organic compounds
1,4-Di-tert-butyl (2R,3R)-2-({(2E)-3-[4-(acetyloxy)phenyl]prop-2-enoyl}oxy)-3-hydroxybutanedioate
aSchool of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound, C23H30O9, has an approximate T-shape with the tert-butyl ester groups lying either side of the benzene ring. The acetyl group is almost perpendicular to the benzene ring to which it is connected [C—C—O—C torsion angle = −106.7 (3)°]. The conformation about the C=C double bond [1.331 (4) Å] is E. Linear supramolecular chains along the a axis mediated by hydroxy–carbonyl O—H⋯O hydrogen bonds feature in the crystal packing. The same H atom is also involved in an intramolecular O—H⋯O interaction.
Related literature
For background to the formation of the odorant 4-ethylphenol with relevance to the wine industry, see: Chatonnet et al. (1992); Hixson et al. (2012); Ong & Nagel (1978); Nagel & Wulf (1979); Zhao & Burke (1998). For the preparation and characterization of 1-O-acetyl p-coumaric acid; see: Zhao & Burke (1998); Shimizu & Kojima (1984).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681200236X/hb6610sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200236X/hb6610Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681200236X/hb6610Isup3.cml
1-O-Acetyl p-coumaric acid was prepared using a method analogous to that previously described by Zhao and Burke (1998), and the characterization data matched that previously described (Shimizu & Kojima, 1984). 1-O-Acetyl p-coumaric acid (0.17 g 0.82 mmol) was heated under reflux in dry benzene (10 ml) containing thionyl chloride (1 ml, 13.77 mmol). After 5 h the mixture was allowed to cool to room temperature and then concentrated in vacuo. The crude residue was taken up in dry benzene (3 ml) and added drop-wise to a solution of di-tert-butyl L-tartrate (0.13 g, 0.49 mmol) in dry pyridine (3 ml), then stirred at ambient temperature overnight. The mixture was concentrated and pyridine azeotropically removed with toluene. Purification with δ: 7.73 (d, 1H, J = 16.0 Hz, H7), 7.54 (app. d, 2H, J = 8.7 Hz, H3,5), 7.13 (app. d, 2H, J = 8.7 Hz, H2,6), 6.45 (d, 1H, J = 16.0 Hz, H8), 5.48 (d, 1H, J = 2.3 Hz, H2'), 4.67 (dd, 1H, J = 6.9 and 2.3 Hz, H3'), 3.20 (d, 1H, J = 6.9 Hz, OH), 2.31 (s, 3H, OCOCH3), 1.51 (s, 9H, tBu4), 1.44 (s, 9H, tBu1). 13C NMR: (600 MHz, CDCl3) δ: 170.2 (C4'), 169.3 (OCOCH3), 165.8 (C9), 165.5 (C1'), 152.4 (C1), 145.5 (C7), 131.9 (C4), 129.6 (C3,5), 122.3 (C2,6), 116.7 (C8), 84.0 (C1(CH3)3), 83.4 (C4(CH3)3), 73.5 (C2'), 71.0 (C3'), 28.1 (C4(CH3)3), 28.0 (C1(CH3)3), 21.3 (OCOCH3). LRP (+EI) m/z (%): 450 (M+, <1), 408 (2), 352 (10), 338 (5), 321 (12), 296 (63), 278 (6), 251 (6), 206 (7), 189 (46), 164 (79), 147 (100), 119 (14), 57 (37), 41 (13). HRMS calculated for C23H30O9 [M]+ 450.1890, found 450.1891.
(20% EtOAc/X4) and recrystallization from 30% EtOAc/X4 gave 68.1 mg (31%) of colourless plates. M.pt 416.8–417.4 K. Rf (50% EtOAc/X4): 0.57 1H NMR: (400 MHz, CDCl3)Carbon-bound H-atoms were placed in calculated positions [C—H 0.95–1.00 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the
in the riding model approximation. The acid H-atom was located in a difference Fourier map and was refined freely.Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C23H30O9 | F(000) = 960 |
Mr = 450.47 | Dx = 1.275 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2558 reflections |
a = 5.7183 (2) Å | θ = 2.8–74.4° |
b = 8.7309 (3) Å | µ = 0.82 mm−1 |
c = 46.9988 (19) Å | T = 100 K |
V = 2346.46 (15) Å3 | Plate, colourless |
Z = 4 | 0.35 × 0.10 × 0.02 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4603 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3842 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.044 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 74.6°, θmin = 3.8° |
ω scan | h = −6→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −10→7 |
Tmin = 0.230, Tmax = 1.000 | l = −56→58 |
9078 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0669P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4603 reflections | Δρmax = 0.28 e Å−3 |
300 parameters | Δρmin = −0.30 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1849 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.0 (2) |
C23H30O9 | V = 2346.46 (15) Å3 |
Mr = 450.47 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 5.7183 (2) Å | µ = 0.82 mm−1 |
b = 8.7309 (3) Å | T = 100 K |
c = 46.9988 (19) Å | 0.35 × 0.10 × 0.02 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4603 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 3842 reflections with I > 2σ(I) |
Tmin = 0.230, Tmax = 1.000 | Rint = 0.044 |
9078 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | Δρmax = 0.28 e Å−3 |
S = 1.05 | Δρmin = −0.30 e Å−3 |
4603 reflections | Absolute structure: Flack (1983), 1849 Friedel pairs |
300 parameters | Absolute structure parameter: 0.0 (2) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O7 | −0.2022 (4) | 0.5527 (2) | −0.00826 (4) | 0.0253 (5) | |
O9 | −0.3426 (4) | 0.3380 (2) | 0.01232 (4) | 0.0263 (4) | |
O13 | 0.3891 (3) | 0.9744 (2) | 0.14782 (4) | 0.0188 (4) | |
O16 | 0.2916 (4) | 1.1953 (2) | 0.19343 (5) | 0.0239 (4) | |
H16 | 0.147 (7) | 1.178 (5) | 0.1910 (8) | 0.042 (11)* | |
O18 | 0.6765 (4) | 0.8572 (2) | 0.12326 (4) | 0.0238 (4) | |
O20 | 0.6536 (3) | 1.2024 (2) | 0.13224 (4) | 0.0198 (4) | |
O24 | 0.3937 (3) | 0.8007 (2) | 0.20890 (4) | 0.0201 (4) | |
O27 | 0.8203 (3) | 1.2333 (2) | 0.17558 (4) | 0.0239 (4) | |
O30 | 0.0551 (4) | 0.9341 (2) | 0.20280 (4) | 0.0237 (5) | |
C1 | −0.0842 (5) | 0.5915 (3) | 0.01690 (6) | 0.0223 (6) | |
C2 | −0.1778 (5) | 0.7016 (3) | 0.03504 (6) | 0.0225 (6) | |
H2 | −0.3271 | 0.7450 | 0.0314 | 0.027* | |
C3 | −0.0493 (5) | 0.7466 (3) | 0.05852 (6) | 0.0206 (6) | |
H3 | −0.1120 | 0.8210 | 0.0711 | 0.025* | |
C4 | 0.1717 (5) | 0.6843 (3) | 0.06398 (6) | 0.0199 (6) | |
C5 | 0.2585 (5) | 0.5716 (3) | 0.04550 (6) | 0.0211 (6) | |
H5 | 0.4074 | 0.5272 | 0.0490 | 0.025* | |
C6 | 0.1294 (5) | 0.5244 (3) | 0.02212 (6) | 0.0230 (6) | |
H6 | 0.1876 | 0.4467 | 0.0099 | 0.028* | |
C8 | −0.3134 (5) | 0.4121 (3) | −0.00867 (6) | 0.0221 (6) | |
C10 | 0.3277 (5) | 0.7401 (3) | 0.08639 (6) | 0.0211 (6) | |
H10 | 0.4826 | 0.7008 | 0.0861 | 0.025* | |
C11 | 0.2799 (5) | 0.8390 (3) | 0.10715 (6) | 0.0203 (6) | |
H11 | 0.1259 | 0.8775 | 0.1098 | 0.024* | |
C12 | 0.4738 (5) | 0.8874 (3) | 0.12611 (6) | 0.0185 (6) | |
C14 | 0.5580 (5) | 1.0245 (3) | 0.16863 (6) | 0.0167 (5) | |
H14 | 0.6722 | 0.9400 | 0.1723 | 0.020* | |
C15 | 0.4241 (5) | 1.0593 (3) | 0.19588 (6) | 0.0183 (6) | |
H15 | 0.5391 | 1.0723 | 0.2117 | 0.022* | |
C17 | −0.3823 (7) | 0.3715 (3) | −0.03830 (7) | 0.0339 (8) | |
H17A | −0.5229 | 0.3073 | −0.0379 | 0.051* | |
H17B | −0.2546 | 0.3151 | −0.0475 | 0.051* | |
H17C | −0.4146 | 0.4652 | −0.0491 | 0.051* | |
C19 | 0.6905 (5) | 1.1681 (3) | 0.15925 (6) | 0.0178 (5) | |
C21 | 0.7821 (5) | 1.3308 (3) | 0.11844 (6) | 0.0223 (6) | |
C22 | 0.6898 (6) | 1.3215 (4) | 0.08806 (6) | 0.0286 (6) | |
H22A | 0.5236 | 1.3489 | 0.0878 | 0.043* | |
H22B | 0.7091 | 1.2169 | 0.0809 | 0.043* | |
H22C | 0.7772 | 1.3927 | 0.0760 | 0.043* | |
C23 | 0.2640 (5) | 0.9244 (3) | 0.20304 (6) | 0.0174 (6) | |
C25 | 0.2773 (5) | 0.6517 (3) | 0.21600 (6) | 0.0231 (6) | |
C26 | 0.4859 (5) | 0.5481 (3) | 0.22185 (7) | 0.0296 (7) | |
H26A | 0.5811 | 0.5391 | 0.2046 | 0.044* | |
H26B | 0.4304 | 0.4464 | 0.2275 | 0.044* | |
H26C | 0.5806 | 0.5921 | 0.2372 | 0.044* | |
C28 | 1.0416 (5) | 1.3012 (4) | 0.11923 (7) | 0.0325 (7) | |
H28A | 1.0969 | 1.3064 | 0.1389 | 0.049* | |
H28B | 1.1226 | 1.3787 | 0.1078 | 0.049* | |
H28C | 1.0741 | 1.1992 | 0.1115 | 0.049* | |
C29 | 0.7116 (6) | 1.4816 (3) | 0.13230 (7) | 0.0274 (7) | |
H29A | 0.7685 | 1.4839 | 0.1520 | 0.041* | |
H29B | 0.5408 | 1.4908 | 0.1322 | 0.041* | |
H29C | 0.7801 | 1.5670 | 0.1216 | 0.041* | |
C30 | 0.1389 (6) | 0.5973 (4) | 0.19021 (7) | 0.0311 (7) | |
H30A | 0.2419 | 0.5935 | 0.1736 | 0.047* | |
H30B | 0.0099 | 0.6686 | 0.1865 | 0.047* | |
H30C | 0.0757 | 0.4949 | 0.1939 | 0.047* | |
C31 | 0.1284 (5) | 0.6724 (4) | 0.24249 (7) | 0.0296 (7) | |
H31A | 0.2228 | 0.7195 | 0.2576 | 0.044* | |
H31B | 0.0714 | 0.5724 | 0.2489 | 0.044* | |
H31C | −0.0049 | 0.7388 | 0.2381 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O7 | 0.0322 (11) | 0.0166 (9) | 0.0271 (11) | −0.0050 (9) | −0.0090 (9) | −0.0005 (8) |
O9 | 0.0275 (11) | 0.0233 (10) | 0.0280 (11) | −0.0045 (9) | −0.0019 (9) | −0.0005 (8) |
O13 | 0.0177 (9) | 0.0169 (9) | 0.0217 (10) | −0.0009 (8) | −0.0013 (8) | −0.0032 (7) |
O16 | 0.0225 (11) | 0.0137 (9) | 0.0356 (12) | 0.0024 (9) | 0.0004 (9) | −0.0015 (8) |
O18 | 0.0204 (11) | 0.0193 (9) | 0.0318 (11) | 0.0008 (8) | −0.0023 (9) | −0.0052 (8) |
O20 | 0.0217 (10) | 0.0151 (9) | 0.0226 (10) | −0.0043 (8) | 0.0012 (8) | 0.0019 (7) |
O24 | 0.0179 (9) | 0.0131 (9) | 0.0293 (11) | −0.0016 (8) | 0.0003 (8) | 0.0048 (7) |
O27 | 0.0244 (11) | 0.0183 (9) | 0.0290 (11) | −0.0032 (8) | −0.0056 (9) | 0.0016 (8) |
O30 | 0.0233 (11) | 0.0180 (10) | 0.0299 (12) | 0.0001 (8) | 0.0004 (9) | 0.0000 (8) |
C1 | 0.0289 (15) | 0.0154 (12) | 0.0225 (15) | −0.0040 (12) | −0.0026 (13) | 0.0023 (11) |
C2 | 0.0227 (14) | 0.0180 (12) | 0.0268 (14) | −0.0017 (12) | −0.0005 (12) | 0.0021 (11) |
C3 | 0.0221 (14) | 0.0155 (12) | 0.0242 (15) | −0.0023 (11) | 0.0019 (11) | −0.0016 (11) |
C4 | 0.0204 (14) | 0.0167 (12) | 0.0225 (13) | −0.0026 (11) | 0.0012 (11) | 0.0010 (10) |
C5 | 0.0228 (14) | 0.0158 (12) | 0.0248 (14) | −0.0008 (11) | 0.0022 (11) | 0.0000 (10) |
C6 | 0.0297 (16) | 0.0175 (12) | 0.0217 (14) | −0.0003 (12) | 0.0018 (12) | −0.0023 (10) |
C8 | 0.0221 (14) | 0.0163 (12) | 0.0277 (15) | 0.0015 (11) | −0.0015 (13) | −0.0033 (11) |
C10 | 0.0188 (14) | 0.0196 (13) | 0.0248 (14) | −0.0014 (11) | −0.0008 (12) | 0.0012 (10) |
C11 | 0.0187 (13) | 0.0184 (13) | 0.0238 (14) | −0.0015 (11) | −0.0008 (11) | −0.0007 (10) |
C12 | 0.0197 (15) | 0.0115 (12) | 0.0242 (15) | −0.0023 (10) | 0.0004 (11) | −0.0006 (10) |
C14 | 0.0165 (13) | 0.0119 (11) | 0.0217 (14) | −0.0020 (10) | −0.0026 (11) | 0.0007 (10) |
C15 | 0.0206 (13) | 0.0125 (12) | 0.0218 (14) | 0.0001 (11) | −0.0021 (11) | 0.0002 (10) |
C17 | 0.048 (2) | 0.0223 (14) | 0.0309 (17) | −0.0038 (14) | −0.0075 (16) | −0.0023 (13) |
C19 | 0.0158 (13) | 0.0135 (12) | 0.0241 (14) | 0.0003 (10) | −0.0005 (11) | 0.0011 (10) |
C21 | 0.0229 (14) | 0.0152 (12) | 0.0288 (15) | 0.0001 (11) | 0.0060 (12) | 0.0056 (11) |
C22 | 0.0310 (16) | 0.0275 (15) | 0.0274 (15) | 0.0009 (13) | 0.0054 (14) | 0.0060 (12) |
C23 | 0.0182 (14) | 0.0176 (13) | 0.0165 (13) | 0.0003 (11) | −0.0006 (10) | −0.0006 (10) |
C25 | 0.0247 (15) | 0.0135 (12) | 0.0311 (16) | −0.0033 (11) | −0.0002 (12) | 0.0061 (11) |
C26 | 0.0258 (15) | 0.0207 (15) | 0.042 (2) | 0.0004 (12) | −0.0018 (13) | 0.0086 (14) |
C28 | 0.0271 (16) | 0.0329 (17) | 0.0375 (19) | 0.0016 (14) | 0.0079 (14) | 0.0106 (15) |
C29 | 0.0335 (17) | 0.0134 (13) | 0.0353 (17) | 0.0033 (12) | −0.0024 (14) | 0.0006 (11) |
C30 | 0.0314 (17) | 0.0219 (14) | 0.0400 (18) | −0.0030 (13) | −0.0073 (14) | −0.0039 (13) |
C31 | 0.0267 (16) | 0.0272 (15) | 0.0348 (16) | −0.0034 (13) | 0.0022 (13) | 0.0112 (13) |
O7—C8 | 1.383 (3) | C14—C19 | 1.530 (3) |
O7—C1 | 1.403 (3) | C14—H14 | 1.0000 |
O9—C8 | 1.192 (3) | C15—C23 | 1.529 (4) |
O13—C12 | 1.361 (3) | C15—H15 | 1.0000 |
O13—C14 | 1.442 (3) | C17—H17A | 0.9800 |
O16—C15 | 1.414 (3) | C17—H17B | 0.9800 |
O16—H16 | 0.85 (4) | C17—H17C | 0.9800 |
O18—C12 | 1.196 (4) | C21—C28 | 1.507 (4) |
O20—C19 | 1.321 (3) | C21—C29 | 1.523 (4) |
O20—C21 | 1.489 (3) | C21—C22 | 1.524 (4) |
O24—C23 | 1.339 (3) | C22—H22A | 0.9800 |
O24—C25 | 1.499 (3) | C22—H22B | 0.9800 |
O27—C19 | 1.210 (3) | C22—H22C | 0.9800 |
O30—C23 | 1.198 (3) | C25—C31 | 1.519 (4) |
C1—C6 | 1.377 (4) | C25—C26 | 1.522 (4) |
C1—C2 | 1.392 (4) | C25—C30 | 1.523 (4) |
C2—C3 | 1.383 (4) | C26—H26A | 0.9800 |
C2—H2 | 0.9500 | C26—H26B | 0.9800 |
C3—C4 | 1.400 (4) | C26—H26C | 0.9800 |
C3—H3 | 0.9500 | C28—H28A | 0.9800 |
C4—C5 | 1.403 (4) | C28—H28B | 0.9800 |
C4—C10 | 1.464 (4) | C28—H28C | 0.9800 |
C5—C6 | 1.387 (4) | C29—H29A | 0.9800 |
C5—H5 | 0.9500 | C29—H29B | 0.9800 |
C6—H6 | 0.9500 | C29—H29C | 0.9800 |
C8—C17 | 1.490 (4) | C31—H31A | 0.9800 |
C10—C11 | 1.331 (4) | C31—H31B | 0.9800 |
C10—H10 | 0.9500 | C31—H31C | 0.9800 |
C11—C12 | 1.484 (4) | C30—H30A | 0.9800 |
C11—H11 | 0.9500 | C30—H30B | 0.9800 |
C14—C15 | 1.523 (4) | C30—H30C | 0.9800 |
C8—O7—C1 | 116.5 (2) | O27—C19—C14 | 120.4 (2) |
C12—O13—C14 | 116.1 (2) | O20—C19—C14 | 112.6 (2) |
C15—O16—H16 | 113 (3) | O20—C21—C28 | 110.3 (2) |
C19—O20—C21 | 120.7 (2) | O20—C21—C29 | 109.5 (2) |
C23—O24—C25 | 120.0 (2) | C28—C21—C29 | 113.5 (3) |
C6—C1—C2 | 121.7 (3) | O20—C21—C22 | 101.4 (2) |
C6—C1—O7 | 118.3 (3) | C28—C21—C22 | 110.8 (3) |
C2—C1—O7 | 119.9 (3) | C29—C21—C22 | 110.8 (2) |
C3—C2—C1 | 118.7 (3) | C21—C22—H22A | 109.5 |
C3—C2—H2 | 120.6 | C21—C22—H22B | 109.5 |
C1—C2—H2 | 120.6 | H22A—C22—H22B | 109.5 |
C2—C3—C4 | 121.0 (3) | C21—C22—H22C | 109.5 |
C2—C3—H3 | 119.5 | H22A—C22—H22C | 109.5 |
C4—C3—H3 | 119.5 | H22B—C22—H22C | 109.5 |
C3—C4—C5 | 118.6 (3) | O30—C23—O24 | 127.7 (3) |
C3—C4—C10 | 123.6 (3) | O30—C23—C15 | 122.7 (3) |
C5—C4—C10 | 117.6 (3) | O24—C23—C15 | 109.6 (2) |
C6—C5—C4 | 120.7 (3) | O24—C25—C31 | 109.1 (2) |
C6—C5—H5 | 119.6 | O24—C25—C26 | 102.0 (2) |
C4—C5—H5 | 119.6 | C31—C25—C26 | 111.2 (2) |
C1—C6—C5 | 119.2 (3) | O24—C25—C30 | 108.9 (2) |
C1—C6—H6 | 120.4 | C31—C25—C30 | 113.5 (3) |
C5—C6—H6 | 120.4 | C26—C25—C30 | 111.5 (3) |
O9—C8—O7 | 122.3 (3) | C25—C26—H26A | 109.5 |
O9—C8—C17 | 127.4 (3) | C25—C26—H26B | 109.5 |
O7—C8—C17 | 110.2 (2) | H26A—C26—H26B | 109.5 |
C11—C10—C4 | 128.2 (3) | C25—C26—H26C | 109.5 |
C11—C10—H10 | 115.9 | H26A—C26—H26C | 109.5 |
C4—C10—H10 | 115.9 | H26B—C26—H26C | 109.5 |
C10—C11—C12 | 118.1 (3) | C21—C28—H28A | 109.5 |
C10—C11—H11 | 120.9 | C21—C28—H28B | 109.5 |
C12—C11—H11 | 120.9 | H28A—C28—H28B | 109.5 |
O18—C12—O13 | 123.5 (3) | C21—C28—H28C | 109.5 |
O18—C12—C11 | 126.5 (3) | H28A—C28—H28C | 109.5 |
O13—C12—C11 | 110.1 (2) | H28B—C28—H28C | 109.5 |
O13—C14—C15 | 107.1 (2) | C21—C29—H29A | 109.5 |
O13—C14—C19 | 112.6 (2) | C21—C29—H29B | 109.5 |
C15—C14—C19 | 109.2 (2) | H29A—C29—H29B | 109.5 |
O13—C14—H14 | 109.3 | C21—C29—H29C | 109.5 |
C15—C14—H14 | 109.3 | H29A—C29—H29C | 109.5 |
C19—C14—H14 | 109.3 | H29B—C29—H29C | 109.5 |
O16—C15—C14 | 111.6 (2) | C25—C31—H31A | 109.5 |
O16—C15—C23 | 110.2 (2) | C25—C31—H31B | 109.5 |
C14—C15—C23 | 109.4 (2) | H31A—C31—H31B | 109.5 |
O16—C15—H15 | 108.5 | C25—C31—H31C | 109.5 |
C14—C15—H15 | 108.5 | H31A—C31—H31C | 109.5 |
C23—C15—H15 | 108.5 | H31B—C31—H31C | 109.5 |
C8—C17—H17A | 109.5 | C25—C30—H30A | 109.5 |
C8—C17—H17B | 109.5 | C25—C30—H30B | 109.5 |
H17A—C17—H17B | 109.5 | H30A—C30—H30B | 109.5 |
C8—C17—H17C | 109.5 | C25—C30—H30C | 109.5 |
H17A—C17—H17C | 109.5 | H30A—C30—H30C | 109.5 |
H17B—C17—H17C | 109.5 | H30B—C30—H30C | 109.5 |
O27—C19—O20 | 126.9 (2) | ||
C8—O7—C1—C6 | 76.9 (3) | O13—C14—C15—O16 | −72.5 (3) |
C8—O7—C1—C2 | −106.7 (3) | C19—C14—C15—O16 | 49.7 (3) |
C6—C1—C2—C3 | 1.5 (4) | O13—C14—C15—C23 | 49.7 (3) |
O7—C1—C2—C3 | −174.9 (3) | C19—C14—C15—C23 | 171.9 (2) |
C1—C2—C3—C4 | 0.6 (4) | C21—O20—C19—O27 | 1.7 (4) |
C2—C3—C4—C5 | −1.7 (4) | C21—O20—C19—C14 | −175.0 (2) |
C2—C3—C4—C10 | 172.4 (3) | O13—C14—C19—O27 | 172.2 (2) |
C3—C4—C5—C6 | 0.8 (4) | C15—C14—C19—O27 | 53.4 (3) |
C10—C4—C5—C6 | −173.6 (3) | O13—C14—C19—O20 | −10.8 (3) |
C2—C1—C6—C5 | −2.3 (4) | C15—C14—C19—O20 | −129.6 (2) |
O7—C1—C6—C5 | 174.1 (2) | C19—O20—C21—C28 | 60.5 (3) |
C4—C5—C6—C1 | 1.1 (4) | C19—O20—C21—C29 | −65.0 (3) |
C1—O7—C8—O9 | 12.1 (4) | C19—O20—C21—C22 | 177.9 (2) |
C1—O7—C8—C17 | −167.0 (3) | C25—O24—C23—O30 | 0.5 (4) |
C3—C4—C10—C11 | 10.1 (5) | C25—O24—C23—C15 | −178.7 (2) |
C5—C4—C10—C11 | −175.8 (3) | O16—C15—C23—O30 | 8.7 (4) |
C4—C10—C11—C12 | −175.2 (3) | C14—C15—C23—O30 | −114.4 (3) |
C14—O13—C12—O18 | −2.7 (4) | O16—C15—C23—O24 | −172.1 (2) |
C14—O13—C12—C11 | 177.6 (2) | C14—C15—C23—O24 | 64.8 (3) |
C10—C11—C12—O18 | 7.1 (4) | C23—O24—C25—C31 | −60.6 (3) |
C10—C11—C12—O13 | −173.3 (2) | C23—O24—C25—C26 | −178.3 (2) |
C12—O13—C14—C15 | −157.2 (2) | C23—O24—C25—C30 | 63.8 (3) |
C12—O13—C14—C19 | 82.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···O27i | 0.85 (4) | 2.06 (4) | 2.842 (3) | 153 (4) |
O16—H16···O30 | 0.85 (4) | 2.26 (4) | 2.688 (3) | 111 (3) |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C23H30O9 |
Mr | 450.47 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 5.7183 (2), 8.7309 (3), 46.9988 (19) |
V (Å3) | 2346.46 (15) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.35 × 0.10 × 0.02 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.230, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9078, 4603, 3842 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.131, 1.05 |
No. of reflections | 4603 |
No. of parameters | 300 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.30 |
Absolute structure | Flack (1983), 1849 Friedel pairs |
Absolute structure parameter | 0.0 (2) |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···O27i | 0.85 (4) | 2.06 (4) | 2.842 (3) | 153 (4) |
O16—H16···O30 | 0.85 (4) | 2.26 (4) | 2.688 (3) | 111 (3) |
Symmetry code: (i) x−1, y, z. |
Footnotes
‡Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.
Acknowledgements
This project was supported by the School of Agriculture, Food and Wine, the University of Adelaide, as well as by Australia's grape growers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. The Ministry of Higher Education (Malaysia) is thanked for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chatonnet, P., Dubourdieu, D., Boidron, J. N. & Pons, M. (1992). J. Sci. Food Agric. 60, 165–178. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hixson, J. L., Sleep, N. R., Capone, D. L., Elsey, G. M., Curtin, C. D., Sefton, M. A. & Taylor, D. K. (2012). J. Agric. Food Chem. Submitted. Google Scholar
Nagel, C. W. & Wulf, L. W. (1979). Am. J. Enol. Vitic. 30, 111–116. CAS Google Scholar
Ong, B. Y. & Nagel, C. W. (1978). Am. J. Enol. Vitic. 29, 277–281. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimizu, T. & Kojima, M. (1984). J. Biochem. 95, 205–212. CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737–740. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The breakdown of p-coumaric acid by D. bruxellensis to form the potent odorant 4-ethylphenol has been known for decades (Chatonnet et al., 1992). Recently, it has been found that the metabolism of the ethyl ester of p-coumaric acid by this yeast can also result in the accumulation of significant concentrations of 4-ethylphenol (Hixson et al., 2012). Existing in both the grape berry and in wine in significant concentrations (Ong & Nagel, 1978; Nagel & Wulf, 1979), the p-coumaroyl L-tartrate ester has the potential to contribute even further to the accumulation of 4-ethylphenol in finished wines and thus contribute further to the spoilage of wine.
Synthesis of the known wine component p-coumaroyl L-tartrate was attempted using di-tert-butyl L-tartrate and the 1-O-acetyl protected hydroxycinnamic acid in an analogous method to that described by Zhao and Burke (1998). The desired product was isolated and recrystallized from 30% ethyl acetate/hexane to afford a crystalline solid from which the structure was determined by X-ray crystallography to confirm the retention of the (R,R)-stereochemistry, Fig. 1.
The most prominent feature of the crystal packing is the formation of linear supramolecular chains along the a axis via hydroxyl-O—H···O(carbonyl) hydrogen bonds, Fig. 2 and Table 1. The hydroxyl-H atom is bifurcated, also forming an intramolecular O–H···O hydrogen bond with the adjacent carbonyl-O atom, Table 1.