organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy­ethyl (Z)-2-cyano-3-[(N-phenyl­carbamo­yl)amino]­prop-2-enoate

aCollege of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
*Correspondence e-mail: hunansdljb@163.com

(Received 1 December 2011; accepted 21 December 2011; online 7 January 2012)

The crystal structure of the title compound, C15H17N3O4, is stabilized by inter­molecular N—H⋯N hydrogen bonds. An intra­molecular N—H⋯O hydrogen bond also occurs.

Related literature

The title compound was synthesized as a possible novel herbicide. For details of the synthesis, see: Wang et al. (2004[Wang, Q. M., Li, H., Li, Y. G. & Huang, R. Q. (2004). J. Agric. Food Chem. 52, 1918-1922.]); Senda et al. (1972[Senda, S., Hirota, K. & Notani, J. (1972). Chem. Pharm. Bull. 20, 1380-1388.]). For reviews of cyano­acrylate derivatives as bioactive agents, see: Zhang et al. (2008[Zhang, H. P., Song, B. A., Wang, X. Y., Long, N., Hu, D. Y., Yang, S., Xue, W., Lu, P. & Jin, H. L. (2008). Chin. J. Org. Chem. 28, 17-28.]); Liu et al. (1998[Liu, H. Y., Sha, Y. L., Lu, R. J., Yang, H. Z. & Lai, L. H. (1998). Chin. Sci. Bull. 43, 397-401.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O4

  • Mr = 303.32

  • Monoclinic, C 2/c

  • a = 25.102 (7) Å

  • b = 12.013 (3) Å

  • c = 10.436 (3) Å

  • β = 96.248 (4)°

  • V = 3128.4 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 K

  • 0.48 × 0.44 × 0.09 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.992

  • 16240 measured reflections

  • 4149 independent reflections

  • 2994 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.00

  • 4149 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.910 (15) 2.068 (15) 2.7543 (14) 131.2 (12)
N1—H1N⋯N3i 0.867 (15) 2.050 (15) 2.9120 (15) 172.6 (14)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Previous studies have shown that cyanoacrylate derivatives are an important class of compounds with high bioactivities and can be applied as herbicide (Zhang et al., 2008), urea derivatives also exhibit good herbicidal activities (Liu et al., 1998), both kinds of compounds are inhibitors of photosystem II electron transport and inhibit the growth of weeds by disrupting photosynthetic electron transport. A novel cyanoacrylate compound (C15H17N3O4) which bears a phenyl urea unit was synthesized and investigated for its ability to inhibit PSII electron transport, its crystal structure is reported here.

The crystal structure of title compound is stabilized by inter-molecular N—H···N hydrogen bonds, the orientation of phenylurea and ester carbonyl is cis and an intramolecular N—H···O hydrogen bond was generated to stabilize the conformation.

Related literature top

The title compound was synthesized as a possible novel herbicide. For details of the synthesis, see: Wang et al. (2004); Senda et al. (1972). For reviews of cyanoacrylate derivatives as bioactive agents, see: Zhang et al. (2008); Liu et al. (1998).

Experimental top

The title compound was prepared according to the reported method (Wang et al., 2004; Senda et al., 1972). A mixture of 2-ethoxyethyl cyanoacetate (0.55 g, 3.5 mmol), Phenylurea (0.39 g 2.9 mmol) and triethyl orthoformate (0.59 ml, 3.5 mmol) was heated at 378 K for 2 hr, cooled to room temperature, the precipitation was filtered off, washed with hexane and recrystallized from ethanol to give white solid (yield 37%), mp: 458 K. Crystals of (I) suitable for XRD were obtained by slow evaporation of a mixture solution of ethanol and acetone in a ratio of 1:2 at 293 K.

Refinement top

Positional parameters of carbon H atoms were calculated geometically and were allowed to ride on the C atoms to which they are bonded, with C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 or 1.5 Ueq(C). The H atoms of the N atoms were located in difference Fourier maps and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound shows displacement ellipsoids drawn at the 50% probability level, all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound with hydrogen bonds drawn as dashed lines.
2-Ethoxyethyl (Z)-2-cyano-3-[(N-phenylcarbamoyl)amino]prop-2-enoate top
Crystal data top
C15H17N3O4F(000) = 1280
Mr = 303.32Dx = 1.288 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4353 reflections
a = 25.102 (7) Åθ = 2.7–29.1°
b = 12.013 (3) ŵ = 0.10 mm1
c = 10.436 (3) ÅT = 153 K
β = 96.248 (4)°Platelet, colorless
V = 3128.4 (16) Å30.48 × 0.44 × 0.09 mm
Z = 8
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
4149 independent reflections
Radiation source: Rotating Anode2994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.7°
phi and ω scansh = 3432
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.956, Tmax = 0.992l = 1314
16240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.136P]
where P = (Fo2 + 2Fc2)/3
4149 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H17N3O4V = 3128.4 (16) Å3
Mr = 303.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.102 (7) ŵ = 0.10 mm1
b = 12.013 (3) ÅT = 153 K
c = 10.436 (3) Å0.48 × 0.44 × 0.09 mm
β = 96.248 (4)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
4149 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2994 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.992Rint = 0.038
16240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
4149 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15659 (4)0.22114 (7)0.47309 (9)0.0364 (2)
O20.32432 (3)0.36646 (7)0.09862 (8)0.0255 (2)
O30.27763 (4)0.46231 (7)0.23556 (8)0.0306 (2)
O40.42663 (4)0.39232 (8)0.00208 (9)0.0364 (2)
N10.16467 (4)0.40528 (8)0.53128 (10)0.0250 (2)
N20.21226 (4)0.33631 (8)0.37397 (9)0.0240 (2)
N30.28465 (4)0.09868 (8)0.07213 (10)0.0289 (3)
C10.11615 (5)0.52205 (11)0.66349 (12)0.0307 (3)
H10.12980.58440.62160.037*
C20.08347 (6)0.53787 (13)0.76109 (13)0.0375 (3)
H20.07470.61120.78580.045*
C30.06367 (6)0.44733 (14)0.82240 (13)0.0396 (3)
H30.04160.45830.88960.047*
C40.07616 (5)0.34066 (13)0.78556 (13)0.0362 (3)
H40.06250.27850.82780.043*
C50.10845 (5)0.32346 (11)0.68761 (12)0.0282 (3)
H50.11650.25000.66220.034*
C60.12894 (5)0.41423 (10)0.62707 (11)0.0232 (3)
C70.17519 (5)0.31405 (9)0.46344 (12)0.0242 (3)
C80.22843 (5)0.25503 (9)0.29863 (11)0.0227 (3)
H80.21420.18270.30860.027*
C90.26364 (5)0.26801 (9)0.20886 (11)0.0221 (2)
C100.28862 (5)0.37541 (10)0.18432 (11)0.0229 (3)
C110.34591 (5)0.47118 (10)0.05780 (13)0.0291 (3)
H11A0.36840.50620.13060.035*
H11B0.31640.52290.02840.035*
C120.37881 (5)0.44736 (11)0.05006 (12)0.0306 (3)
H12A0.35810.40000.11530.037*
H12B0.38760.51790.09210.037*
C130.45942 (7)0.36769 (16)0.10075 (16)0.0567 (5)
H13A0.47010.43750.14140.068*
H13B0.43930.32140.16800.068*
C140.50822 (8)0.30642 (17)0.0432 (2)0.0745 (6)
H14A0.52550.34860.03030.112*
H14B0.53330.29780.10820.112*
H14C0.49780.23280.01400.112*
C150.27583 (5)0.17378 (9)0.13389 (11)0.0225 (2)
H2N0.2248 (6)0.4059 (13)0.3597 (14)0.038 (4)*
H1N0.1787 (6)0.4663 (13)0.5061 (13)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0471 (6)0.0169 (4)0.0493 (6)0.0065 (4)0.0241 (5)0.0041 (4)
O20.0295 (5)0.0150 (4)0.0342 (5)0.0004 (3)0.0134 (4)0.0003 (3)
O30.0400 (5)0.0168 (4)0.0375 (5)0.0024 (4)0.0153 (4)0.0060 (4)
O40.0314 (5)0.0425 (6)0.0375 (5)0.0078 (4)0.0141 (4)0.0064 (4)
N10.0334 (6)0.0155 (5)0.0278 (5)0.0017 (4)0.0116 (5)0.0003 (4)
N20.0296 (6)0.0155 (5)0.0285 (5)0.0011 (4)0.0100 (4)0.0003 (4)
N30.0372 (6)0.0178 (5)0.0324 (6)0.0009 (4)0.0075 (5)0.0013 (4)
C10.0371 (7)0.0251 (6)0.0304 (7)0.0022 (5)0.0059 (6)0.0027 (5)
C20.0379 (8)0.0414 (8)0.0337 (7)0.0084 (6)0.0059 (6)0.0101 (6)
C30.0309 (7)0.0592 (10)0.0302 (7)0.0019 (7)0.0106 (6)0.0055 (7)
C40.0303 (7)0.0464 (9)0.0330 (7)0.0043 (6)0.0084 (6)0.0058 (6)
C50.0283 (7)0.0285 (6)0.0283 (6)0.0019 (5)0.0057 (5)0.0028 (5)
C60.0235 (6)0.0252 (6)0.0212 (6)0.0009 (4)0.0031 (5)0.0007 (5)
C70.0271 (6)0.0182 (6)0.0282 (6)0.0003 (4)0.0070 (5)0.0011 (5)
C80.0265 (6)0.0161 (5)0.0256 (6)0.0003 (4)0.0030 (5)0.0002 (4)
C90.0259 (6)0.0146 (5)0.0261 (6)0.0014 (4)0.0045 (5)0.0008 (4)
C100.0254 (6)0.0181 (6)0.0258 (6)0.0011 (4)0.0049 (5)0.0009 (4)
C110.0336 (7)0.0165 (6)0.0391 (7)0.0024 (5)0.0123 (6)0.0018 (5)
C120.0333 (7)0.0263 (6)0.0337 (7)0.0011 (5)0.0101 (6)0.0050 (5)
C130.0563 (10)0.0660 (12)0.0536 (10)0.0232 (9)0.0333 (8)0.0157 (8)
C140.0570 (12)0.0897 (16)0.0838 (14)0.0342 (11)0.0399 (11)0.0275 (12)
C150.0255 (6)0.0172 (5)0.0251 (6)0.0001 (4)0.0046 (5)0.0030 (4)
Geometric parameters (Å, º) top
O1—C71.2183 (14)C4—C51.3875 (18)
O2—C101.3376 (14)C4—H40.9500
O2—C111.4520 (14)C5—C61.3869 (17)
O3—C101.2181 (14)C5—H50.9500
O4—C121.4135 (15)C8—C91.3650 (16)
O4—C131.4177 (17)C8—H80.9500
N1—C71.3465 (15)C9—C151.4281 (16)
N1—C61.4179 (15)C9—C101.4691 (16)
N1—H1N0.867 (15)C11—C121.4943 (18)
N2—C81.3439 (15)C11—H11A0.9900
N2—C71.4136 (15)C11—H11B0.9900
N2—H2N0.910 (15)C12—H12A0.9900
N3—C151.1443 (15)C12—H12B0.9900
C1—C21.3887 (18)C13—C141.498 (2)
C1—C61.3970 (17)C13—H13A0.9900
C1—H10.9500C13—H13B0.9900
C2—C31.382 (2)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.384 (2)C14—H14C0.9800
C3—H30.9500
C10—O2—C11115.17 (9)C8—C9—C15118.61 (11)
C12—O4—C13112.22 (11)C8—C9—C10122.71 (10)
C7—N1—C6127.43 (10)C15—C9—C10118.66 (10)
C7—N1—H1N114.8 (10)O3—C10—O2124.24 (11)
C6—N1—H1N117.3 (10)O3—C10—C9123.70 (11)
C8—N2—C7120.76 (10)O2—C10—C9112.06 (10)
C8—N2—H2N116.1 (9)O2—C11—C12108.04 (10)
C7—N2—H2N123.0 (9)O2—C11—H11A110.1
C2—C1—C6119.87 (13)C12—C11—H11A110.1
C2—C1—H1120.1O2—C11—H11B110.1
C6—C1—H1120.1C12—C11—H11B110.1
C3—C2—C1120.20 (13)H11A—C11—H11B108.4
C3—C2—H2119.9O4—C12—C11109.89 (10)
C1—C2—H2119.9O4—C12—H12A109.7
C2—C3—C4119.78 (13)C11—C12—H12A109.7
C2—C3—H3120.1O4—C12—H12B109.7
C4—C3—H3120.1C11—C12—H12B109.7
C3—C4—C5120.72 (13)H12A—C12—H12B108.2
C3—C4—H4119.6O4—C13—C14108.98 (14)
C5—C4—H4119.6O4—C13—H13A109.9
C6—C5—C4119.60 (13)C14—C13—H13A109.9
C6—C5—H5120.2O4—C13—H13B109.9
C4—C5—H5120.2C14—C13—H13B109.9
C5—C6—C1119.82 (12)H13A—C13—H13B108.3
C5—C6—N1123.78 (11)C13—C14—H14A109.5
C1—C6—N1116.35 (11)C13—C14—H14B109.5
O1—C7—N1127.11 (12)H14A—C14—H14B109.5
O1—C7—N2120.92 (11)C13—C14—H14C109.5
N1—C7—N2111.98 (10)H14A—C14—H14C109.5
N2—C8—C9125.30 (11)H14B—C14—H14C109.5
N2—C8—H8117.3N3—C15—C9178.57 (13)
C9—C8—H8117.3
C6—C1—C2—C30.1 (2)C7—N2—C8—C9179.49 (11)
C1—C2—C3—C40.5 (2)N2—C8—C9—C15178.46 (11)
C2—C3—C4—C50.1 (2)N2—C8—C9—C100.22 (19)
C3—C4—C5—C60.8 (2)C11—O2—C10—O36.56 (17)
C4—C5—C6—C11.16 (18)C11—O2—C10—C9172.90 (10)
C4—C5—C6—N1176.29 (11)C8—C9—C10—O34.72 (19)
C2—C1—C6—C50.71 (19)C15—C9—C10—O3173.95 (11)
C2—C1—C6—N1176.93 (11)C8—C9—C10—O2175.81 (10)
C7—N1—C6—C515.9 (2)C15—C9—C10—O25.52 (16)
C7—N1—C6—C1166.53 (12)C10—O2—C11—C12172.26 (10)
C6—N1—C7—O11.3 (2)C13—O4—C12—C11180.00 (13)
C6—N1—C7—N2178.81 (11)O2—C11—C12—O471.42 (13)
C8—N2—C7—O10.93 (18)C12—O4—C13—C14178.18 (14)
C8—N2—C7—N1178.97 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.910 (15)2.068 (15)2.7543 (14)131.2 (12)
N1—H1N···N3i0.867 (15)2.050 (15)2.9120 (15)172.6 (14)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N3O4
Mr303.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)25.102 (7), 12.013 (3), 10.436 (3)
β (°) 96.248 (4)
V3)3128.4 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.44 × 0.09
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.956, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
16240, 4149, 2994
Rint0.038
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.00
No. of reflections4149
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.910 (15)2.068 (15)2.7543 (14)131.2 (12)
N1—H1N···N3i0.867 (15)2.050 (15)2.9120 (15)172.6 (14)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to Hunan Normal University for financial support and thank Mr Kai-bei Yu of Beijing Institute of Technology for the X-ray crystallographic data collection and structure determination.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, H. Y., Sha, Y. L., Lu, R. J., Yang, H. Z. & Lai, L. H. (1998). Chin. Sci. Bull. 43, 397–401.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSenda, S., Hirota, K. & Notani, J. (1972). Chem. Pharm. Bull. 20, 1380–1388.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q. M., Li, H., Li, Y. G. & Huang, R. Q. (2004). J. Agric. Food Chem. 52, 1918–1922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, H. P., Song, B. A., Wang, X. Y., Long, N., Hu, D. Y., Yang, S., Xue, W., Lu, P. & Jin, H. L. (2008). Chin. J. Org. Chem. 28, 17–28.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds