organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-{[(E)-3-Eth­­oxy-2-hy­dr­oxy­benzyl­­idene]amino}­phen­yl)ethanone oxime

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: zhaoli_72@163.com

(Received 19 December 2011; accepted 10 January 2012; online 18 January 2012)

In the title compound, C17H18N2O3, the benzene rings form a dihedral angle of 3.34 (2)°. There is a strong intra­molecular O—H⋯N hydrogen bonds (which induces planarity of the structure). In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers.

Related literature

For background to oxime-type compounds, see: Dong et al., (2009[Dong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009). Inorg. Chim. Acta, 362, 117-124.]); Narasaka & Kitamura (2005[Narasaka, K. & Kitamura, M. (2005). Eur. J. Org. Chem. pp. 4505-4519.]). For their syntheses and structures, see: Dong et al. (2008[Dong, W.-K., Li, L., Li, C.-F., Xu, L. & Duan, J.-G. (2008). Spectrochim. Acta Part A, 71, 650-654.]); Akine et al. (2002[Akine, S., Taniguchi, T. & Nabeshima, T. (2002). Angew. Chem. Int. Ed. 41, 4670-4673.]); Wu et al. (2010[Wu, H.-L., Yun, R.-R., Wang, K.-T., Li, K., Huang, X.-C. & Sun, T. (2010). Z. Anorg. Allg. Chem. 636, 629-633.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O3

  • Mr = 298.33

  • Triclinic, [P \overline 1]

  • a = 7.0556 (7) Å

  • b = 7.4852 (9) Å

  • c = 14.7821 (16) Å

  • α = 96.890 (1)°

  • β = 98.762 (1)°

  • γ = 102.105 (2)°

  • V = 745.03 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.32 × 0.21 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.988

  • 3664 measured reflections

  • 2561 independent reflections

  • 1376 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.168

  • S = 1.02

  • 2561 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.07 2.817 (4) 152
O2—H2⋯N2 0.82 1.84 2.567 (3) 147
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxime-type compounds are a traditional class of chelating ligands widely used in coordination and analytical chemistry and extraction metallurgy (Dong et al., 2009; Narasaka et al., 2005). In the last few years, a large number of oxime-type compounds and their complexes have been reported (Dong et al., 2008; Akine et al., 2002). However, the oxime-type compounds derived the 4-aminophenylethanone have never been reported. In this paper, the crystal structure of new oxime-type compound, 1-(4-{[(E)-3-ethoxy-2-hydroxybenzylidene] amino}phenyl)ethanone oxime, derived from the reaction of 4-amino-phenylethanone oxime and 3-ethoxysalicylaldehyde (I), (Fig. 1) is reported.

The single-crystal structure of the title compound was determined by X-ray crystallography. The crystal structure of the title compound is only built up by the C17H18N2O3 molecules, in which all bond lengths are in normal ranges. The two benzene rings form a dihedral angle of 3.34 (2) °. There is a strong intramolecular O2–H2···N2 hydrogen bonds (which induces planarity on the structure). In the crystal structure, the molecules form dimers disposed about two pairs of inter-molecular O—H..N hydrogen bonds. (Table 1)(Wu et al., 2010).

Related literature top

For background to oxime-type compounds, see: Dong et al., (2009); Narasaka et al. (2005). For their syntheses and structures, see: Dong et al. (2008); Akine et al. (2002); Wu et al. (2010).

Experimental top

To an ethanol solution (5 ml) of 3-ethoxysalicylaldehyde(166.2 mg, 1.00 mmol) was added an ethanol solution (5 ml) of 4-aminophenylethanone oxime (151.7 mg, 1.00 mmol). After the solution had been stirred at 328 K for 5 h, the mixture was filtered. The residue was washed successively with ethanol and n-hexane, respectively. The isolated compound was dried under reduced pressure to yield 281.1 mg of yellow solid (yield 80%, m.p. 436–437 K). Elemental analysis also supports composition of the title compound. Anal. calcd. for C17H18N2O3: C 68.44; H 6.08; N 9.39; Found: C, 68.30; H, 6.02; N, 9.52. The single crystals were obtained by slow evaporation from an acetonitrile solution at room temperature.

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), C—H = 0.97 (CH2), 0.93 Å (CH), 0.82 Å (OH), and the values of Uiso(H) for the thermal parameters for aromatic, methylene and hydroxy protons Uiso(H) = 1.2 Ueq(C)(aromatic), Uiso(H) = 1.5 Ueq(C)(methylene) and Uiso(H) = 1.5 Ueq(C)(hydroxy), respectively.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Digram showing the intramolecular O—H···N and intermolecular O—H···N hydrogen bonding interactions. Hydrogen atoms not involved have been deleted for clarity.
1-(4-{[(E)-3-Ethoxy-2-hydroxybenzylidene]amino}phenyl)ethanone oxime top
Crystal data top
C17H18N2O3Z = 2
Mr = 298.33F(000) = 316
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0556 (7) ÅCell parameters from 818 reflections
b = 7.4852 (9) Åθ = 2.8–27.5°
c = 14.7821 (16) ŵ = 0.09 mm1
α = 96.890 (1)°T = 298 K
β = 98.762 (1)°Prismatical, yellow
γ = 102.105 (2)°0.32 × 0.21 × 0.13 mm
V = 745.03 (14) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2561 independent reflections
Radiation source: fine-focus sealed tube1376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.971, Tmax = 0.988k = 88
3664 measured reflectionsl = 179
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.2977P]
where P = (Fo2 + 2Fc2)/3
2561 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H18N2O3γ = 102.105 (2)°
Mr = 298.33V = 745.03 (14) Å3
Triclinic, P1Z = 2
a = 7.0556 (7) ÅMo Kα radiation
b = 7.4852 (9) ŵ = 0.09 mm1
c = 14.7821 (16) ÅT = 298 K
α = 96.890 (1)°0.32 × 0.21 × 0.13 mm
β = 98.762 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2561 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1376 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.988Rint = 0.037
3664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2561 reflectionsΔρmin = 0.27 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3517 (4)0.5142 (4)0.91196 (19)0.0451 (8)
N20.4699 (4)0.7402 (4)0.51348 (18)0.0399 (7)
O10.2676 (4)0.4614 (4)0.98854 (17)0.0644 (8)
H10.35480.45251.03010.097*
O20.3342 (3)0.8040 (3)0.35234 (16)0.0518 (7)
H20.33080.77830.40460.078*
O30.3898 (3)0.8888 (4)0.19161 (16)0.0522 (7)
C10.0075 (5)0.5044 (6)0.8478 (3)0.0667 (13)
H1A0.01320.48610.90900.100*
H1B0.06580.39800.80410.100*
H1C0.03620.61200.83250.100*
C20.2226 (5)0.5310 (5)0.8443 (2)0.0396 (9)
C30.2949 (5)0.5820 (4)0.7593 (2)0.0332 (8)
C40.4926 (5)0.6169 (5)0.7524 (2)0.0443 (10)
H40.58440.60420.80200.053*
C50.5573 (5)0.6699 (5)0.6740 (2)0.0465 (10)
H50.69130.69370.67200.056*
C60.4246 (5)0.6879 (4)0.5984 (2)0.0351 (8)
C70.2268 (5)0.6483 (5)0.6030 (2)0.0446 (10)
H70.13520.65610.55220.053*
C80.1624 (5)0.5971 (5)0.6820 (2)0.0449 (10)
H80.02820.57240.68360.054*
C90.6452 (5)0.7803 (4)0.4955 (2)0.0376 (9)
H90.75140.77660.54040.045*
C100.6814 (5)0.8313 (4)0.4067 (2)0.0344 (8)
C110.5221 (5)0.8398 (4)0.3389 (2)0.0355 (8)
C120.5558 (5)0.8854 (5)0.2518 (2)0.0382 (9)
C130.7458 (5)0.9199 (5)0.2339 (2)0.0412 (9)
H130.76820.94880.17640.049*
C140.9048 (5)0.9119 (5)0.3015 (2)0.0427 (9)
H141.03210.93600.28900.051*
C150.8720 (5)0.8682 (5)0.3863 (2)0.0384 (9)
H150.97810.86300.43090.046*
C160.4125 (5)0.9423 (5)0.1031 (2)0.0506 (10)
H16A0.45860.85010.06590.061*
H16B0.50701.06010.11090.061*
C170.2127 (6)0.9575 (7)0.0572 (3)0.0781 (15)
H17A0.12280.83830.04660.117*
H17B0.22201.00060.00090.117*
H17C0.16551.04330.09660.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0459 (19)0.059 (2)0.0336 (18)0.0094 (15)0.0162 (14)0.0153 (14)
N20.0371 (18)0.0485 (19)0.0364 (18)0.0112 (14)0.0100 (13)0.0084 (14)
O10.0549 (18)0.103 (2)0.0438 (17)0.0163 (16)0.0224 (13)0.0324 (15)
O20.0305 (15)0.085 (2)0.0447 (16)0.0123 (13)0.0110 (11)0.0243 (13)
O30.0358 (15)0.085 (2)0.0345 (15)0.0073 (13)0.0001 (11)0.0229 (13)
C10.043 (3)0.111 (4)0.048 (3)0.014 (2)0.0157 (19)0.018 (2)
C20.038 (2)0.046 (2)0.033 (2)0.0060 (17)0.0095 (16)0.0061 (17)
C30.033 (2)0.037 (2)0.031 (2)0.0085 (15)0.0097 (14)0.0051 (15)
C40.034 (2)0.071 (3)0.032 (2)0.0155 (18)0.0049 (15)0.0166 (19)
C50.031 (2)0.071 (3)0.043 (2)0.0136 (19)0.0118 (17)0.0162 (19)
C60.042 (2)0.038 (2)0.030 (2)0.0128 (17)0.0108 (15)0.0097 (16)
C70.037 (2)0.063 (3)0.038 (2)0.0144 (19)0.0075 (16)0.0171 (19)
C80.032 (2)0.062 (3)0.044 (2)0.0126 (18)0.0096 (16)0.0113 (19)
C90.038 (2)0.043 (2)0.032 (2)0.0111 (17)0.0029 (15)0.0089 (16)
C100.035 (2)0.039 (2)0.030 (2)0.0110 (16)0.0047 (14)0.0077 (15)
C110.030 (2)0.044 (2)0.035 (2)0.0091 (16)0.0106 (15)0.0081 (16)
C120.032 (2)0.045 (2)0.034 (2)0.0044 (17)0.0019 (15)0.0063 (16)
C130.038 (2)0.046 (2)0.040 (2)0.0087 (17)0.0090 (16)0.0100 (17)
C140.031 (2)0.051 (2)0.047 (2)0.0067 (17)0.0134 (16)0.0093 (18)
C150.031 (2)0.049 (2)0.036 (2)0.0109 (17)0.0047 (15)0.0102 (17)
C160.054 (3)0.060 (3)0.037 (2)0.009 (2)0.0047 (17)0.0163 (19)
C170.064 (3)0.110 (4)0.059 (3)0.013 (3)0.003 (2)0.038 (3)
Geometric parameters (Å, º) top
N1—C21.283 (4)C7—C81.383 (5)
N1—O11.416 (3)C7—H70.9300
N2—C91.286 (4)C8—H80.9300
N2—C61.420 (4)C9—C101.454 (4)
O1—H10.8200C9—H90.9300
O2—C111.346 (4)C10—C151.401 (4)
O2—H20.8200C10—C111.406 (4)
O3—C121.366 (4)C11—C121.411 (4)
O3—C161.435 (4)C12—C131.384 (4)
C1—C21.498 (5)C13—C141.400 (4)
C1—H1A0.9600C13—H130.9300
C1—H1B0.9600C14—C151.374 (4)
C1—H1C0.9600C14—H140.9300
C2—C31.488 (4)C15—H150.9300
C3—C41.387 (4)C16—C171.502 (5)
C3—C81.393 (4)C16—H16A0.9700
C4—C51.379 (5)C16—H16B0.9700
C4—H40.9300C17—H17A0.9600
C5—C61.384 (4)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—C71.378 (5)
C2—N1—O1112.6 (3)N2—C9—H9119.2
C9—N2—C6124.4 (3)C10—C9—H9119.2
N1—O1—H1109.5C15—C10—C11119.0 (3)
C11—O2—H2109.5C15—C10—C9121.4 (3)
C12—O3—C16118.0 (3)C11—C10—C9119.6 (3)
C2—C1—H1A109.5O2—C11—C10122.8 (3)
C2—C1—H1B109.5O2—C11—C12117.3 (3)
H1A—C1—H1B109.5C10—C11—C12119.9 (3)
C2—C1—H1C109.5O3—C12—C13125.9 (3)
H1A—C1—H1C109.5O3—C12—C11114.6 (3)
H1B—C1—H1C109.5C13—C12—C11119.5 (3)
N1—C2—C3117.0 (3)C12—C13—C14120.7 (3)
N1—C2—C1123.4 (3)C12—C13—H13119.7
C3—C2—C1119.5 (3)C14—C13—H13119.7
C4—C3—C8116.9 (3)C15—C14—C13119.8 (3)
C4—C3—C2122.9 (3)C15—C14—H14120.1
C8—C3—C2120.2 (3)C13—C14—H14120.1
C5—C4—C3122.0 (3)C14—C15—C10121.1 (3)
C5—C4—H4119.0C14—C15—H15119.4
C3—C4—H4119.0C10—C15—H15119.4
C4—C5—C6120.6 (3)O3—C16—C17106.4 (3)
C4—C5—H5119.7O3—C16—H16A110.5
C6—C5—H5119.7C17—C16—H16A110.5
C7—C6—C5118.2 (3)O3—C16—H16B110.5
C7—C6—N2115.2 (3)C17—C16—H16B110.5
C5—C6—N2126.6 (3)H16A—C16—H16B108.7
C6—C7—C8121.1 (3)C16—C17—H17A109.5
C6—C7—H7119.4C16—C17—H17B109.5
C8—C7—H7119.4H17A—C17—H17B109.5
C7—C8—C3121.2 (3)C16—C17—H17C109.5
C7—C8—H8119.4H17A—C17—H17C109.5
C3—C8—H8119.4H17B—C17—H17C109.5
N2—C9—C10121.7 (3)
O1—N1—C2—C3178.6 (3)N2—C9—C10—C15177.6 (3)
O1—N1—C2—C12.1 (5)N2—C9—C10—C110.9 (5)
N1—C2—C3—C42.2 (5)C15—C10—C11—O2179.1 (3)
C1—C2—C3—C4177.1 (3)C9—C10—C11—O20.6 (5)
N1—C2—C3—C8178.0 (3)C15—C10—C11—C120.1 (5)
C1—C2—C3—C82.7 (5)C9—C10—C11—C12178.6 (3)
C8—C3—C4—C52.0 (5)C16—O3—C12—C133.5 (5)
C2—C3—C4—C5177.8 (3)C16—O3—C12—C11177.2 (3)
C3—C4—C5—C60.8 (6)O2—C11—C12—O30.6 (4)
C4—C5—C6—C71.2 (5)C10—C11—C12—O3179.8 (3)
C4—C5—C6—N2179.7 (3)O2—C11—C12—C13178.8 (3)
C9—N2—C6—C7179.2 (3)C10—C11—C12—C130.5 (5)
C9—N2—C6—C50.6 (5)O3—C12—C13—C14179.9 (3)
C5—C6—C7—C81.9 (5)C11—C12—C13—C140.6 (5)
N2—C6—C7—C8179.4 (3)C12—C13—C14—C150.4 (5)
C6—C7—C8—C30.7 (5)C13—C14—C15—C100.0 (5)
C4—C3—C8—C71.3 (5)C11—C10—C15—C140.1 (5)
C2—C3—C8—C7178.6 (3)C9—C10—C15—C14178.4 (3)
C6—N2—C9—C10179.5 (3)C12—O3—C16—C17172.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.072.817 (4)152
O2—H2···N20.821.842.567 (3)147
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H18N2O3
Mr298.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0556 (7), 7.4852 (9), 14.7821 (16)
α, β, γ (°)96.890 (1), 98.762 (1), 102.105 (2)
V3)745.03 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.21 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3664, 2561, 1376
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.168, 1.02
No. of reflections2561
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.27

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.072.817 (4)151.9
O2—H2···N20.821.842.567 (3)147.1
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province, which is gratefully acknowledged. The authors are also thankful to Professor Da-Qi Wang of Liaocheng University for the data collection and structure solution.

References

First citationAkine, S., Taniguchi, T. & Nabeshima, T. (2002). Angew. Chem. Int. Ed. 41, 4670–4673.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Li, L., Li, C.-F., Xu, L. & Duan, J.-G. (2008). Spectrochim. Acta Part A, 71, 650–654.  CrossRef Google Scholar
First citationDong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009). Inorg. Chim. Acta, 362, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationNarasaka, K. & Kitamura, M. (2005). Eur. J. Org. Chem. pp. 4505–4519.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, H.-L., Yun, R.-R., Wang, K.-T., Li, K., Huang, X.-C. & Sun, T. (2010). Z. Anorg. Allg. Chem. 636, 629–633.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds