organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,5-Dimeth­­oxy­phen­yl)-2-(4-fluoro­phen­yl)-4,5-di­methyl-1H-imidazole

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 20 December 2011; accepted 21 December 2011; online 7 January 2012)

In the title compound, C19H19FN2O2, the imidazole ring is essentially planar [maximum deviation = 0.0030 (8) Å] and makes dihedral angles of 66.45 (7) and 29.98 (7)° with the benzene rings attached to the ring N and C atoms, respectively. The dihedral angle between the two benzene rings is 64.79 (7)°. A C—H⋯π inter­action is found in the crystal structure. The two meth­oxy groups were found to be disordered over two sets of sites with occupancy factors of 0.803 (4) and 0.197 (4). The F atom is disordered over two sites with occupancy factors of 0.929 (4) and 0.071 (4).

Related literature

For general background to the use of imidazole derivatives as drugs, see: Dooley et al. (1992[Dooley, S. W., Jarvis, W. R., Marione, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257-259.]); Jackson et al. (2000[Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159-162.]); Banfi et al. (2006[Banfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76-84.]). For a related structure and applications of imidazole derivatives, see: Rosepriya et al. (2011[Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J., Srinivasan, N., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o1065.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19FN2O2

  • Mr = 326.36

  • Monoclinic, P 21 /n

  • a = 6.9654 (1) Å

  • b = 17.8520 (3) Å

  • c = 13.7121 (3) Å

  • β = 97.833 (2)°

  • V = 1689.14 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 295 K

  • 0.47 × 0.38 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.558, Tmax = 1.000

  • 7744 measured reflections

  • 3533 independent reflections

  • 2723 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.06

  • 3533 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2/N3/C4/C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯Cg1i 0.93 2.99 3.8714 (16) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For multidrug-resistant Tuberculosis (Dooley et al.,(1992)), antifungal and antimycobacterial activity (Banfi et al. 2006), and bactericidal effects (Jackson et al. 2000), the use of imidazole based compounds were reported. Rosepriya et al. 2011 have reported the crystal structure of 1-(3,5-Dimethylphenyl)-2-(4-fluorophenyl)-4,5-dimethyl-1H-imidazole. As part of our research (Rosepriya et al. 2011), we have synthesized the title compound (I) and report its crystal structure here.

In the title compound, Fig. 1, C19H19FN2O2, the imidazole ring is essentially planar [maximum deviation of 0.0030 (8) Å for C4]. The imidazole ring makes dihedral angles of 66.45 (7) and 29.98 (7)° with the benzene rings attached to nitrogen and carbon, respectively. The dihedral angle between the two benzene rings is 64.79 (7)°. A C23—H23···π interaction involving the imidazole (N1,C2,N3,C4,C5) ring is found in the crystal structure (Table 1). The two methoxy groups at C13 and C15 were found to be disordered over two positions with occupancy factors of 0.803 (4) and 0.197 (4). The F atom at C24 is disordered over two positions with occupancy factors of 0.929 (4) and 0.071 (4).

Related literature top

For general background to the use of imidazole derivatives as drugs, see: Dooley et al. (1992); Jackson et al. (2000); Banfi et al. (2006). For a related structure and applications of imidazole derivatives, see: Rosepriya et al. (2011).

Experimental top

To pure butane-2,3-dione (1.48 g, 15 mmol) in ethanol (10 ml), 3,5-dimethoxyaniline (2.29 g, 15 mmol), ammonium acetate (1.15 g, 15 mmol) and 4-fluorobenzaldehyde (1.8 g, 15 mmol) was added over 1 hr with the temperature maintained at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid separated was purified by column chromatography using Hexane: Ethyl acetate as the eluent. Yield: 2.20 g (45%). Crystals suitable for X-ray diffraction studies were grown by slow solvent evaporation of a solution of the compound in dichloromethane.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.96 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms. The two methoxy groups were found to be disordered over two positions with occupancy factors of 0.803 (4) and 0.197 (4). The F atom is disordered over two positions with occupancy factors of 0.929 (4) and 0.071 (4).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. The minor component of methoxy and F atoms are omitted for clarity.
1-(3,5-Dimethoxyphenyl)-2-(4-fluorophenyl)-4,5-dimethyl-1H-imidazole top
Crystal data top
C19H19FN2O2F(000) = 688
Mr = 326.36Dx = 1.283 Mg m3
Monoclinic, P21/nMelting point: 420 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 6.9654 (1) ÅCell parameters from 3957 reflections
b = 17.8520 (3) Åθ = 5.0–77.4°
c = 13.7121 (3) ŵ = 0.75 mm1
β = 97.833 (2)°T = 295 K
V = 1689.14 (5) Å3Plate, colourless
Z = 40.47 × 0.38 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3533 independent reflections
Radiation source: Enhance (Mo) X-ray Source2723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 77.6°, θmin = 5.0°
ω scansh = 48
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2010)
k = 2221
Tmin = 0.558, Tmax = 1.000l = 1717
7744 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.0185P]
where P = (Fo2 + 2Fc2)/3
3533 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H19FN2O2V = 1689.14 (5) Å3
Mr = 326.36Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.9654 (1) ŵ = 0.75 mm1
b = 17.8520 (3) ÅT = 295 K
c = 13.7121 (3) Å0.47 × 0.38 × 0.16 mm
β = 97.833 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3533 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2010)
2723 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 1.000Rint = 0.024
7744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
3533 reflectionsΔρmin = 0.18 e Å3
240 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

A damping factor (DAMP 200 15 in the final refinement cycles) was applied to avoid large displacements of the less occupied methoxy and fluorine atoms with EADP F4A F4B, EADP O13A O13B, EADP O15A O15B, EADP C17A C17B, EADP C18A C18B.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F4A0.29421 (17)0.18280 (10)0.14002 (10)0.0827 (4)0.929 (4)
O13A0.7091 (3)0.45839 (10)0.22912 (15)0.0748 (6)0.803 (4)
O15A0.2065 (3)0.45966 (11)0.43181 (19)0.0728 (6)0.803 (4)
N10.55071 (14)0.23172 (5)0.40039 (8)0.0452 (3)
N30.48548 (15)0.11225 (6)0.42587 (9)0.0513 (3)
C20.42077 (16)0.17418 (6)0.38065 (9)0.0446 (3)
C40.66338 (17)0.12988 (7)0.47766 (10)0.0513 (3)
C50.70736 (16)0.20299 (7)0.46281 (10)0.0493 (3)
C110.52171 (16)0.30968 (6)0.37642 (9)0.0459 (3)
C120.64059 (19)0.34342 (7)0.31551 (11)0.0533 (4)
C130.6101 (2)0.41860 (8)0.29299 (12)0.0600 (4)
C140.4653 (2)0.45903 (7)0.33020 (13)0.0643 (5)
C150.3491 (2)0.42387 (7)0.38983 (11)0.0564 (4)
C160.37798 (17)0.34825 (7)0.41430 (10)0.0502 (4)
C17A0.8558 (4)0.4227 (2)0.1871 (3)0.0874 (9)0.803 (4)
C18A0.1764 (5)0.53712 (15)0.4144 (3)0.0865 (12)0.803 (4)
C210.23453 (16)0.17930 (6)0.31576 (9)0.0446 (3)
C220.2032 (2)0.22706 (8)0.23517 (10)0.0562 (4)
C230.0262 (2)0.22827 (9)0.17545 (11)0.0642 (4)
C240.11786 (19)0.18160 (8)0.19783 (11)0.0571 (4)
C250.09381 (19)0.13336 (7)0.27609 (11)0.0551 (4)
C260.08443 (18)0.13216 (7)0.33465 (10)0.0500 (3)
C410.7816 (2)0.07173 (10)0.53699 (14)0.0737 (5)
C510.8802 (2)0.24892 (9)0.50026 (13)0.0651 (5)
C17B0.898 (2)0.4240 (10)0.2150 (14)0.0874 (9)0.197 (4)
C18B0.135 (2)0.5285 (8)0.3807 (13)0.0865 (12)0.197 (4)
O13B0.7483 (14)0.4621 (5)0.2658 (7)0.0748 (6)0.197 (4)
O15B0.1779 (16)0.4481 (5)0.4134 (10)0.0728 (6)0.197 (4)
F4B0.253 (3)0.2120 (13)0.1380 (16)0.0827 (4)0.071 (4)
H160.301330.324520.455450.0602*
H17A0.949890.402790.238190.1309*0.803 (4)
H120.737400.316460.290690.0639*
H140.447180.509510.314890.0771*
H220.302290.258560.221190.0675*
H230.005480.260060.121310.0770*
H250.194190.102320.289520.0662*
H260.104440.099260.387650.0600*
H41A0.867310.048170.497090.1106*
H41B0.697190.034750.559040.1106*
H41C0.856250.094930.592930.1106*
H51A0.964500.220460.547670.0976*
H51B0.839380.293490.530810.0976*
H51C0.948120.262440.446460.0976*
H17B0.917180.458000.148570.1309*0.803 (4)
H17C0.801260.382580.145540.1309*0.803 (4)
H18A0.290260.564300.441320.1298*0.803 (4)
H18B0.068030.553630.445180.1298*0.803 (4)
H18C0.150320.546000.344770.1298*0.803 (4)
H17D0.996790.403370.263250.1309*0.197 (4)
H17E0.955280.459680.175170.1309*0.197 (4)
H17F0.838560.384520.174010.1309*0.197 (4)
H18D0.250690.558100.395390.1298*0.197 (4)
H18E0.035530.548600.415040.1298*0.197 (4)
H18F0.092700.529610.311140.1298*0.197 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F4A0.0562 (6)0.1013 (10)0.0835 (6)0.0048 (5)0.0161 (5)0.0034 (7)
O13A0.0855 (9)0.0547 (6)0.0943 (13)0.0053 (6)0.0491 (9)0.0201 (8)
O15A0.0821 (9)0.0435 (8)0.1025 (12)0.0134 (6)0.0473 (8)0.0021 (7)
N10.0446 (4)0.0365 (4)0.0546 (5)0.0007 (3)0.0076 (4)0.0003 (4)
N30.0490 (5)0.0410 (5)0.0638 (6)0.0016 (4)0.0079 (4)0.0075 (4)
C20.0466 (5)0.0357 (5)0.0523 (6)0.0006 (4)0.0092 (4)0.0016 (4)
C40.0472 (5)0.0477 (6)0.0594 (7)0.0056 (5)0.0090 (5)0.0059 (5)
C50.0443 (5)0.0474 (6)0.0564 (6)0.0030 (4)0.0075 (4)0.0035 (5)
C110.0481 (5)0.0349 (5)0.0552 (6)0.0017 (4)0.0086 (4)0.0018 (4)
C120.0532 (6)0.0419 (6)0.0685 (8)0.0010 (5)0.0218 (5)0.0016 (5)
C130.0636 (7)0.0450 (6)0.0767 (9)0.0020 (5)0.0287 (6)0.0070 (6)
C140.0749 (8)0.0362 (6)0.0872 (10)0.0049 (5)0.0309 (7)0.0091 (6)
C150.0604 (7)0.0421 (6)0.0707 (8)0.0061 (5)0.0237 (6)0.0004 (5)
C160.0528 (6)0.0414 (6)0.0589 (7)0.0013 (5)0.0168 (5)0.0020 (5)
C17A0.0810 (14)0.0824 (12)0.110 (2)0.0107 (12)0.0532 (13)0.0286 (14)
C18A0.0976 (16)0.0484 (10)0.123 (3)0.0222 (10)0.0493 (15)0.0015 (12)
C210.0472 (5)0.0360 (5)0.0510 (6)0.0010 (4)0.0080 (4)0.0026 (4)
C220.0589 (7)0.0536 (7)0.0559 (7)0.0060 (5)0.0070 (5)0.0071 (6)
C230.0724 (8)0.0631 (8)0.0545 (7)0.0051 (6)0.0003 (6)0.0091 (6)
C240.0488 (6)0.0609 (8)0.0592 (7)0.0081 (5)0.0011 (5)0.0104 (6)
C250.0484 (6)0.0497 (6)0.0677 (8)0.0033 (5)0.0094 (5)0.0097 (6)
C260.0531 (6)0.0394 (5)0.0575 (7)0.0017 (5)0.0077 (5)0.0014 (5)
C410.0584 (7)0.0687 (9)0.0917 (11)0.0116 (7)0.0019 (7)0.0249 (8)
C510.0499 (6)0.0632 (8)0.0799 (10)0.0034 (6)0.0008 (6)0.0123 (7)
C17B0.0810 (14)0.0824 (12)0.110 (2)0.0107 (12)0.0532 (13)0.0286 (14)
C18B0.0976 (16)0.0484 (10)0.123 (3)0.0222 (10)0.0493 (15)0.0015 (12)
O13B0.0855 (9)0.0547 (6)0.0943 (13)0.0053 (6)0.0491 (9)0.0201 (8)
O15B0.0821 (9)0.0435 (8)0.1025 (12)0.0134 (6)0.0473 (8)0.0021 (7)
F4B0.0562 (6)0.1013 (10)0.0835 (6)0.0048 (5)0.0161 (5)0.0034 (7)
Geometric parameters (Å, º) top
F4A—C241.3683 (19)C23—C241.371 (2)
F4B—C241.28 (2)C24—C251.368 (2)
O13A—C17A1.394 (4)C25—C261.3838 (19)
O13A—C131.383 (3)C12—H120.9300
O13B—C17B1.494 (19)C14—H140.9300
O13B—C131.329 (10)C16—H160.9300
O15A—C151.372 (3)C17A—H17A0.9600
O15A—C18A1.414 (3)C17A—H17B0.9600
O15B—C151.349 (11)C17A—H17C0.9600
O15B—C18B1.521 (17)C17B—H17F0.9600
N1—C21.3714 (14)C17B—H17E0.9600
N1—C51.3898 (16)C17B—H17D0.9600
N1—C111.4379 (14)C18A—H18C0.9600
N3—C41.3780 (17)C18A—H18B0.9600
N3—C21.3167 (16)C18A—H18A0.9600
C2—C211.4725 (16)C18B—H18F0.9600
C4—C51.3623 (18)C18B—H18E0.9600
C4—C411.495 (2)C18B—H18D0.9600
C5—C511.4889 (19)C22—H220.9300
C11—C161.3740 (17)C23—H230.9300
C11—C121.3909 (18)C25—H250.9300
C12—C131.3870 (19)C26—H260.9300
C13—C141.392 (2)C41—H41B0.9600
C14—C151.378 (2)C41—H41A0.9600
C15—C161.3990 (18)C41—H41C0.9600
C21—C221.3892 (18)C51—H51C0.9600
C21—C261.3936 (17)C51—H51A0.9600
C22—C231.384 (2)C51—H51B0.9600
C13—O13A—C17A119.0 (2)C15—C14—H14120.00
C13—O13B—C17B116.3 (9)C11—C16—H16121.00
C15—O15A—C18A118.9 (2)C15—C16—H16121.00
C15—O15B—C18B112.1 (9)O13A—C17A—H17A109.00
C5—N1—C11124.89 (10)O13A—C17A—H17B110.00
C2—N1—C5106.66 (9)O13A—C17A—H17C109.00
C2—N1—C11127.70 (10)H17A—C17A—H17B110.00
C2—N3—C4106.08 (10)H17A—C17A—H17C109.00
N1—C2—C21125.18 (10)H17B—C17A—H17C109.00
N3—C2—C21123.61 (10)H17E—C17B—H17F109.00
N1—C2—N3111.20 (10)H17D—C17B—H17F109.00
C5—C4—C41128.92 (12)O13B—C17B—H17E109.00
N3—C4—C5110.28 (11)O13B—C17B—H17F110.00
N3—C4—C41120.78 (12)O13B—C17B—H17D109.00
C4—C5—C51131.59 (12)H17D—C17B—H17E109.00
N1—C5—C51122.63 (11)O15A—C18A—H18C109.00
N1—C5—C4105.78 (10)H18A—C18A—H18B109.00
N1—C11—C16119.05 (10)O15A—C18A—H18B109.00
C12—C11—C16122.28 (11)O15A—C18A—H18A109.00
N1—C11—C12118.67 (10)H18A—C18A—H18C109.00
C11—C12—C13117.85 (12)H18B—C18A—H18C109.00
O13A—C13—C14114.49 (14)O15B—C18B—H18D109.00
O13A—C13—C12124.31 (14)H18E—C18B—H18F110.00
O13B—C13—C14112.9 (4)H18D—C18B—H18F109.00
C12—C13—C14121.10 (13)O15B—C18B—H18E110.00
O13B—C13—C12122.2 (4)O15B—C18B—H18F110.00
C13—C14—C15119.66 (12)H18D—C18B—H18E109.00
C14—C15—C16120.34 (12)C21—C22—H22120.00
O15A—C15—C14123.67 (14)C23—C22—H22120.00
O15A—C15—C16115.94 (14)C24—C23—H23121.00
O15B—C15—C16110.8 (4)C22—C23—H23121.00
O15B—C15—C14127.3 (5)C24—C25—H25121.00
C11—C16—C15118.77 (12)C26—C25—H25121.00
C2—C21—C26118.14 (11)C21—C26—H26119.00
C2—C21—C22123.28 (11)C25—C26—H26119.00
C22—C21—C26118.55 (11)C4—C41—H41B109.00
C21—C22—C23120.72 (13)C4—C41—H41C109.00
C22—C23—C24118.57 (14)H41A—C41—H41B109.00
C23—C24—C25122.89 (13)C4—C41—H41A109.00
F4B—C24—C2395.5 (10)H41A—C41—H41C109.00
F4B—C24—C25140.3 (10)H41B—C41—H41C109.00
F4A—C24—C25117.94 (13)H51B—C51—H51C109.00
F4A—C24—C23119.18 (14)H51A—C51—H51B109.00
C24—C25—C26117.98 (12)H51A—C51—H51C109.00
C21—C26—C25121.28 (12)C5—C51—H51A109.00
C11—C12—H12121.00C5—C51—H51B109.00
C13—C12—H12121.00C5—C51—H51C109.00
C13—C14—H14120.00
C17A—O13A—C13—C14179.4 (2)C41—C4—C5—N1178.65 (14)
C17A—O13A—C13—C123.0 (3)N3—C4—C5—C51179.23 (14)
C18A—O15A—C15—C140.6 (3)C41—C4—C5—C511.1 (3)
C18A—O15A—C15—C16176.7 (2)C16—C11—C12—C130.2 (2)
C2—N1—C5—C40.21 (14)N1—C11—C16—C15179.31 (12)
C11—N1—C2—N3170.50 (11)C12—C11—C16—C150.7 (2)
C11—N1—C2—C2110.84 (19)N1—C11—C12—C13179.83 (12)
C11—N1—C5—C519.77 (19)C11—C12—C13—C140.1 (2)
C5—N1—C2—C21178.82 (11)C11—C12—C13—O13A176.12 (16)
C2—N1—C11—C1660.35 (17)O13A—C13—C14—C15176.05 (16)
C5—N1—C11—C1271.66 (16)C12—C13—C14—C150.5 (2)
C5—N1—C11—C16108.35 (14)C13—C14—C15—C161.0 (2)
C2—N1—C11—C12119.64 (14)C13—C14—C15—O15A178.23 (18)
C5—N1—C2—N30.15 (14)O15A—C15—C16—C11178.53 (15)
C2—N1—C5—C51179.54 (12)C14—C15—C16—C111.1 (2)
C11—N1—C5—C4170.48 (11)C2—C21—C22—C23178.55 (12)
C4—N3—C2—N10.45 (14)C26—C21—C22—C230.6 (2)
C2—N3—C4—C41178.92 (13)C2—C21—C26—C25179.31 (12)
C2—N3—C4—C50.59 (15)C22—C21—C26—C251.22 (19)
C4—N3—C2—C21179.14 (11)C21—C22—C23—C240.3 (2)
N1—C2—C21—C26151.86 (12)C22—C23—C24—F4A179.31 (14)
N3—C2—C21—C22148.36 (13)C22—C23—C24—C250.6 (2)
N3—C2—C21—C2629.64 (18)F4A—C24—C25—C26179.94 (14)
N1—C2—C21—C2230.15 (19)C23—C24—C25—C260.0 (2)
N3—C4—C5—N10.50 (15)C24—C25—C26—C210.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C2/N3/C4/C5 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···Cg1i0.932.993.8714 (16)159
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H19FN2O2
Mr326.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)6.9654 (1), 17.8520 (3), 13.7121 (3)
β (°) 97.833 (2)
V3)1689.14 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.47 × 0.38 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO (Oxford Diffraction, 2010)
Tmin, Tmax0.558, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7744, 3533, 2723
Rint0.024
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.06
No. of reflections3533
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C2/N3/C4/C5 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···Cg1i0.932.993.8714 (16)159
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

JJ is thankful to the Department of Science and Technology [No. SR/S1/IC-07/2007] and the University Grants Commission [F. No. 36–21/2008 (SR)] for providing funding for this research work. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationBanfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDooley, S. W., Jarvis, W. R., Marione, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257–259.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRosepriya, S., Thiruvalluvar, A., Jayabharathi, J., Srinivasan, N., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o1065.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds