metal-organic compounds
Bis{μ-2-[(dimethylamino)methyl]benzeneselenolato}bis[chloridopalladium(II)] dichloromethane hemisolvate
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The 2(C9H12NSe)2Cl2]·0.5CH2Cl2, contains two half-molecules, each lying on a twofold axis; each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged cis arrangement about the Pd2+ coordination spheres. For this hinged dimeric structure, the angles between the two coordination planes in each molecule are 15.02 (5) and 14.91 (5)°. This hinged cis arragement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Se atoms [3.4307 (9) and 3.4317 (9) Å] of adjoining molecules, leading to an overall tetrameric structure. During the stages, it was noticed that there were dichloromethane solvent molecules present disordered about a twofold axis. After unsuccessful attempts were made to model this, they were removed using SQUEEZE.
of the title compound, [PdRelated literature
For applications of organoselenide and organotelluride ligands in materials science, see: Morley et al. (2006); Ford et al. (2004). For structures of dimeric Se-bridged Pd derivatives, see: Nakata et al. (2009); Chakraborty et al. (2011); Oilunkaniemi et al. (1999, 2001); Brown & Corrigan (2004); Dey et al. (2006) and for structures of dimeric Te-bridged Pd derivatives, see: Oilunkaniemi et al. (2000); Kaur et al. (2009); Dey et al. (2006). For the use of the SQUEEZE routine in PLATON, see: Spek (2009).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811055322/hg5157sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055322/hg5157Isup2.hkl
The ligand and complex were prepared using previously reported methods (Chakraborty et al., 2011). Crystallization of the selenolate was done at ambient temperature from dichloromethane/hexane (2:1).
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 - 0.97 Å [Uiso(H) = 1.2Ueq(CH, CH2) [Uiso(H) = 1.5Ueq(CH3)]. During the
stages it was noticed that there were disordered solvent molecules present. The solvent molecule is CH2Cl2 and it is disordered about a 2-fold axis. After unsuccessful attempts were made to model this, it was removed using the SQUEEZE routine from PLATON (Spek, 2009).Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2 | F(000) = 1444 |
Mr = 752.47 | Dx = 1.966 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 16933 reflections |
a = 14.2119 (1) Å | θ = 4.7–77.4° |
b = 14.7895 (1) Å | µ = 4.60 mm−1 |
c = 12.0968 (1) Å | T = 293 K |
V = 2542.59 (3) Å3 | Prism, orange |
Z = 4 | 0.35 × 0.24 × 0.12 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 5323 independent reflections |
Radiation source: fine-focus sealed tube | 4971 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 26.8°, θmin = 2.6° |
ω scans | h = −17→17 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −18→18 |
Tmin = 0.655, Tmax = 1.000 | l = −15→14 |
22757 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.051 | w = 1/[σ2(Fo2) + (0.0803P)2 + 6.8337P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.131 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 1.29 e Å−3 |
5323 reflections | Δρmin = −1.45 e Å−3 |
240 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0067 (8) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2261 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.015 (13) |
[Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2 | V = 2542.59 (3) Å3 |
Mr = 752.47 | Z = 4 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 14.2119 (1) Å | µ = 4.60 mm−1 |
b = 14.7895 (1) Å | T = 293 K |
c = 12.0968 (1) Å | 0.35 × 0.24 × 0.12 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 5323 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 4971 reflections with I > 2σ(I) |
Tmin = 0.655, Tmax = 1.000 | Rint = 0.073 |
22757 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.131 | Δρmax = 1.29 e Å−3 |
S = 1.06 | Δρmin = −1.45 e Å−3 |
5323 reflections | Absolute structure: Flack (1983), 2261 Friedel pairs |
240 parameters | Absolute structure parameter: 0.015 (13) |
0 restraints |
Experimental. The structure of the Te analog was also determined, but at low temperature. This compound is isostructural and isomorphous with the Se compound but in this case the solvent was ordered. An Acta E submission for this structure has been made and it is currently under review (jj2116). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.53556 (3) | 0.38325 (3) | 1.09852 (5) | 0.03277 (16) | |
Pd2 | 0.37837 (4) | 0.46542 (3) | 0.40196 (5) | 0.03435 (17) | |
Se1A | 0.60568 (5) | 0.52886 (5) | 1.11898 (6) | 0.0382 (2) | |
Se1B | 0.53041 (5) | 0.39888 (5) | 0.38141 (6) | 0.0396 (2) | |
Cl1A | 0.44999 (17) | 0.24995 (14) | 1.0741 (3) | 0.0633 (7) | |
Cl1B | 0.23941 (16) | 0.54777 (17) | 0.4277 (3) | 0.0681 (7) | |
N1A | 0.6735 (4) | 0.3189 (4) | 1.0840 (6) | 0.0423 (15) | |
N1B | 0.3119 (5) | 0.3330 (4) | 0.4160 (6) | 0.0450 (15) | |
C1A | 0.6601 (5) | 0.5140 (5) | 0.9762 (7) | 0.0373 (15) | |
C2A | 0.6352 (6) | 0.5673 (6) | 0.8858 (7) | 0.0481 (18) | |
H2AA | 0.5904 | 0.6126 | 0.8934 | 0.058* | |
C3A | 0.6788 (7) | 0.5518 (7) | 0.7820 (8) | 0.056 (2) | |
H3AA | 0.6617 | 0.5858 | 0.7205 | 0.067* | |
C4A | 0.7474 (8) | 0.4854 (7) | 0.7735 (8) | 0.062 (3) | |
H4AA | 0.7769 | 0.4760 | 0.7058 | 0.074* | |
C5A | 0.7725 (7) | 0.4333 (7) | 0.8620 (9) | 0.058 (2) | |
H5AA | 0.8198 | 0.3903 | 0.8540 | 0.070* | |
C6A | 0.7280 (6) | 0.4437 (6) | 0.9648 (7) | 0.0446 (18) | |
C7A | 0.7490 (5) | 0.3843 (6) | 1.0628 (7) | 0.0443 (17) | |
H7AA | 0.8073 | 0.3520 | 1.0496 | 0.053* | |
H7AB | 0.7576 | 0.4219 | 1.1277 | 0.053* | |
C8A | 0.6919 (8) | 0.2716 (7) | 1.1902 (9) | 0.064 (3) | |
H8AA | 0.7536 | 0.2452 | 1.1884 | 0.096* | |
H8AB | 0.6458 | 0.2249 | 1.2007 | 0.096* | |
H8AC | 0.6882 | 0.3141 | 1.2500 | 0.096* | |
C9A | 0.6742 (7) | 0.2505 (7) | 0.9954 (9) | 0.060 (2) | |
H9AA | 0.7369 | 0.2278 | 0.9859 | 0.090* | |
H9AB | 0.6531 | 0.2775 | 0.9276 | 0.090* | |
H9AC | 0.6329 | 0.2016 | 1.0149 | 0.090* | |
C1B | 0.5136 (6) | 0.3459 (5) | 0.5257 (7) | 0.0397 (16) | |
C2B | 0.5680 (6) | 0.3721 (6) | 0.6158 (7) | 0.0479 (18) | |
H2BA | 0.6138 | 0.4166 | 0.6083 | 0.057* | |
C3B | 0.5523 (7) | 0.3301 (7) | 0.7180 (8) | 0.058 (2) | |
H3BA | 0.5878 | 0.3469 | 0.7792 | 0.070* | |
C4B | 0.4861 (8) | 0.2656 (7) | 0.7282 (9) | 0.065 (3) | |
H4BA | 0.4768 | 0.2382 | 0.7965 | 0.078* | |
C5B | 0.4311 (7) | 0.2390 (6) | 0.6379 (8) | 0.055 (2) | |
H5BA | 0.3868 | 0.1932 | 0.6462 | 0.066* | |
C6B | 0.4427 (7) | 0.2813 (5) | 0.5347 (8) | 0.0466 (19) | |
C7B | 0.3803 (7) | 0.2593 (5) | 0.4390 (8) | 0.0490 (19) | |
H7BA | 0.4187 | 0.2492 | 0.3738 | 0.059* | |
H7BB | 0.3463 | 0.2039 | 0.4545 | 0.059* | |
C8B | 0.2391 (7) | 0.3300 (8) | 0.5030 (9) | 0.061 (3) | |
H8BA | 0.2149 | 0.2696 | 0.5090 | 0.092* | |
H8BB | 0.1889 | 0.3706 | 0.4843 | 0.092* | |
H8BC | 0.2662 | 0.3478 | 0.5724 | 0.092* | |
C9B | 0.2642 (8) | 0.3146 (8) | 0.3089 (9) | 0.075 (3) | |
H9BA | 0.2160 | 0.2699 | 0.3197 | 0.112* | |
H9BB | 0.3093 | 0.2925 | 0.2564 | 0.112* | |
H9BC | 0.2364 | 0.3693 | 0.2815 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0294 (2) | 0.0285 (2) | 0.0404 (3) | 0.00255 (18) | −0.0012 (2) | 0.00392 (19) |
Pd2 | 0.0316 (3) | 0.0303 (3) | 0.0412 (3) | −0.00305 (18) | −0.0025 (2) | −0.0019 (2) |
Se1A | 0.0338 (3) | 0.0395 (4) | 0.0412 (4) | 0.0011 (3) | −0.0012 (3) | −0.0027 (3) |
Se1B | 0.0422 (4) | 0.0342 (4) | 0.0424 (4) | −0.0013 (3) | 0.0037 (3) | −0.0015 (3) |
Cl1A | 0.0511 (11) | 0.0351 (9) | 0.104 (2) | −0.0069 (8) | 0.0006 (12) | 0.0004 (10) |
Cl1B | 0.0410 (10) | 0.0524 (12) | 0.111 (2) | 0.0080 (9) | 0.0036 (12) | 0.0005 (13) |
N1A | 0.034 (3) | 0.037 (3) | 0.056 (4) | 0.013 (2) | 0.000 (3) | 0.003 (3) |
N1B | 0.043 (3) | 0.040 (3) | 0.052 (4) | −0.015 (3) | −0.003 (3) | −0.003 (3) |
C1A | 0.033 (3) | 0.037 (4) | 0.042 (4) | −0.001 (3) | 0.010 (3) | −0.002 (3) |
C2A | 0.056 (4) | 0.046 (4) | 0.043 (4) | 0.001 (3) | 0.008 (4) | 0.007 (3) |
C3A | 0.069 (6) | 0.051 (5) | 0.047 (5) | −0.007 (4) | 0.006 (4) | 0.004 (4) |
C4A | 0.070 (6) | 0.063 (6) | 0.052 (5) | −0.013 (5) | 0.017 (5) | −0.006 (4) |
C5A | 0.047 (4) | 0.052 (5) | 0.075 (6) | 0.000 (4) | 0.017 (4) | −0.002 (4) |
C6A | 0.034 (4) | 0.046 (4) | 0.055 (5) | 0.002 (3) | 0.000 (3) | −0.003 (3) |
C7A | 0.028 (3) | 0.051 (4) | 0.053 (4) | 0.010 (3) | −0.003 (3) | 0.001 (4) |
C8A | 0.065 (6) | 0.063 (6) | 0.064 (6) | 0.030 (5) | −0.005 (5) | 0.012 (5) |
C9A | 0.057 (6) | 0.051 (5) | 0.071 (7) | 0.020 (4) | 0.009 (5) | −0.008 (4) |
C1B | 0.043 (4) | 0.031 (3) | 0.046 (4) | 0.002 (3) | 0.004 (3) | 0.006 (3) |
C2B | 0.042 (4) | 0.055 (4) | 0.047 (5) | 0.000 (3) | −0.006 (3) | 0.006 (4) |
C3B | 0.055 (5) | 0.070 (6) | 0.049 (5) | 0.011 (5) | −0.008 (4) | 0.005 (4) |
C4B | 0.073 (7) | 0.057 (5) | 0.065 (6) | 0.012 (5) | 0.011 (5) | 0.019 (5) |
C5B | 0.058 (5) | 0.049 (4) | 0.059 (5) | 0.006 (4) | 0.003 (4) | 0.017 (4) |
C6B | 0.051 (5) | 0.030 (3) | 0.058 (5) | −0.001 (3) | 0.009 (4) | −0.001 (3) |
C7B | 0.061 (5) | 0.029 (3) | 0.057 (5) | −0.009 (3) | 0.006 (4) | −0.003 (3) |
C8B | 0.055 (5) | 0.065 (6) | 0.063 (6) | −0.022 (5) | 0.011 (5) | 0.001 (5) |
C9B | 0.077 (7) | 0.086 (8) | 0.062 (6) | −0.051 (6) | −0.008 (5) | −0.013 (6) |
Pd1—N1A | 2.186 (6) | C5A—H5AA | 0.9300 |
Pd1—Cl1A | 2.335 (2) | C6A—C7A | 1.505 (12) |
Pd1—Se1A | 2.3858 (9) | C7A—H7AA | 0.9700 |
Pd1—Se1Ai | 2.4043 (8) | C7A—H7AB | 0.9700 |
Pd1—Se1Bii | 3.4307 (9) | C8A—H8AA | 0.9600 |
Pd2—N1B | 2.180 (6) | C8A—H8AB | 0.9600 |
Pd2—Cl1B | 2.341 (2) | C8A—H8AC | 0.9600 |
Pd2—Se1B | 2.3872 (9) | C9A—H9AA | 0.9600 |
Pd2—Se1Bi | 2.4021 (8) | C9A—H9AB | 0.9600 |
Pd2—Se1Aiii | 3.4317 (9) | C9A—H9AC | 0.9600 |
Se1A—C1A | 1.905 (8) | C1B—C2B | 1.391 (12) |
Se1A—Pd1i | 2.4043 (8) | C1B—C6B | 1.393 (12) |
Se1B—C1B | 1.928 (8) | C2B—C3B | 1.402 (13) |
Se1B—Pd2i | 2.4021 (8) | C2B—H2BA | 0.9300 |
N1A—C7A | 1.468 (11) | C3B—C4B | 1.345 (15) |
N1A—C9A | 1.474 (12) | C3B—H3BA | 0.9300 |
N1A—C8A | 1.486 (12) | C4B—C5B | 1.400 (15) |
N1B—C8B | 1.477 (12) | C4B—H4BA | 0.9300 |
N1B—C7B | 1.487 (12) | C5B—C6B | 1.406 (12) |
N1B—C9B | 1.488 (12) | C5B—H5BA | 0.9300 |
C1A—C2A | 1.393 (11) | C6B—C7B | 1.493 (13) |
C1A—C6A | 1.425 (11) | C7B—H7BA | 0.9700 |
C2A—C3A | 1.419 (12) | C7B—H7BB | 0.9700 |
C2A—H2AA | 0.9300 | C8B—H8BA | 0.9600 |
C3A—C4A | 1.388 (15) | C8B—H8BB | 0.9600 |
C3A—H3AA | 0.9300 | C8B—H8BC | 0.9600 |
C4A—C5A | 1.367 (15) | C9B—H9BA | 0.9600 |
C4A—H4AA | 0.9300 | C9B—H9BB | 0.9600 |
C5A—C6A | 1.404 (13) | C9B—H9BC | 0.9600 |
N1A—Pd1—Cl1A | 95.12 (19) | C1A—C6A—C7A | 119.0 (7) |
N1A—Pd1—Se1A | 91.53 (18) | N1A—C7A—C6A | 112.2 (6) |
Cl1A—Pd1—Se1A | 173.08 (7) | N1A—C7A—H7AA | 109.2 |
N1A—Pd1—Se1Ai | 172.88 (18) | C6A—C7A—H7AA | 109.2 |
Cl1A—Pd1—Se1Ai | 91.99 (6) | N1A—C7A—H7AB | 109.2 |
Se1A—Pd1—Se1Ai | 81.38 (3) | C6A—C7A—H7AB | 109.2 |
N1A—Pd1—Se1Bii | 97.4 (2) | H7AA—C7A—H7AB | 107.9 |
Cl1A—Pd1—Se1Bii | 99.90 (8) | N1A—C8A—H8AA | 109.5 |
Se1A—Pd1—Se1Bii | 81.06 (3) | N1A—C8A—H8AB | 109.5 |
Se1Ai—Pd1—Se1Bii | 80.97 (3) | H8AA—C8A—H8AB | 109.5 |
N1B—Pd2—Cl1B | 95.2 (2) | N1A—C8A—H8AC | 109.5 |
N1B—Pd2—Se1B | 91.72 (19) | H8AA—C8A—H8AC | 109.5 |
Cl1B—Pd2—Se1B | 172.69 (7) | H8AB—C8A—H8AC | 109.5 |
N1B—Pd2—Se1Bi | 172.78 (19) | N1A—C9A—H9AA | 109.5 |
Cl1B—Pd2—Se1Bi | 91.97 (7) | N1A—C9A—H9AB | 109.5 |
Se1B—Pd2—Se1Bi | 81.09 (3) | H9AA—C9A—H9AB | 109.5 |
N1B—Pd2—Se1Aiii | 97.4 (2) | N1A—C9A—H9AC | 109.5 |
Cl1B—Pd2—Se1Aiii | 100.11 (9) | H9AA—C9A—H9AC | 109.5 |
Se1B—Pd2—Se1Aiii | 81.17 (3) | H9AB—C9A—H9AC | 109.5 |
Se1Bi—Pd2—Se1Aiii | 80.83 (3) | C2B—C1B—C6B | 122.1 (8) |
C1A—Se1A—Pd1 | 88.4 (2) | C2B—C1B—Se1B | 121.8 (6) |
C1A—Se1A—Pd1i | 107.9 (2) | C6B—C1B—Se1B | 116.0 (6) |
Pd1—Se1A—Pd1i | 97.39 (3) | C1B—C2B—C3B | 118.7 (8) |
C1B—Se1B—Pd2 | 87.8 (2) | C1B—C2B—H2BA | 120.7 |
C1B—Se1B—Pd2i | 108.2 (2) | C3B—C2B—H2BA | 120.7 |
Pd2—Se1B—Pd2i | 97.66 (3) | C4B—C3B—C2B | 120.4 (9) |
C7A—N1A—C9A | 108.7 (7) | C4B—C3B—H3BA | 119.8 |
C7A—N1A—C8A | 109.4 (7) | C2B—C3B—H3BA | 119.8 |
C9A—N1A—C8A | 107.7 (7) | C3B—C4B—C5B | 121.2 (9) |
C7A—N1A—Pd1 | 112.5 (4) | C3B—C4B—H4BA | 119.4 |
C9A—N1A—Pd1 | 111.3 (5) | C5B—C4B—H4BA | 119.4 |
C8A—N1A—Pd1 | 107.1 (5) | C4B—C5B—C6B | 120.2 (9) |
C8B—N1B—C7B | 107.6 (7) | C4B—C5B—H5BA | 119.9 |
C8B—N1B—C9B | 107.2 (8) | C6B—C5B—H5BA | 119.9 |
C7B—N1B—C9B | 109.0 (8) | C1B—C6B—C5B | 117.3 (8) |
C8B—N1B—Pd2 | 112.8 (6) | C1B—C6B—C7B | 121.2 (8) |
C7B—N1B—Pd2 | 112.9 (5) | C5B—C6B—C7B | 121.5 (8) |
C9B—N1B—Pd2 | 107.1 (6) | N1B—C7B—C6B | 111.9 (7) |
C2A—C1A—C6A | 120.6 (7) | N1B—C7B—H7BA | 109.2 |
C2A—C1A—Se1A | 122.9 (6) | C6B—C7B—H7BA | 109.2 |
C6A—C1A—Se1A | 116.5 (6) | N1B—C7B—H7BB | 109.2 |
C1A—C2A—C3A | 119.5 (8) | C6B—C7B—H7BB | 109.2 |
C1A—C2A—H2AA | 120.2 | H7BA—C7B—H7BB | 107.9 |
C3A—C2A—H2AA | 120.2 | N1B—C8B—H8BA | 109.5 |
C4A—C3A—C2A | 119.1 (9) | N1B—C8B—H8BB | 109.5 |
C4A—C3A—H3AA | 120.5 | H8BA—C8B—H8BB | 109.5 |
C2A—C3A—H3AA | 120.5 | N1B—C8B—H8BC | 109.5 |
C5A—C4A—C3A | 121.6 (9) | H8BA—C8B—H8BC | 109.5 |
C5A—C4A—H4AA | 119.2 | H8BB—C8B—H8BC | 109.5 |
C3A—C4A—H4AA | 119.2 | N1B—C9B—H9BA | 109.5 |
C4A—C5A—C6A | 121.0 (9) | N1B—C9B—H9BB | 109.5 |
C4A—C5A—H5AA | 119.5 | H9BA—C9B—H9BB | 109.5 |
C6A—C5A—H5AA | 119.5 | N1B—C9B—H9BC | 109.5 |
C5A—C6A—C1A | 118.1 (8) | H9BA—C9B—H9BC | 109.5 |
C5A—C6A—C7A | 123.0 (8) | H9BB—C9B—H9BC | 109.5 |
N1A—Pd1—Se1A—C1A | 60.9 (3) | Pd1—Se1A—C1A—C2A | 113.8 (7) |
Cl1A—Pd1—Se1A—C1A | −103.4 (7) | Pd1i—Se1A—C1A—C2A | 16.6 (7) |
Se1Ai—Pd1—Se1A—C1A | −119.7 (2) | Pd1—Se1A—C1A—C6A | −65.4 (6) |
Se1Bii—Pd1—Se1A—C1A | 158.1 (2) | Pd1i—Se1A—C1A—C6A | −162.6 (5) |
N1A—Pd1—Se1A—Pd1i | 168.8 (2) | C6A—C1A—C2A—C3A | −0.7 (13) |
Cl1A—Pd1—Se1A—Pd1i | 4.5 (7) | Se1A—C1A—C2A—C3A | −179.9 (7) |
Se1Ai—Pd1—Se1A—Pd1i | −11.87 (5) | C1A—C2A—C3A—C4A | −1.7 (14) |
Se1Bii—Pd1—Se1A—Pd1i | −94.00 (3) | C2A—C3A—C4A—C5A | 1.3 (15) |
N1B—Pd2—Se1B—C1B | −60.7 (3) | C3A—C4A—C5A—C6A | 1.5 (16) |
Cl1B—Pd2—Se1B—C1B | 101.4 (7) | C4A—C5A—C6A—C1A | −3.9 (14) |
Se1Bi—Pd2—Se1B—C1B | 120.0 (2) | C4A—C5A—C6A—C7A | 176.2 (9) |
Se1Aiii—Pd2—Se1B—C1B | −157.9 (2) | C2A—C1A—C6A—C5A | 3.4 (12) |
N1B—Pd2—Se1B—Pd2i | −168.8 (2) | Se1A—C1A—C6A—C5A | −177.4 (7) |
Cl1B—Pd2—Se1B—Pd2i | −6.7 (7) | C2A—C1A—C6A—C7A | −176.6 (7) |
Se1Bi—Pd2—Se1B—Pd2i | 11.94 (5) | Se1A—C1A—C6A—C7A | 2.6 (10) |
Se1Aiii—Pd2—Se1B—Pd2i | 93.95 (3) | C9A—N1A—C7A—C6A | 70.6 (9) |
Cl1A—Pd1—N1A—C7A | 163.2 (5) | C8A—N1A—C7A—C6A | −172.0 (7) |
Se1A—Pd1—N1A—C7A | −14.9 (6) | Pd1—N1A—C7A—C6A | −53.1 (8) |
Se1Ai—Pd1—N1A—C7A | −20 (2) | C5A—C6A—C7A—N1A | −105.4 (9) |
Se1Bii—Pd1—N1A—C7A | −96.1 (5) | C1A—C6A—C7A—N1A | 74.7 (10) |
Cl1A—Pd1—N1A—C9A | 41.0 (6) | Pd2—Se1B—C1B—C2B | −112.6 (7) |
Se1A—Pd1—N1A—C9A | −137.1 (6) | Pd2i—Se1B—C1B—C2B | −15.2 (7) |
Se1Ai—Pd1—N1A—C9A | −142.1 (15) | Pd2—Se1B—C1B—C6B | 66.1 (6) |
Se1Bii—Pd1—N1A—C9A | 141.7 (6) | Pd2i—Se1B—C1B—C6B | 163.5 (6) |
Cl1A—Pd1—N1A—C8A | −76.5 (6) | C6B—C1B—C2B—C3B | 1.8 (13) |
Se1A—Pd1—N1A—C8A | 105.4 (6) | Se1B—C1B—C2B—C3B | −179.5 (6) |
Se1Ai—Pd1—N1A—C8A | 100.4 (16) | C1B—C2B—C3B—C4B | 0.2 (14) |
Se1Bii—Pd1—N1A—C8A | 24.2 (6) | C2B—C3B—C4B—C5B | −0.3 (15) |
Cl1B—Pd2—N1B—C8B | −39.8 (7) | C3B—C4B—C5B—C6B | −1.6 (15) |
Se1B—Pd2—N1B—C8B | 137.9 (6) | C2B—C1B—C6B—C5B | −3.6 (12) |
Se1Bi—Pd2—N1B—C8B | 144.0 (14) | Se1B—C1B—C6B—C5B | 177.7 (6) |
Se1Aiii—Pd2—N1B—C8B | −140.7 (6) | C2B—C1B—C6B—C7B | 175.2 (8) |
Cl1B—Pd2—N1B—C7B | −162.1 (5) | Se1B—C1B—C6B—C7B | −3.5 (11) |
Se1B—Pd2—N1B—C7B | 15.6 (6) | C4B—C5B—C6B—C1B | 3.4 (13) |
Se1Bi—Pd2—N1B—C7B | 22 (2) | C4B—C5B—C6B—C7B | −175.4 (9) |
Se1Aiii—Pd2—N1B—C7B | 97.0 (6) | C8B—N1B—C7B—C6B | −74.1 (9) |
Cl1B—Pd2—N1B—C9B | 77.9 (7) | C9B—N1B—C7B—C6B | 170.0 (7) |
Se1B—Pd2—N1B—C9B | −104.4 (7) | Pd2—N1B—C7B—C6B | 51.1 (8) |
Se1Bi—Pd2—N1B—C9B | −98.3 (17) | C1B—C6B—C7B—N1B | −72.6 (10) |
Se1Aiii—Pd2—N1B—C9B | −23.1 (7) | C5B—C6B—C7B—N1B | 106.2 (9) |
Symmetry codes: (i) −x+1, −y+1, z; (ii) x, y, z+1; (iii) −x+1, −y+1, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5A—H5AA···Cl1Aiv | 0.93 | 2.91 | 3.782 (10) | 156 |
C7A—H7AA···Cl1Aiv | 0.97 | 2.94 | 3.853 (8) | 158 |
C9A—H9AC···Cl1A | 0.96 | 2.79 | 3.325 (10) | 116 |
C5B—H5BA···Cl1Bv | 0.93 | 2.94 | 3.808 (11) | 156 |
C8B—H8BB···Cl1B | 0.96 | 2.80 | 3.347 (11) | 117 |
Symmetry codes: (iv) x+1/2, −y+1/2, −z+2; (v) −x+1/2, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2 |
Mr | 752.47 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 293 |
a, b, c (Å) | 14.2119 (1), 14.7895 (1), 12.0968 (1) |
V (Å3) | 2542.59 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.60 |
Crystal size (mm) | 0.35 × 0.24 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.655, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22757, 5323, 4971 |
Rint | 0.073 |
(sin θ/λ)max (Å−1) | 0.634 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.131, 1.06 |
No. of reflections | 5323 |
No. of parameters | 240 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.29, −1.45 |
Absolute structure | Flack (1983), 2261 Friedel pairs |
Absolute structure parameter | 0.015 (13) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C5A—H5AA···Cl1Ai | 0.93 | 2.91 | 3.782 (10) | 156.2 |
C7A—H7AA···Cl1Ai | 0.97 | 2.94 | 3.853 (8) | 157.9 |
C9A—H9AC···Cl1A | 0.96 | 2.79 | 3.325 (10) | 116.1 |
C5B—H5BA···Cl1Bii | 0.93 | 2.94 | 3.808 (11) | 155.9 |
C8B—H8BB···Cl1B | 0.96 | 2.80 | 3.347 (11) | 116.9 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+2; (ii) −x+1/2, y−1/2, −z+1. |
Acknowledgements
HBS acknowledges the DST, New Delhi, for financial support. TC acknowledges the CSIR, New Delhi, for a fellowship. RJB acknowledges the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.
References
Brown, M. J. & Corrigan, J. F. (2004). J. Organomet. Chem. 689, 2872–2879. Web of Science CSD CrossRef CAS Google Scholar
Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782–2788. Web of Science CSD CrossRef CAS Google Scholar
Dey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). Inorg. Chim. Acta, 359, 1449–1457. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ford, S., Morley, C. P. & Di Viara, M. (2004). Inorg. Chem. 43, 7101–7110. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 28, 2363–2371. Web of Science CSD CrossRef CAS Google Scholar
Morley, C. P., Webster, C. A. & Di Vaira, M. (2006). J. Organomet. Chem. 691, 4244–4249. Web of Science CSD CrossRef CAS Google Scholar
Nakata, N., Uchiumi, R., Yoshino, T., Ikeda, T., Kamon, H. & Ishii, A. (2009). Organometallics, 28, 1981–1984. Web of Science CSD CrossRef CAS Google Scholar
Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (1999). J. Organomet. Chem. 587, 200–206. Web of Science CSD CrossRef CAS Google Scholar
Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2000). J. Organomet. Chem. 595, 232–240. Web of Science CSD CrossRef CAS Google Scholar
Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 623, 168–175. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of transition metal complexes with both organoselenide and organotelluride ligands is a rapidly growing area due to the ability of the resulting complexes to find applications in materials science (Morley et al., 2006; Ford et al., 2004), and investigations of oxidation additive to low valent transition metal centers. In addition to this, organotellurium compounds have been used in catalytic carbon-carbon formation. Bridged dimers of palladium mediated by Se (Nakata et al., 2009; Chakraborty et al., 2011; Oilunkaniemi et al., 1999; Oilunkaniemi et al., 2001; Brown & Corrigan, 2004; Dey et al., 2006) or Te (Oilunkaniemi et al., 2000; Kaur et al., 2009; Dey et al., 2006) have been previously reported. Such dimers involving two square planar coordination spheres can adopt either a coplanar or hinged arrangement. The arrangement of the donor ligands with respect to the bridging plane can be cis or trans. In the case of a hinged cis arrangemnt the possibility of chirality exisits. While the majority of previously determined Se/Te bridged Pd dimeric structures are both coplanar and trans, there have been a small number which exhibit either a hinged or cis arrangment of ligands about the bridging plane (Kaur et al., 2009; Oilunkaniemi et al., 2000). However, in no previous case has this resulted in a chiral structure.
The title compound, bis[chlorido-(µ(Se)-2-dimethylaminomethylbenzeneselenolate)palladium(II)], C18H24Cl2N2Pd2Se2, crystallizes in the chiral orthorhombic space group, P21212. The asymmetric unit contains 2 half molecules, each lying on a 2-fold axis and each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged cis arrangement about the Pd coordination spheres (Fig. 1). For this hinged dimeric structure the angles between the two coordination planes in each molecule are 15.02 (5) and 14.91 (5)° respectively. This hinged cis arragement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Se of an adjoining molecule (Fig. 2) leading to a tetrameric overall structure. Apart from this the Pd—Se, Pd—Cl and Pd—N bond lengths are in the normal ranges.