X | 1.598 (8) | C6—H6A | 0.9500 |
P1X—F2X | 1.619 (10) | C7—C8 | 1.3875 (19) |
P1X—F5X | 1.637 (8) | C7—H7A | 0.9500 |
N1—C1 | 1.3275 (17) | C8—C9 | 1.3959 (18) |
N1—C2 | 1.3751 (17) | C8—H8A | 0.9500 |
N1—C11 | 1.4695 (18) | C9—C10 | 1.3970 (18) |
N2—C1 | 1.3298 (17) | C9—C12 | 1.4444 (18) |
N2—C3 | 1.3799 (17) | C10—H10A | 0.9500 |
N2—C4 | 1.4733 (18) | C11—H11A | 0.9800 |
N3—C12 | 1.1471 (18) | C11—H11B | 0.9800 |
C1—H1A | 0.9500 | C11—H11C | 0.9800 |
F2—P1—F1 | 92.46 (13) | N2—C1—H1A | 125.6 |
F2—P1—F3 | 90.74 (12) | C3—C2—N1 | 107.16 (12) |
F1—P1—F3 | 176.79 (11) | C3—C2—H2A | 126.4 |
F2—P1—F6 | 91.41 (12) | N1—C2—H2A | 126.4 |
F1—P1—F6 | 90.49 (11) | C2—C3—N2 | 107.07 (12) |
F3—P1—F6 | 89.64 (10) | C2—C3—H3A | 126.5 |
F2—P1—F5 | 91.54 (13) | N2—C3—H3A | 126.5 |
F1—P1—F5 | 91.14 (10) | N2—C4—C5 | 111.59 (11) |
F3—P1—F5 | 88.56 (10) | N2—C4—H4A | 109.3 |
F6—P1—F5 | 176.57 (12) | C5—C4—H4A | 109.3 |
F2—P1—F4 | 179.81 (15) | N2—C4—H4B | 109.3 |
F1—P1—F4 | 87.62 (10) | C5—C4—H4B | 109.3 |
F3—P1—F4 | 89.18 (10) | H4A—C4—H4B | 108.0 |
F6—P1—F4 | 88.76 (10) | C10—C5—C6 | 119.47 (12) |
F5—P1—F4 | 88.29 (10) | C10—C5—C4 | 119.72 (13) |
F6X—P1X—F4X | 93.3 (5) | C6—C5—C4 | 120.81 (13) |
F6X—P1X—F3X | 92.6 (6) | C7—C6—C5 | 120.48 (12) |
F4X—P1X—F3X | 92.2 (5) | C7—C6—H6A | 119.8 |
F6X—P1X—F1X | 91.3 (5) | C5—C6—H6A | 119.8 |
F4X—P1X—F1X | 91.2 (5) | C8—C7—C6 | 120.60 (13) |
F3X—P1X—F1X | 174.7 (6) | C8—C7—H7A | 119.7 |
F6X—P1X—F2X | 90.2 (5) | C6—C7—H7A | 119.7 |
F4X—P1X—F2X | 176.5 (6) | C7—C8—C9 | 118.78 (12) |
F3X—P1X—F2X | 87.9 (6) | C7—C8—H8A | 120.6 |
F1X—P1X—F2X | 88.5 (6) | C9—C8—H8A | 120.6 |
F6X—P1X—F5X | 176.9 (6) | C8—C9—C10 | 120.97 (12) |
F4X—P1X—F5X | 89.9 (4) | C8—C9—C12 | 120.61 (12) |
F3X—P1X—F5X | 87.1 (6) | C10—C9—C12 | 118.39 (12) |
F1X—P1X—F5X | 88.8 (5) | C5—C10—C9 | 119.70 (12) |
F2X—P1X—F5X | 86.6 (5) | C5—C10—H10A | 120.2 |
C1—N1—C2 | 108.59 (11) | C9—C10—H10A | 120.2 |
C1—N1—C11 | 125.08 (11) | N1—C11—H11A | 109.5 |
C2—N1—C11 | 126.33 (12) | N1—C11—H11B | 109.5 |
C1—N2—C3 | 108.33 (11) | H11A—C11—H11B | 109.5 |
C1—N2—C4 | 125.08 (12) | N1—C11—H11C | 109.5 |
C3—N2—C4 | 126.49 (12) | H11A—C11—H11C | 109.5 |
N1—C1—N2 | 108.85 (11) | H11B—C11—H11C | 109.5 |
N1—C1—H1A | 125.6 | N3—C12—C9 | 177.42 (14) |
C2—N1—C1—N2 | 0.34 (14) | N2—C4—C5—C6 | −95.13 (16) |
C11—N1—C1—N2 | −179.13 (12) | C10—C5—C6—C7 | 0.3 (2) |
C3—N2—C1—N1 | −0.48 (14) | C4—C5—C6—C7 | 179.33 (13) |
C4—N2—C1—N1 | −177.01 (11) | C5—C6—C7—C8 | −0.7 (2) |
C1—N1—C2—C3 | −0.07 (15) | C6—C7—C8—C9 | 0.1 (2) |
C11—N1—C2—C3 | 179.40 (12) | C7—C8—C9—C10 | 0.8 (2) |
N1—C2—C3—N2 | −0.22 (15) | C7—C8—C9—C12 | −177.06 (13) |
C1—N2—C3—C2 | 0.43 (15) | C6—C5—C10—C9 | 0.52 (19) |
C4—N2—C3—C2 | 176.90 (12) | C4—C5—C10—C9 | −178.47 (12) |
C1—N2—C4—C5 | 95.87 (16) | C8—C9—C10—C5 | −1.09 (19) |
C3—N2—C4—C5 | −80.04 (18) | C12—C9—C10—C5 | 176.79 (12) |
N2—C4—C5—C10 | 83.85 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···F1 | 0.95 | 2.46 | 3.240 (2) | 139 |
C1—H1A···F5 | 0.95 | 2.27 | 3.1715 (18) | 159 |
C2—H2A···F3i | 0.95 | 2.46 | 3.250 (2) | 140 |
C3—H3A···N3ii | 0.95 | 2.49 | 3.3970 (19) | 160 |
C4—H4B···F4iii | 0.99 | 2.44 | 3.177 (2) | 131 |
C6—H6A···F4 | 0.95 | 2.43 | 3.361 (2) | 167 |
C10—H10A···N3ii | 0.95 | 2.56 | 3.5019 (17) | 170 |
C11—H11B···F6iv | 0.98 | 2.53 | 3.400 (2) | 148 |
C11—H11C···F1v | 0.98 | 2.41 | 3.353 (2) | 162 |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) x, y−1, z; (v) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C12H12N3+·F6P− |
Mr | 343.22 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.9782 (1), 8.7920 (1), 14.1028 (2) |
α, β, γ (°) | 77.975 (1), 83.279 (1), 86.635 (1) |
V (Å3) | 719.55 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.43 × 0.24 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.897, 0.949 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14376, 5233, 4485 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.760 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.123, 1.04 |
No. of reflections | 5233 |
No. of parameters | 246 |
No. of restraints | 21 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.91, −0.64 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···F1 | 0.95 | 2.46 | 3.240 (2) | 139 |
C1—H1A···F5 | 0.95 | 2.27 | 3.1715 (18) | 159 |
C2—H2A···F3i | 0.95 | 2.46 | 3.250 (2) | 140 |
C3—H3A···N3ii | 0.95 | 2.49 | 3.3970 (19) | 160 |
C4—H4B···F4iii | 0.99 | 2.44 | 3.177 (2) | 131 |
C6—H6A···F4 | 0.95 | 2.43 | 3.361 (2) | 167 |
C10—H10A···N3ii | 0.95 | 2.56 | 3.5019 (17) | 170 |
C11—H11B···F6iv | 0.98 | 2.53 | 3.400 (2) | 148 |
C11—H11C···F1v | 0.98 | 2.41 | 3.353 (2) | 162 |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) x, y−1, z; (v) −x+1, −y+1, −z. |
Footnotes
‡Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University (RU) grant (1001/PFIZIK/811151). RAH and ZZH thank USM for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grant (1001/PKIMIA/813023). AWS thanks USM for the RU grant (1001/PKIMIA/843090).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Baker, M. V., Brown, D. H., Hesler, V. J., Skelton, B. W. & White, A. H. (2007). Organometallics, 26, 250–252. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cetinkaya, B., Özdemir, I., Bruneau, C. & Dixneuf, P. H. (1997). J. Mol. Catal. A Chem. 118, L1–L4. CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gade, L. H. & Laponnaz, S. B. (2007). Coord. Chem. Rev. 251, 718–725. Web of Science CrossRef CAS Google Scholar
Haque, R. A., Ahmed, S. A., Zetty, Z. H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3462. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hermann, W. A., Gerstberger, G. & Spiegler, M. (1997). Organometallics, 16, 2209–2212. Google Scholar
Hermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187. CrossRef Web of Science Google Scholar
Köcher, C. & Hermann, W. A. (1997). J. Organomet. Chem. 532, 261–265. Google Scholar
Özdemir, I., Yasar, S. & Cetinkaya, B. (2005). Transition Met. Chem. 30, 831–835. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wanzlick, W. H. & Kleiner, J. H. (1961). Angew. Chem. Int. Ed. Engl. 73, 493. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-heterocyclic carbenes (NHC) are stable singlet carbenes that are most frequently prepared via deprotonation of azolium salts. Their role as ligands in coordination and modern organometallic synthesis have been widespread, since the investigation of NHC chemistry by Wanzlick in the early 1960s. NHCs have been proven as an alternative to tertiary phosphines in homogeneous catalysis for the past decades, as they have the ability to bond with metals in a variety of oxidation states through their strong σ-donating and negligible π-accepting characters. Furthermore, they are easy to handle and have been shown to be remarkably stable towards air and moisture. NHC complexes with every transition metals have received considerable attention and their diverse applications particularly in the area of catalysis such as olefin metathesis, transfer hydrogenation, hydroformylation, and furan synthesis have been investigated.
The asymmetric unit of the title compound (Fig. 1) consists a 3-(3-cyanobenzyl)-1-methylimidazolium cation and a hexafluorophosphate anion. The hexafluorophosphate anion is disordered over two orientations with refined site occupancies of 0.8071 (17) and 0.1929 (17). The imidazole ring (N1/N2/C1–C3) is essentially planar with a maximum deviation of 0.003 (1) Å at atom N2. The dihedral angle between the imidazole ring and the benzene ring (C5–C10) is 71.26 (7)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structure (Haque et al., 2011).
In the crystal structure (Fig. 2), the cations and anions are linked via C1—H1A···F1, C1—H1A···F5, C2—H2A···F3, C3—H3A···N3, C4—H4B···F4, C6—H6A···F4, C10—H10A···N3, C11—H11B···F6, and C11—H11C···F1 hydrogen bonds (Table 1) into a three-dimensional network.