metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m113-m114

Bis{μ-2-[(di­methyl­amino)­meth­yl]benzene­seleno­lato}bis­­[chloridopalladium(II)] di­chloro­methane hemisolvate

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 22 December 2011; accepted 23 December 2011; online 7 January 2012)

The asymmetric unit of the title compound, [Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2, contains two half-mol­ecules, each lying on a twofold axis; each mol­ecule is chiral and of the same enanti­omer. This is only possible as the mol­ecule has a hinged cis arrangement about the Pd2+ coordination spheres. For this hinged dimeric structure, the angles between the two coordination planes in each mol­ecule are 15.02 (5) and 14.91 (5)°. This hinged cis arragement also allows the two mol­ecules to form pairs linked by secondary inter­actions between the Pd and Se atoms [3.4307 (9) and 3.4317 (9) Å] of adjoining mol­ecules, leading to an overall tetra­meric structure. During the refinement stages, it was noticed that there were dichloromethane solvent mol­ecules present disordered about a twofold axis. After unsuccessful attempts were made to model this, they were removed using SQUEEZE.

Related literature

For applications of organoselenide and organotelluride ligands in materials science, see: Morley et al. (2006[Morley, C. P., Webster, C. A. & Di Vaira, M. (2006). J. Organomet. Chem. 691, 4244-4249.]); Ford et al. (2004[Ford, S., Morley, C. P. & Di Viara, M. (2004). Inorg. Chem. 43, 7101-7110.]). For structures of dimeric Se-bridged Pd derivatives, see: Nakata et al. (2009[Nakata, N., Uchiumi, R., Yoshino, T., Ikeda, T., Kamon, H. & Ishii, A. (2009). Organometallics, 28, 1981-1984.]); Chakraborty et al. (2011[Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782-2788.]); Oilunkaniemi et al. (1999[Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (1999). J. Organomet. Chem. 587, 200-206.], 2001[Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 623, 168-175.]); Brown & Corrigan (2004[Brown, M. J. & Corrigan, J. F. (2004). J. Organomet. Chem. 689, 2872-2879.]); Dey et al. (2006[Dey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). Inorg. Chim. Acta, 359, 1449-1457.]) and for structures of dimeric Te-bridged Pd derivatives, see: Oilunkaniemi et al. (2000[Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2000). J. Organomet. Chem. 595, 232-240.]); Kaur et al. (2009[Kaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 28, 2363-2371.]); Dey et al. (2006[Dey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). Inorg. Chim. Acta, 359, 1449-1457.]). For the use of the SQUEEZE routine in PLATON, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2

  • Mr = 752.47

  • Orthorhombic, P 21 21 2

  • a = 14.2119 (1) Å

  • b = 14.7895 (1) Å

  • c = 12.0968 (1) Å

  • V = 2542.59 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 293 K

  • 0.35 × 0.24 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.655, Tmax = 1.000

  • 22757 measured reflections

  • 5323 independent reflections

  • 4971 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.131

  • S = 1.06

  • 5323 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −1.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2261 Friedel pairs

  • Flack parameter: 0.015 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5AA⋯Cl1Ai 0.93 2.91 3.782 (10) 156
C7A—H7AA⋯Cl1Ai 0.97 2.94 3.853 (8) 158
C9A—H9AC⋯Cl1A 0.96 2.79 3.325 (10) 116
C5B—H5BA⋯Cl1Bii 0.93 2.94 3.808 (11) 156
C8B—H8BB⋯Cl1B 0.96 2.80 3.347 (11) 117
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of transition metal complexes with both organoselenide and organotelluride ligands is a rapidly growing area due to the ability of the resulting complexes to find applications in materials science (Morley et al., 2006; Ford et al., 2004), and investigations of oxidation additive to low valent transition metal centers. In addition to this, organotellurium compounds have been used in catalytic carbon-carbon formation. Bridged dimers of palladium mediated by Se (Nakata et al., 2009; Chakraborty et al., 2011; Oilunkaniemi et al., 1999; Oilunkaniemi et al., 2001; Brown & Corrigan, 2004; Dey et al., 2006) or Te (Oilunkaniemi et al., 2000; Kaur et al., 2009; Dey et al., 2006) have been previously reported. Such dimers involving two square planar coordination spheres can adopt either a coplanar or hinged arrangement. The arrangement of the donor ligands with respect to the bridging plane can be cis or trans. In the case of a hinged cis arrangemnt the possibility of chirality exisits. While the majority of previously determined Se/Te bridged Pd dimeric structures are both coplanar and trans, there have been a small number which exhibit either a hinged or cis arrangment of ligands about the bridging plane (Kaur et al., 2009; Oilunkaniemi et al., 2000). However, in no previous case has this resulted in a chiral structure.

The title compound, bis[chlorido-(µ(Se)-2-dimethylaminomethylbenzeneselenolate)palladium(II)], C18H24Cl2N2Pd2Se2, crystallizes in the chiral orthorhombic space group, P21212. The asymmetric unit contains 2 half molecules, each lying on a 2-fold axis and each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged cis arrangement about the Pd coordination spheres (Fig. 1). For this hinged dimeric structure the angles between the two coordination planes in each molecule are 15.02 (5) and 14.91 (5)° respectively. This hinged cis arragement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Se of an adjoining molecule (Fig. 2) leading to a tetrameric overall structure. Apart from this the Pd—Se, Pd—Cl and Pd—N bond lengths are in the normal ranges.

Related literature top

For applications of organoselenide and organotelluride ligands in materials science, see: Morley et al. (2006); Ford et al. (2004). For Se-bridged dimeric Pd structures, see: Nakata et al. (2009); Chakraborty et al. (2011); Oilunkaniemi et al. (1999, 2001); Brown & Corrigan (2004); Dey et al. (2006) and for Te-bridged dimeric Pd structures, see: Oilunkaniemi et al. (2000); Kaur et al. (2009); Dey et al. (2006). For the use of the SQUEEZE routine in PLATON, see: Spek (2009).

Experimental top

The ligand and complex were prepared using previously reported methods (Chakraborty et al., 2011). Crystallization of the selenolate was done at ambient temperature from dichloromethane/hexane (2:1).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 - 0.97 Å [Uiso(H) = 1.2Ueq(CH, CH2) [Uiso(H) = 1.5Ueq(CH3)]. During the refinement stages it was noticed that there were disordered solvent molecules present. The solvent molecule is CH2Cl2 and it is disordered about a 2-fold axis. After unsuccessful attempts were made to model this, it was removed using the SQUEEZE routine from PLATON (Spek, 2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of one of the two molecules of the asymmetric unit showing the hinged cis arrangement of the two Pd coordination planes. The two halves of the molecule are related by 1 - x, 1 - y, z.
[Figure 2] Fig. 2. The association of two dimeric units into a tetramer via matching and complementary secondary interactions between the Pd and Se of adjoining units. These interactions are shown by dashed lines.
[Figure 3] Fig. 3. Showing the packing of the tetrameric units. Secondary interactions between Pd and Se shown by dashed lines.
Bis{µ-2-[(dimethylamino)methyl]benzeneselenolato}bis[chloridopalladium(II)] dichloromethane hemisolvate top
Crystal data top
[Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2F(000) = 1444
Mr = 752.47Dx = 1.966 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 16933 reflections
a = 14.2119 (1) Åθ = 4.7–77.4°
b = 14.7895 (1) ŵ = 4.60 mm1
c = 12.0968 (1) ÅT = 293 K
V = 2542.59 (3) Å3Prism, orange
Z = 40.35 × 0.24 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5323 independent reflections
Radiation source: fine-focus sealed tube4971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 10.5081 pixels mm-1θmax = 26.8°, θmin = 2.6°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1818
Tmin = 0.655, Tmax = 1.000l = 1514
22757 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0803P)2 + 6.8337P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.29 e Å3
5323 reflectionsΔρmin = 1.45 e Å3
240 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0067 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2261 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.015 (13)
Crystal data top
[Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2V = 2542.59 (3) Å3
Mr = 752.47Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 14.2119 (1) ŵ = 4.60 mm1
b = 14.7895 (1) ÅT = 293 K
c = 12.0968 (1) Å0.35 × 0.24 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5323 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
4971 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 1.000Rint = 0.073
22757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.131Δρmax = 1.29 e Å3
S = 1.06Δρmin = 1.45 e Å3
5323 reflectionsAbsolute structure: Flack (1983), 2261 Friedel pairs
240 parametersAbsolute structure parameter: 0.015 (13)
0 restraints
Special details top

Experimental. The structure of the Te analog was also determined, but at low temperature. This compound is isostructural and isomorphous with the Se compound but in this case the solvent was ordered. An Acta E submission for this structure has been made and it is currently under review (jj2116).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.53556 (3)0.38325 (3)1.09852 (5)0.03277 (16)
Pd20.37837 (4)0.46542 (3)0.40196 (5)0.03435 (17)
Se1A0.60568 (5)0.52886 (5)1.11898 (6)0.0382 (2)
Se1B0.53041 (5)0.39888 (5)0.38141 (6)0.0396 (2)
Cl1A0.44999 (17)0.24995 (14)1.0741 (3)0.0633 (7)
Cl1B0.23941 (16)0.54777 (17)0.4277 (3)0.0681 (7)
N1A0.6735 (4)0.3189 (4)1.0840 (6)0.0423 (15)
N1B0.3119 (5)0.3330 (4)0.4160 (6)0.0450 (15)
C1A0.6601 (5)0.5140 (5)0.9762 (7)0.0373 (15)
C2A0.6352 (6)0.5673 (6)0.8858 (7)0.0481 (18)
H2AA0.59040.61260.89340.058*
C3A0.6788 (7)0.5518 (7)0.7820 (8)0.056 (2)
H3AA0.66170.58580.72050.067*
C4A0.7474 (8)0.4854 (7)0.7735 (8)0.062 (3)
H4AA0.77690.47600.70580.074*
C5A0.7725 (7)0.4333 (7)0.8620 (9)0.058 (2)
H5AA0.81980.39030.85400.070*
C6A0.7280 (6)0.4437 (6)0.9648 (7)0.0446 (18)
C7A0.7490 (5)0.3843 (6)1.0628 (7)0.0443 (17)
H7AA0.80730.35201.04960.053*
H7AB0.75760.42191.12770.053*
C8A0.6919 (8)0.2716 (7)1.1902 (9)0.064 (3)
H8AA0.75360.24521.18840.096*
H8AB0.64580.22491.20070.096*
H8AC0.68820.31411.25000.096*
C9A0.6742 (7)0.2505 (7)0.9954 (9)0.060 (2)
H9AA0.73690.22780.98590.090*
H9AB0.65310.27750.92760.090*
H9AC0.63290.20161.01490.090*
C1B0.5136 (6)0.3459 (5)0.5257 (7)0.0397 (16)
C2B0.5680 (6)0.3721 (6)0.6158 (7)0.0479 (18)
H2BA0.61380.41660.60830.057*
C3B0.5523 (7)0.3301 (7)0.7180 (8)0.058 (2)
H3BA0.58780.34690.77920.070*
C4B0.4861 (8)0.2656 (7)0.7282 (9)0.065 (3)
H4BA0.47680.23820.79650.078*
C5B0.4311 (7)0.2390 (6)0.6379 (8)0.055 (2)
H5BA0.38680.19320.64620.066*
C6B0.4427 (7)0.2813 (5)0.5347 (8)0.0466 (19)
C7B0.3803 (7)0.2593 (5)0.4390 (8)0.0490 (19)
H7BA0.41870.24920.37380.059*
H7BB0.34630.20390.45450.059*
C8B0.2391 (7)0.3300 (8)0.5030 (9)0.061 (3)
H8BA0.21490.26960.50900.092*
H8BB0.18890.37060.48430.092*
H8BC0.26620.34780.57240.092*
C9B0.2642 (8)0.3146 (8)0.3089 (9)0.075 (3)
H9BA0.21600.26990.31970.112*
H9BB0.30930.29250.25640.112*
H9BC0.23640.36930.28150.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0294 (2)0.0285 (2)0.0404 (3)0.00255 (18)0.0012 (2)0.00392 (19)
Pd20.0316 (3)0.0303 (3)0.0412 (3)0.00305 (18)0.0025 (2)0.0019 (2)
Se1A0.0338 (3)0.0395 (4)0.0412 (4)0.0011 (3)0.0012 (3)0.0027 (3)
Se1B0.0422 (4)0.0342 (4)0.0424 (4)0.0013 (3)0.0037 (3)0.0015 (3)
Cl1A0.0511 (11)0.0351 (9)0.104 (2)0.0069 (8)0.0006 (12)0.0004 (10)
Cl1B0.0410 (10)0.0524 (12)0.111 (2)0.0080 (9)0.0036 (12)0.0005 (13)
N1A0.034 (3)0.037 (3)0.056 (4)0.013 (2)0.000 (3)0.003 (3)
N1B0.043 (3)0.040 (3)0.052 (4)0.015 (3)0.003 (3)0.003 (3)
C1A0.033 (3)0.037 (4)0.042 (4)0.001 (3)0.010 (3)0.002 (3)
C2A0.056 (4)0.046 (4)0.043 (4)0.001 (3)0.008 (4)0.007 (3)
C3A0.069 (6)0.051 (5)0.047 (5)0.007 (4)0.006 (4)0.004 (4)
C4A0.070 (6)0.063 (6)0.052 (5)0.013 (5)0.017 (5)0.006 (4)
C5A0.047 (4)0.052 (5)0.075 (6)0.000 (4)0.017 (4)0.002 (4)
C6A0.034 (4)0.046 (4)0.055 (5)0.002 (3)0.000 (3)0.003 (3)
C7A0.028 (3)0.051 (4)0.053 (4)0.010 (3)0.003 (3)0.001 (4)
C8A0.065 (6)0.063 (6)0.064 (6)0.030 (5)0.005 (5)0.012 (5)
C9A0.057 (6)0.051 (5)0.071 (7)0.020 (4)0.009 (5)0.008 (4)
C1B0.043 (4)0.031 (3)0.046 (4)0.002 (3)0.004 (3)0.006 (3)
C2B0.042 (4)0.055 (4)0.047 (5)0.000 (3)0.006 (3)0.006 (4)
C3B0.055 (5)0.070 (6)0.049 (5)0.011 (5)0.008 (4)0.005 (4)
C4B0.073 (7)0.057 (5)0.065 (6)0.012 (5)0.011 (5)0.019 (5)
C5B0.058 (5)0.049 (4)0.059 (5)0.006 (4)0.003 (4)0.017 (4)
C6B0.051 (5)0.030 (3)0.058 (5)0.001 (3)0.009 (4)0.001 (3)
C7B0.061 (5)0.029 (3)0.057 (5)0.009 (3)0.006 (4)0.003 (3)
C8B0.055 (5)0.065 (6)0.063 (6)0.022 (5)0.011 (5)0.001 (5)
C9B0.077 (7)0.086 (8)0.062 (6)0.051 (6)0.008 (5)0.013 (6)
Geometric parameters (Å, º) top
Pd1—N1A2.186 (6)C5A—H5AA0.9300
Pd1—Cl1A2.335 (2)C6A—C7A1.505 (12)
Pd1—Se1A2.3858 (9)C7A—H7AA0.9700
Pd1—Se1Ai2.4043 (8)C7A—H7AB0.9700
Pd1—Se1Bii3.4307 (9)C8A—H8AA0.9600
Pd2—N1B2.180 (6)C8A—H8AB0.9600
Pd2—Cl1B2.341 (2)C8A—H8AC0.9600
Pd2—Se1B2.3872 (9)C9A—H9AA0.9600
Pd2—Se1Bi2.4021 (8)C9A—H9AB0.9600
Pd2—Se1Aiii3.4317 (9)C9A—H9AC0.9600
Se1A—C1A1.905 (8)C1B—C2B1.391 (12)
Se1A—Pd1i2.4043 (8)C1B—C6B1.393 (12)
Se1B—C1B1.928 (8)C2B—C3B1.402 (13)
Se1B—Pd2i2.4021 (8)C2B—H2BA0.9300
N1A—C7A1.468 (11)C3B—C4B1.345 (15)
N1A—C9A1.474 (12)C3B—H3BA0.9300
N1A—C8A1.486 (12)C4B—C5B1.400 (15)
N1B—C8B1.477 (12)C4B—H4BA0.9300
N1B—C7B1.487 (12)C5B—C6B1.406 (12)
N1B—C9B1.488 (12)C5B—H5BA0.9300
C1A—C2A1.393 (11)C6B—C7B1.493 (13)
C1A—C6A1.425 (11)C7B—H7BA0.9700
C2A—C3A1.419 (12)C7B—H7BB0.9700
C2A—H2AA0.9300C8B—H8BA0.9600
C3A—C4A1.388 (15)C8B—H8BB0.9600
C3A—H3AA0.9300C8B—H8BC0.9600
C4A—C5A1.367 (15)C9B—H9BA0.9600
C4A—H4AA0.9300C9B—H9BB0.9600
C5A—C6A1.404 (13)C9B—H9BC0.9600
N1A—Pd1—Cl1A95.12 (19)C1A—C6A—C7A119.0 (7)
N1A—Pd1—Se1A91.53 (18)N1A—C7A—C6A112.2 (6)
Cl1A—Pd1—Se1A173.08 (7)N1A—C7A—H7AA109.2
N1A—Pd1—Se1Ai172.88 (18)C6A—C7A—H7AA109.2
Cl1A—Pd1—Se1Ai91.99 (6)N1A—C7A—H7AB109.2
Se1A—Pd1—Se1Ai81.38 (3)C6A—C7A—H7AB109.2
N1A—Pd1—Se1Bii97.4 (2)H7AA—C7A—H7AB107.9
Cl1A—Pd1—Se1Bii99.90 (8)N1A—C8A—H8AA109.5
Se1A—Pd1—Se1Bii81.06 (3)N1A—C8A—H8AB109.5
Se1Ai—Pd1—Se1Bii80.97 (3)H8AA—C8A—H8AB109.5
N1B—Pd2—Cl1B95.2 (2)N1A—C8A—H8AC109.5
N1B—Pd2—Se1B91.72 (19)H8AA—C8A—H8AC109.5
Cl1B—Pd2—Se1B172.69 (7)H8AB—C8A—H8AC109.5
N1B—Pd2—Se1Bi172.78 (19)N1A—C9A—H9AA109.5
Cl1B—Pd2—Se1Bi91.97 (7)N1A—C9A—H9AB109.5
Se1B—Pd2—Se1Bi81.09 (3)H9AA—C9A—H9AB109.5
N1B—Pd2—Se1Aiii97.4 (2)N1A—C9A—H9AC109.5
Cl1B—Pd2—Se1Aiii100.11 (9)H9AA—C9A—H9AC109.5
Se1B—Pd2—Se1Aiii81.17 (3)H9AB—C9A—H9AC109.5
Se1Bi—Pd2—Se1Aiii80.83 (3)C2B—C1B—C6B122.1 (8)
C1A—Se1A—Pd188.4 (2)C2B—C1B—Se1B121.8 (6)
C1A—Se1A—Pd1i107.9 (2)C6B—C1B—Se1B116.0 (6)
Pd1—Se1A—Pd1i97.39 (3)C1B—C2B—C3B118.7 (8)
C1B—Se1B—Pd287.8 (2)C1B—C2B—H2BA120.7
C1B—Se1B—Pd2i108.2 (2)C3B—C2B—H2BA120.7
Pd2—Se1B—Pd2i97.66 (3)C4B—C3B—C2B120.4 (9)
C7A—N1A—C9A108.7 (7)C4B—C3B—H3BA119.8
C7A—N1A—C8A109.4 (7)C2B—C3B—H3BA119.8
C9A—N1A—C8A107.7 (7)C3B—C4B—C5B121.2 (9)
C7A—N1A—Pd1112.5 (4)C3B—C4B—H4BA119.4
C9A—N1A—Pd1111.3 (5)C5B—C4B—H4BA119.4
C8A—N1A—Pd1107.1 (5)C4B—C5B—C6B120.2 (9)
C8B—N1B—C7B107.6 (7)C4B—C5B—H5BA119.9
C8B—N1B—C9B107.2 (8)C6B—C5B—H5BA119.9
C7B—N1B—C9B109.0 (8)C1B—C6B—C5B117.3 (8)
C8B—N1B—Pd2112.8 (6)C1B—C6B—C7B121.2 (8)
C7B—N1B—Pd2112.9 (5)C5B—C6B—C7B121.5 (8)
C9B—N1B—Pd2107.1 (6)N1B—C7B—C6B111.9 (7)
C2A—C1A—C6A120.6 (7)N1B—C7B—H7BA109.2
C2A—C1A—Se1A122.9 (6)C6B—C7B—H7BA109.2
C6A—C1A—Se1A116.5 (6)N1B—C7B—H7BB109.2
C1A—C2A—C3A119.5 (8)C6B—C7B—H7BB109.2
C1A—C2A—H2AA120.2H7BA—C7B—H7BB107.9
C3A—C2A—H2AA120.2N1B—C8B—H8BA109.5
C4A—C3A—C2A119.1 (9)N1B—C8B—H8BB109.5
C4A—C3A—H3AA120.5H8BA—C8B—H8BB109.5
C2A—C3A—H3AA120.5N1B—C8B—H8BC109.5
C5A—C4A—C3A121.6 (9)H8BA—C8B—H8BC109.5
C5A—C4A—H4AA119.2H8BB—C8B—H8BC109.5
C3A—C4A—H4AA119.2N1B—C9B—H9BA109.5
C4A—C5A—C6A121.0 (9)N1B—C9B—H9BB109.5
C4A—C5A—H5AA119.5H9BA—C9B—H9BB109.5
C6A—C5A—H5AA119.5N1B—C9B—H9BC109.5
C5A—C6A—C1A118.1 (8)H9BA—C9B—H9BC109.5
C5A—C6A—C7A123.0 (8)H9BB—C9B—H9BC109.5
N1A—Pd1—Se1A—C1A60.9 (3)Pd1—Se1A—C1A—C2A113.8 (7)
Cl1A—Pd1—Se1A—C1A103.4 (7)Pd1i—Se1A—C1A—C2A16.6 (7)
Se1Ai—Pd1—Se1A—C1A119.7 (2)Pd1—Se1A—C1A—C6A65.4 (6)
Se1Bii—Pd1—Se1A—C1A158.1 (2)Pd1i—Se1A—C1A—C6A162.6 (5)
N1A—Pd1—Se1A—Pd1i168.8 (2)C6A—C1A—C2A—C3A0.7 (13)
Cl1A—Pd1—Se1A—Pd1i4.5 (7)Se1A—C1A—C2A—C3A179.9 (7)
Se1Ai—Pd1—Se1A—Pd1i11.87 (5)C1A—C2A—C3A—C4A1.7 (14)
Se1Bii—Pd1—Se1A—Pd1i94.00 (3)C2A—C3A—C4A—C5A1.3 (15)
N1B—Pd2—Se1B—C1B60.7 (3)C3A—C4A—C5A—C6A1.5 (16)
Cl1B—Pd2—Se1B—C1B101.4 (7)C4A—C5A—C6A—C1A3.9 (14)
Se1Bi—Pd2—Se1B—C1B120.0 (2)C4A—C5A—C6A—C7A176.2 (9)
Se1Aiii—Pd2—Se1B—C1B157.9 (2)C2A—C1A—C6A—C5A3.4 (12)
N1B—Pd2—Se1B—Pd2i168.8 (2)Se1A—C1A—C6A—C5A177.4 (7)
Cl1B—Pd2—Se1B—Pd2i6.7 (7)C2A—C1A—C6A—C7A176.6 (7)
Se1Bi—Pd2—Se1B—Pd2i11.94 (5)Se1A—C1A—C6A—C7A2.6 (10)
Se1Aiii—Pd2—Se1B—Pd2i93.95 (3)C9A—N1A—C7A—C6A70.6 (9)
Cl1A—Pd1—N1A—C7A163.2 (5)C8A—N1A—C7A—C6A172.0 (7)
Se1A—Pd1—N1A—C7A14.9 (6)Pd1—N1A—C7A—C6A53.1 (8)
Se1Ai—Pd1—N1A—C7A20 (2)C5A—C6A—C7A—N1A105.4 (9)
Se1Bii—Pd1—N1A—C7A96.1 (5)C1A—C6A—C7A—N1A74.7 (10)
Cl1A—Pd1—N1A—C9A41.0 (6)Pd2—Se1B—C1B—C2B112.6 (7)
Se1A—Pd1—N1A—C9A137.1 (6)Pd2i—Se1B—C1B—C2B15.2 (7)
Se1Ai—Pd1—N1A—C9A142.1 (15)Pd2—Se1B—C1B—C6B66.1 (6)
Se1Bii—Pd1—N1A—C9A141.7 (6)Pd2i—Se1B—C1B—C6B163.5 (6)
Cl1A—Pd1—N1A—C8A76.5 (6)C6B—C1B—C2B—C3B1.8 (13)
Se1A—Pd1—N1A—C8A105.4 (6)Se1B—C1B—C2B—C3B179.5 (6)
Se1Ai—Pd1—N1A—C8A100.4 (16)C1B—C2B—C3B—C4B0.2 (14)
Se1Bii—Pd1—N1A—C8A24.2 (6)C2B—C3B—C4B—C5B0.3 (15)
Cl1B—Pd2—N1B—C8B39.8 (7)C3B—C4B—C5B—C6B1.6 (15)
Se1B—Pd2—N1B—C8B137.9 (6)C2B—C1B—C6B—C5B3.6 (12)
Se1Bi—Pd2—N1B—C8B144.0 (14)Se1B—C1B—C6B—C5B177.7 (6)
Se1Aiii—Pd2—N1B—C8B140.7 (6)C2B—C1B—C6B—C7B175.2 (8)
Cl1B—Pd2—N1B—C7B162.1 (5)Se1B—C1B—C6B—C7B3.5 (11)
Se1B—Pd2—N1B—C7B15.6 (6)C4B—C5B—C6B—C1B3.4 (13)
Se1Bi—Pd2—N1B—C7B22 (2)C4B—C5B—C6B—C7B175.4 (9)
Se1Aiii—Pd2—N1B—C7B97.0 (6)C8B—N1B—C7B—C6B74.1 (9)
Cl1B—Pd2—N1B—C9B77.9 (7)C9B—N1B—C7B—C6B170.0 (7)
Se1B—Pd2—N1B—C9B104.4 (7)Pd2—N1B—C7B—C6B51.1 (8)
Se1Bi—Pd2—N1B—C9B98.3 (17)C1B—C6B—C7B—N1B72.6 (10)
Se1Aiii—Pd2—N1B—C9B23.1 (7)C5B—C6B—C7B—N1B106.2 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···Cl1Aiv0.932.913.782 (10)156
C7A—H7AA···Cl1Aiv0.972.943.853 (8)158
C9A—H9AC···Cl1A0.962.793.325 (10)116
C5B—H5BA···Cl1Bv0.932.943.808 (11)156
C8B—H8BB···Cl1B0.962.803.347 (11)117
Symmetry codes: (iv) x+1/2, y+1/2, z+2; (v) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Pd2(C9H12NSe)2Cl2]·0.5CH2Cl2
Mr752.47
Crystal system, space groupOrthorhombic, P21212
Temperature (K)293
a, b, c (Å)14.2119 (1), 14.7895 (1), 12.0968 (1)
V3)2542.59 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.35 × 0.24 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.655, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22757, 5323, 4971
Rint0.073
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.131, 1.06
No. of reflections5323
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.45
Absolute structureFlack (1983), 2261 Friedel pairs
Absolute structure parameter0.015 (13)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···Cl1Ai0.932.913.782 (10)156.2
C7A—H7AA···Cl1Ai0.972.943.853 (8)157.9
C9A—H9AC···Cl1A0.962.793.325 (10)116.1
C5B—H5BA···Cl1Bii0.932.943.808 (11)155.9
C8B—H8BB···Cl1B0.962.803.347 (11)116.9
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y1/2, z+1.
 

Acknowledgements

HBS acknowledges the DST, New Delhi, for financial support. TC acknowledges the CSIR, New Delhi, for a fellowship. RJB acknowledges the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationBrown, M. J. & Corrigan, J. F. (2004). J. Organomet. Chem. 689, 2872–2879.  Web of Science CSD CrossRef CAS Google Scholar
First citationChakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782–2788.  Web of Science CSD CrossRef CAS Google Scholar
First citationDey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). Inorg. Chim. Acta, 359, 1449–1457.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFord, S., Morley, C. P. & Di Viara, M. (2004). Inorg. Chem. 43, 7101–7110.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 28, 2363–2371.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorley, C. P., Webster, C. A. & Di Vaira, M. (2006). J. Organomet. Chem. 691, 4244–4249.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakata, N., Uchiumi, R., Yoshino, T., Ikeda, T., Kamon, H. & Ishii, A. (2009). Organometallics, 28, 1981–1984.  Web of Science CSD CrossRef CAS Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (1999). J. Organomet. Chem. 587, 200–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2000). J. Organomet. Chem. 595, 232–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationOilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 623, 168–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m113-m114
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds