organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(2Z)-4-Oxo-4-phenyl­but-2-en-2-yl]pyridine-4-carbohydrazide

aYoung Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bDepartment of Chemistry, University of Zanjan, 45195-313 Zanjan, Iran, cDepartment of Chemistry, Faculty of Science, Yasouj University, Yasouj, Iran, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 3 January 2012; accepted 6 January 2012; online 14 January 2012)

There are significant twists in the title compound, C16H15N3O2, as seen in the dihedral angle between the benzene and adjacent but-2-enal group [29.26 (4)°] and between the pyridine ring and amide group [24.79 (6)°]. A twist is also evident around the hydrazine bond [the C—N—N—C torsion angle is −138.25 (13)°]. The conformation about the ethene bond is Z. An intra­molecular N—H⋯O hydrogen bond involving the benzoyl O atom and leading to an S(6) motif is formed. Significant delocalization of π-electron density is found in this part of the mol­ecule. In the crystal, helical supra­molecular chains aligned along the b axis and mediated by N—H⋯O hydrogen bonds are formed.

Related literature

For the structures of related carbohydrazides, see: Bikas et al. (2010[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.], 2012[Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o193.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O2

  • Mr = 281.31

  • Monoclinic, P 21 /c

  • a = 15.7640 (4) Å

  • b = 6.5194 (1) Å

  • c = 13.3093 (3) Å

  • β = 93.579 (2)°

  • V = 1365.15 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.864, Tmax = 0.963

  • 5321 measured reflections

  • 2808 independent reflections

  • 2397 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.02

  • 2808 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 (2) 1.90 (2) 2.750 (2) 163 (2)
N3—H3⋯O2 0.90 (2) 1.91 (2) 2.607 (1) 133 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction of acid hydrazides (R—C( O)–NH–NH2) with β-diketones forms a class of molecules that can function as tridentate Schiff base ligands and which can have diverse tautomeric states. As part of continuing studies on the synthesis and characterization of aroylhydrazone compounds (Bikas et al., 2010; Bikas et al., 2012), we describe herein the crystal structure of (Z)-N'-(4-oxo-4-phenylbut-2-en-2-yl)isonicotinohydrazide, (I).

The structure determination of (I), Fig. 1, shows that the molecule exists in the di-enone form and that the conformation about the ethene bond is Z. However, it is noted that the ketone CO bond length of 1.2705 (15) Å is significantly longer than the amide CO bond length of 1.2213 (16) Å. Further, the formally ethene double bond length of 1.3905 (18) Å is only marginally longer than the C(O)—C-ethene bond of 1.4097 (18) Å. These observations coupled with the shorter than expected N3—C7 bond length of 1.3369 (16) Å and the planarity of this residue (the r.m.s. = 0.0141 Å, including the N—H atom) indicates significant delocalization of π-electron density over the non-H atoms. It is noted that in this residue a six-membered ring is formed through the agency of an intramolecular N—H···O hydrogen bond, Table 1.

There are significant twists in the molecule with the benzene group twisted out of the plane through the adjacent but-2-enal group (dihedral angle = 29.26 (4)°) and the pyridyl ring twisted out of the plane through the amide group (dihedral angle = 24.79 (6)°). There is also a twist around the hydrazine bond as seen in the value of the C6—N2—N3—C7 torsion angle of -138.25 (13)°.

The most prominent feature of the crystal packing is the formation of helical supramolecular chains along [010] mediated by N—H···O hydrogen bonds, Fig. 2 and Table 1.

Related literature top

For the structures of related carbohydrazides, see: Bikas et al. (2010, 2012).

Experimental top

All reagents were commercially available and used as received. A methanol (10 ml) solution of benzoylacetone (1.5 mmol) was added drop-wise to a methanol solution (10 ml) of 4-pyridinecarboxylic acid hydrazide (1.5 mmol), and the mixture was refluxed for 3 h. Then the solution was evaporated on a steam bath to 5 ml and cooled to room temperature. Light-yellow precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Crystals of the title compound were obtained from its methanol solution by slow solvent evaporation. Yield 92%. Selected IR (cm-1): 3155 (s, broad), 1690 (versus), 1596 (s), 1520 (m), 1309 (s), 1224 (s), 931 (versus), 772 (s).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their Uiso values were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Supramolecular helical chain parallel to [010] in (I). The N—H···O hydrogen bonds are shown as orange dashed lines.
N'-[(2Z)-4-Oxo-4-phenylbut-2-en-2-yl]pyridine-4-carbohydrazide top
Crystal data top
C16H15N3O2F(000) = 592
Mr = 281.31Dx = 1.369 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2202 reflections
a = 15.7640 (4) Åθ = 2.8–76.4°
b = 6.5194 (1) ŵ = 0.76 mm1
c = 13.3093 (3) ÅT = 100 K
β = 93.579 (2)°Prism, colourless
V = 1365.15 (5) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2808 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2397 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 2.8°
ω scanh = 1419
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 84
Tmin = 0.864, Tmax = 0.963l = 1316
5321 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.4474P]
where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H15N3O2V = 1365.15 (5) Å3
Mr = 281.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.7640 (4) ŵ = 0.76 mm1
b = 6.5194 (1) ÅT = 100 K
c = 13.3093 (3) Å0.20 × 0.10 × 0.05 mm
β = 93.579 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2808 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2397 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.963Rint = 0.022
5321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
2808 reflectionsΔρmin = 0.23 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64472 (6)0.16395 (15)0.10581 (7)0.0222 (2)
O20.39259 (6)0.19577 (14)0.15136 (7)0.0192 (2)
N10.93135 (7)0.45503 (19)0.21632 (9)0.0244 (3)
N20.61169 (7)0.47152 (17)0.17399 (9)0.0182 (2)
N30.52548 (7)0.43426 (17)0.15465 (8)0.0176 (2)
C10.75840 (8)0.3754 (2)0.17323 (9)0.0170 (3)
C20.81664 (9)0.2161 (2)0.18446 (10)0.0215 (3)
H2A0.79860.07750.17730.026*
C30.90178 (9)0.2629 (2)0.20629 (11)0.0249 (3)
H3A0.94110.15290.21450.030*
C40.87448 (9)0.6070 (2)0.20366 (10)0.0225 (3)
H40.89450.74420.20950.027*
C50.78809 (8)0.5759 (2)0.18252 (10)0.0194 (3)
H50.75020.68880.17460.023*
C60.66681 (8)0.3232 (2)0.14810 (9)0.0168 (3)
C70.47294 (8)0.58056 (19)0.11764 (9)0.0170 (3)
C80.50980 (8)0.7859 (2)0.09507 (10)0.0197 (3)
H8A0.53480.84690.15740.030*
H8B0.46480.87580.06610.030*
H8C0.55390.76950.04700.030*
C90.38667 (8)0.5408 (2)0.09966 (10)0.0174 (3)
H90.35080.64920.07530.021*
C100.34988 (8)0.3474 (2)0.11585 (9)0.0166 (3)
C110.25751 (8)0.3125 (2)0.08761 (9)0.0173 (3)
C120.19729 (8)0.4687 (2)0.08987 (10)0.0204 (3)
H120.21470.60460.10660.025*
C130.11164 (9)0.4262 (2)0.06766 (11)0.0251 (3)
H130.07060.53220.07110.030*
C140.08620 (9)0.2289 (2)0.04045 (11)0.0260 (3)
H140.02770.20030.02500.031*
C150.14599 (9)0.0735 (2)0.03576 (11)0.0248 (3)
H150.12860.06100.01630.030*
C160.23130 (9)0.1148 (2)0.05958 (10)0.0209 (3)
H160.27210.00800.05680.025*
H20.6210 (11)0.549 (3)0.2275 (14)0.029 (5)*
H30.5045 (11)0.308 (3)0.1636 (13)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (5)0.0160 (5)0.0288 (5)0.0010 (4)0.0021 (4)0.0039 (4)
O20.0180 (4)0.0157 (5)0.0239 (5)0.0014 (3)0.0007 (4)0.0039 (4)
N10.0184 (6)0.0260 (6)0.0289 (6)0.0015 (5)0.0014 (5)0.0019 (5)
N20.0150 (5)0.0182 (5)0.0213 (6)0.0014 (4)0.0003 (4)0.0038 (4)
N30.0146 (5)0.0158 (5)0.0224 (5)0.0007 (4)0.0006 (4)0.0004 (4)
C10.0171 (6)0.0179 (6)0.0159 (6)0.0012 (5)0.0009 (5)0.0004 (5)
C20.0205 (6)0.0171 (6)0.0268 (7)0.0007 (5)0.0009 (5)0.0007 (5)
C30.0198 (7)0.0235 (7)0.0312 (7)0.0024 (5)0.0006 (6)0.0009 (6)
C40.0219 (7)0.0197 (7)0.0261 (7)0.0038 (5)0.0028 (5)0.0020 (5)
C50.0198 (6)0.0173 (6)0.0214 (6)0.0004 (5)0.0024 (5)0.0006 (5)
C60.0183 (6)0.0155 (6)0.0165 (6)0.0001 (5)0.0011 (5)0.0017 (5)
C70.0204 (6)0.0147 (6)0.0159 (6)0.0009 (5)0.0021 (5)0.0006 (5)
C80.0210 (6)0.0152 (6)0.0231 (6)0.0009 (5)0.0017 (5)0.0008 (5)
C90.0180 (6)0.0160 (6)0.0183 (6)0.0022 (5)0.0015 (5)0.0010 (5)
C100.0177 (6)0.0163 (6)0.0160 (6)0.0024 (5)0.0030 (5)0.0007 (5)
C110.0168 (6)0.0189 (6)0.0162 (6)0.0006 (5)0.0016 (5)0.0016 (5)
C120.0193 (6)0.0194 (6)0.0227 (6)0.0013 (5)0.0019 (5)0.0009 (5)
C130.0189 (7)0.0277 (7)0.0289 (7)0.0043 (5)0.0026 (5)0.0020 (6)
C140.0170 (6)0.0323 (8)0.0284 (7)0.0037 (5)0.0012 (5)0.0018 (6)
C150.0237 (7)0.0233 (7)0.0271 (7)0.0050 (5)0.0003 (5)0.0014 (6)
C160.0209 (7)0.0196 (7)0.0223 (6)0.0003 (5)0.0024 (5)0.0000 (5)
Geometric parameters (Å, º) top
O1—C61.2213 (16)C7—C81.4973 (17)
O2—C101.2705 (15)C8—H8A0.9800
N1—C41.3395 (18)C8—H8B0.9800
N1—C31.3401 (18)C8—H8C0.9800
N2—C61.3587 (17)C9—C101.4097 (18)
N2—N31.3887 (15)C9—H90.9500
N2—H20.878 (18)C10—C111.4984 (17)
N3—C71.3369 (16)C11—C121.3938 (18)
N3—H30.899 (18)C11—C161.3974 (19)
C1—C21.3884 (18)C12—C131.3918 (18)
C1—C51.3914 (18)C12—H120.9500
C1—C61.5006 (17)C13—C141.389 (2)
C2—C31.3894 (19)C13—H130.9500
C2—H2A0.9500C14—C151.388 (2)
C3—H3A0.9500C14—H140.9500
C4—C51.3882 (19)C15—C161.3887 (19)
C4—H40.9500C15—H150.9500
C5—H50.9500C16—H160.9500
C7—C91.3905 (18)
C4—N1—C3116.92 (12)C7—C8—H8B109.5
C6—N2—N3117.55 (11)H8A—C8—H8B109.5
C6—N2—H2122.5 (11)C7—C8—H8C109.5
N3—N2—H2111.3 (11)H8A—C8—H8C109.5
C7—N3—N2121.34 (11)H8B—C8—H8C109.5
C7—N3—H3118.6 (11)C7—C9—C10123.22 (12)
N2—N3—H3120.0 (11)C7—C9—H9118.4
C2—C1—C5118.48 (12)C10—C9—H9118.4
C2—C1—C6118.35 (12)O2—C10—C9122.62 (12)
C5—C1—C6123.13 (12)O2—C10—C11117.35 (11)
C1—C2—C3118.80 (13)C9—C10—C11120.00 (11)
C1—C2—H2A120.6C12—C11—C16119.30 (12)
C3—C2—H2A120.6C12—C11—C10122.43 (12)
N1—C3—C2123.49 (13)C16—C11—C10118.26 (12)
N1—C3—H3A118.3C13—C12—C11120.19 (13)
C2—C3—H3A118.3C13—C12—H12119.9
N1—C4—C5123.92 (13)C11—C12—H12119.9
N1—C4—H4118.0C14—C13—C12120.03 (13)
C5—C4—H4118.0C14—C13—H13120.0
C4—C5—C1118.39 (12)C12—C13—H13120.0
C4—C5—H5120.8C15—C14—C13120.13 (13)
C1—C5—H5120.8C15—C14—H14119.9
O1—C6—N2123.60 (12)C13—C14—H14119.9
O1—C6—C1122.56 (12)C16—C15—C14119.93 (13)
N2—C6—C1113.82 (11)C16—C15—H15120.0
N3—C7—C9120.46 (12)C14—C15—H15120.0
N3—C7—C8118.20 (11)C15—C16—C11120.38 (13)
C9—C7—C8121.33 (11)C15—C16—H16119.8
C7—C8—H8A109.5C11—C16—H16119.8
C6—N2—N3—C7138.25 (13)N3—C7—C9—C101.89 (19)
C5—C1—C2—C31.2 (2)C8—C7—C9—C10177.29 (12)
C6—C1—C2—C3179.09 (12)C7—C9—C10—O22.3 (2)
C4—N1—C3—C20.4 (2)C7—C9—C10—C11175.56 (11)
C1—C2—C3—N10.6 (2)O2—C10—C11—C12151.66 (13)
C3—N1—C4—C50.9 (2)C9—C10—C11—C1230.34 (18)
N1—C4—C5—C10.4 (2)O2—C10—C11—C1627.33 (17)
C2—C1—C5—C40.68 (19)C9—C10—C11—C16150.67 (12)
C6—C1—C5—C4178.49 (12)C16—C11—C12—C132.1 (2)
N3—N2—C6—O12.78 (19)C10—C11—C12—C13176.86 (12)
N3—N2—C6—C1179.11 (10)C11—C12—C13—C141.8 (2)
C2—C1—C6—O124.59 (19)C12—C13—C14—C150.3 (2)
C5—C1—C6—O1153.23 (13)C13—C14—C15—C160.8 (2)
C2—C1—C6—N2157.27 (12)C14—C15—C16—C110.5 (2)
C5—C1—C6—N224.91 (18)C12—C11—C16—C151.0 (2)
N2—N3—C7—C9179.40 (11)C10—C11—C16—C15178.01 (12)
N2—N3—C7—C81.39 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.88 (2)1.90 (2)2.750 (2)163 (2)
N3—H3···O20.90 (2)1.91 (2)2.607 (1)133 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15N3O2
Mr281.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.7640 (4), 6.5194 (1), 13.3093 (3)
β (°) 93.579 (2)
V3)1365.15 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.864, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
5321, 2808, 2397
Rint0.022
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.02
No. of reflections2808
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.88 (2)1.90 (2)2.750 (2)163 (2)
N3—H3···O20.90 (2)1.91 (2)2.607 (1)133 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: bikas_r@yahoo.com.

Acknowledgements

The authors are grateful to the Islamic Azad University (Tabriz Branch), the University of Zanjan and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for support of this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds