organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Creatinium hydrogen oxalate

aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, and cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 3 January 2012; accepted 9 January 2012; online 14 January 2012)

The crystal structure of the title compound, C4H10N3O2+·C2HO4, is stabilized by N—H⋯O and O—H⋯O hydrogen bonds. The anions are connected by an O—H⋯O hydrogen bond, leading to C(5) chain extending along c axis. The cations are dimerized around the corners of the unit cell, leading to an R22(14) ring motif. This leads to a cationic mol­ecular aggregation at x = 0 or 1 and an anionic mol­ecular aggregation at x = 1/2.

Related literature

For related structures see: Ali et al. (2011a[Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2011a). Acta Cryst. E67, o1376.],b[Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2011b). Acta Cryst. E67, o2905.]); Bahadur, Kannan et al. (2007[Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387-o2389.]); Bahadur, Sivapragasam et al. (2007[Bahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714-o1716.]); Bahadur, Rajalakshmi et al. (2007[Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.]). For hydrogen-bonding motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological importance of creatine, see: Cannan & Shore (1928[Cannan, R. K. & Shore, A. (1928). Biochem. J. 22, 920-929.]); Greenhaff et al. (1993[Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K. & Hultman, E. (1993). Clin. Sci. 84, 565-571.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10N3O2+·C2HO4

  • Mr = 221.18

  • Monoclinic, P 21 /c

  • a = 7.1545 (4) Å

  • b = 12.3681 (7) Å

  • c = 10.5151 (6) Å

  • β = 94.18 (1)°

  • V = 927.98 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 8631 measured reflections

  • 1641 independent reflections

  • 1587 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.08

  • 1641 reflections

  • 162 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O1i 0.82 (3) 2.37 (3) 3.094 (2) 148 (2)
N2—H2N⋯O11ii 0.85 (2) 2.08 (2) 2.910 (2) 168 (2)
N3—H3N⋯O1iii 0.85 (2) 2.18 (2) 2.985 (2) 157 (2)
N3—H4N⋯O14 0.86 (2) 2.04 (2) 2.903 (2) 174 (2)
O2—H2⋯O12iv 0.94 (3) 1.60 (3) 2.538 (2) 173 (2)
O13—H13O⋯O11v 0.90 (3) 1.72 (3) 2.605 (1) 168 (2)
Symmetry codes: (i) -x+2, -y+2, -z; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y, z-1; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Creatine is a nitrogenous organic acid that occurs naturally in vertebrates and helps to supply energy to all cells in the body, primarily muscle (Cannan, 1928; Greenhaff et al.,1993)). We are interested in the specificity of recognition between organic acids and cretine and creatinine molecules and have reported a number of creatinine related structures (Ali et al., 2011a,b; Bahadur, Kannan et al., 2007; Bahadur, Sivapragasam et al., 2007; Bahadur, Rajalakshmi et al., 2007).

The asymmetric part of the title compound, (I), contains one creatinium cation and one hydrogen oxalate anion (Fig. 1). The protonation of the N site of the cation is evident from C—N bond distances. The deprotonation on the one of the –COOH groups of the oxalic acid is confirmed from that –COO- bond geometry. The planes of –COOH and –COO- groups are twisted out from each other with an angle of 25.1 (2)°. This twisting of planes may be caused due to the hydrogen bonding association and molecular aggregation. The crystal structure and the molecular aggregations are stabilized through intricate three dimensional hydrogen bonding network (Fig. 2; Table 1). All the N and O atoms of the cation and anion participate in the hydrogen bonding interactions.

Hydrogen oxalate anions are connected themselves through a O—H···O hydrogen bond leading to a linear chain C(5) motif extending along c axis of the unit cell (Bernstein et al., 1995). Creatinium cations are dimerized around inversion centres of the unit cell, especially at the corners of the unit cell and making a ring R22(4) motif through N2—H1N···O1 (2 - x, 2 - y, -z) hydrogen bond. Also, these cationic dimers are connected themselves through another N—H···O hydrogen bond leading to a zigzag chain C(7) motif extending along b axis of the unit cell [N3—H3N···O1(-x + 2, y - 1/2, -z + 1/2)]. These interconnected cationic dimers are connected with oxalate anion leading to a zigzag chain C22(11) motif extending along ac-plane of the unit cell through N2—H2N···O11(1 + x, 3/2 - y, -1/2 + z) and O2—H2···O12(x, y, -1 + z). Another pair of N—H···O and O—H···O hydrogen bonds between cation and anion leading to a linear chain C22(12) motifs extending along c axis of the unit cell [N3—H3N···O14 and O2—H2···O12(x, y, -1 + z)]. Dimerization of cations and anionic chain motifs lead to cationic molecular aggregation at x=0 or 1 and molecular aggregation of anions at x=1/2. These cationic and anionic aggregations are connected further through other N—H···O hydrogen bonds leading to a three dimensional hydrogen bonding network.

Related literature top

For related structures see: Ali et al. (2011a,b); Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bonding motifs, see Bernstein et al. (1995). For the biological importance of creatine, see: Cannan & Shore (1928); Greenhaff et al. (1993).

Experimental top

The title compound was crystallized from an aqueous mixture containing creatine (0.13g) and oxalic acid (0.09g) in the stoichiometric ratio of 1:1 (20 ml of water) at room temperature by slow evaporation technique.

Refinement top

All the H atoms except the atoms involved in hydrogen bonds were positioned geometrically and refined using a riding model, with C—H = 0.96 (–CH3) and 0.97 Å (–CH2) and Uiso(H) = 1.2–1.5 Ueq (parent atom). H atoms involved in hydrogen bonds were located from differential Fourier maps and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b-axis. H atoms not involved in the H-bonds (dashed lines) are omitted for clarity.
{amino[(carboxymethyl)(methyl)amino]methylidene}azanium hydrogen oxalate top
Crystal data top
C4H10N3O2+·C2HO4F(000) = 464
Mr = 221.18Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3216 reflections
a = 7.1545 (4) Åθ = 2.1–24.7°
b = 12.3681 (7) ŵ = 0.14 mm1
c = 10.5151 (6) ÅT = 293 K
β = 94.18 (1)°Block, colourless
V = 927.98 (9) Å30.24 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω scansh = 88
8631 measured reflectionsk = 1414
1641 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.2614P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1641 reflectionsΔρmax = 0.25 e Å3
162 parametersΔρmin = 0.23 e Å3
1 restraintExtinction correction: SHELXTL/PC (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (6)
Crystal data top
C4H10N3O2+·C2HO4V = 927.98 (9) Å3
Mr = 221.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1545 (4) ŵ = 0.14 mm1
b = 12.3681 (7) ÅT = 293 K
c = 10.5151 (6) Å0.24 × 0.22 × 0.18 mm
β = 94.18 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1587 reflections with I > 2σ(I)
8631 measured reflectionsRint = 0.018
1641 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.25 e Å3
1641 reflectionsΔρmin = 0.23 e Å3
162 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83544 (18)1.03293 (11)0.10352 (12)0.0299 (3)
C20.92061 (19)1.05574 (11)0.23633 (13)0.0326 (3)
H2A1.05421.06710.23210.039*
H2B0.86761.12250.26610.039*
C30.7146 (2)0.97346 (13)0.38693 (16)0.0440 (4)
H3A0.68280.90150.41200.066*
H3B0.61901.00050.32640.066*
H3C0.72401.01950.46060.066*
C41.01280 (19)0.88981 (11)0.34586 (12)0.0316 (3)
N10.89312 (16)0.97171 (9)0.32919 (11)0.0323 (3)
N21.1567 (2)0.87994 (13)0.27569 (14)0.0482 (4)
N30.9923 (2)0.81801 (10)0.43697 (13)0.0403 (3)
O10.85571 (15)1.09547 (8)0.01761 (9)0.0385 (3)
O20.74475 (17)0.94241 (9)0.09369 (11)0.0460 (3)
H1N1.163 (4)0.912 (2)0.208 (3)0.083 (8)*
H2N1.238 (3)0.8321 (15)0.2955 (19)0.051 (5)*
H3N1.061 (3)0.7617 (18)0.4380 (19)0.053 (5)*
H4N0.914 (2)0.8210 (14)0.495 (2)0.056 (6)*
H20.705 (4)0.9278 (19)0.008 (3)0.084 (7)*
C110.56186 (18)0.81947 (11)0.82074 (12)0.0286 (3)
C120.58163 (18)0.79173 (11)0.67945 (12)0.0284 (3)
O110.45079 (14)0.76467 (9)0.87863 (8)0.0384 (3)
O120.66030 (19)0.89487 (11)0.86180 (11)0.0566 (4)
O130.43397 (14)0.74502 (9)0.62504 (9)0.0385 (3)
O140.72071 (16)0.81332 (10)0.62893 (10)0.0490 (4)
H13O0.449 (3)0.7329 (19)0.542 (2)0.071 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (7)0.0292 (7)0.0313 (7)0.0010 (5)0.0054 (5)0.0002 (5)
C20.0375 (7)0.0294 (7)0.0306 (7)0.0027 (5)0.0004 (5)0.0042 (5)
C30.0418 (8)0.0448 (9)0.0472 (9)0.0102 (7)0.0160 (7)0.0084 (7)
C40.0357 (7)0.0355 (7)0.0236 (6)0.0037 (6)0.0024 (5)0.0009 (5)
N10.0341 (6)0.0333 (6)0.0303 (6)0.0037 (5)0.0064 (5)0.0058 (4)
N20.0442 (8)0.0637 (9)0.0384 (8)0.0205 (7)0.0147 (6)0.0151 (7)
N30.0507 (8)0.0353 (7)0.0364 (7)0.0121 (6)0.0128 (6)0.0077 (5)
O10.0498 (6)0.0348 (5)0.0308 (5)0.0016 (4)0.0019 (4)0.0058 (4)
O20.0615 (7)0.0432 (6)0.0335 (6)0.0218 (5)0.0044 (5)0.0033 (5)
C110.0283 (6)0.0346 (7)0.0230 (6)0.0007 (5)0.0013 (5)0.0007 (5)
C120.0317 (7)0.0304 (7)0.0237 (6)0.0000 (5)0.0045 (5)0.0012 (5)
O110.0429 (6)0.0515 (6)0.0215 (5)0.0093 (5)0.0066 (4)0.0017 (4)
O120.0687 (8)0.0683 (8)0.0339 (6)0.0311 (7)0.0101 (5)0.0161 (5)
O130.0363 (6)0.0575 (7)0.0220 (5)0.0070 (5)0.0042 (4)0.0083 (4)
O140.0447 (6)0.0712 (8)0.0330 (6)0.0182 (5)0.0148 (5)0.0060 (5)
Geometric parameters (Å, º) top
C1—O11.2060 (17)C4—N11.3296 (18)
C1—O21.2943 (17)N2—H1N0.82 (3)
C1—C21.5090 (19)N2—H2N0.85 (2)
C2—N11.4493 (17)N3—H3N0.85 (2)
C2—H2A0.9700N3—H4N0.86 (2)
C2—H2B0.9700O2—H20.94 (3)
C3—N11.4540 (18)C11—O121.2279 (17)
C3—H3A0.9600C11—O111.2377 (17)
C3—H3B0.9600C11—C121.5413 (18)
C3—H3C0.9600C12—O141.1920 (17)
C4—N21.3152 (19)C12—O131.2996 (17)
C4—N31.3223 (19)O13—H13O0.90 (3)
O1—C1—O2125.59 (13)C4—N1—C2121.16 (12)
O1—C1—C2120.72 (12)C4—N1—C3122.23 (12)
O2—C1—C2113.69 (11)C2—N1—C3115.92 (11)
N1—C2—C1115.09 (11)C4—N2—H1N122.7 (19)
N1—C2—H2A108.5C4—N2—H2N118.7 (14)
C1—C2—H2A108.5H1N—N2—H2N118 (2)
N1—C2—H2B108.5C4—N3—H3N117.5 (14)
C1—C2—H2B108.5C4—N3—H4N126.7 (10)
H2A—C2—H2B107.5H3N—N3—H4N115.7 (17)
N1—C3—H3A109.5C1—O2—H2110.9 (15)
N1—C3—H3B109.5O12—C11—O11127.98 (12)
H3A—C3—H3B109.5O12—C11—C12114.67 (12)
N1—C3—H3C109.5O11—C11—C12117.35 (11)
H3A—C3—H3C109.5O14—C12—O13125.56 (12)
H3B—C3—H3C109.5O14—C12—C11121.20 (12)
N2—C4—N3118.47 (14)O13—C12—C11113.24 (11)
N2—C4—N1121.30 (13)C12—O13—H13O110.6 (15)
N3—C4—N1120.19 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O1i0.82 (3)2.37 (3)3.094 (2)148 (2)
N2—H2N···O11ii0.85 (2)2.08 (2)2.910 (2)168 (2)
N3—H3N···O1iii0.85 (2)2.18 (2)2.985 (2)157 (2)
N3—H4N···O140.86 (2)2.04 (2)2.903 (2)174 (2)
O2—H2···O12iv0.94 (3)1.60 (3)2.538 (2)173 (2)
O13—H13O···O11v0.90 (3)1.72 (3)2.605 (1)168 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+3/2, z1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y, z1; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC4H10N3O2+·C2HO4
Mr221.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1545 (4), 12.3681 (7), 10.5151 (6)
β (°) 94.18 (1)
V3)927.98 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8631, 1641, 1587
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.08
No. of reflections1641
No. of parameters162
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O1i0.82 (3)2.37 (3)3.094 (2)148 (2)
N2—H2N···O11ii0.85 (2)2.08 (2)2.910 (2)168 (2)
N3—H3N···O1iii0.85 (2)2.18 (2)2.985 (2)157 (2)
N3—H4N···O140.86 (2)2.04 (2)2.903 (2)174 (2)
O2—H2···O12iv0.94 (3)1.60 (3)2.538 (2)173 (2)
O13—H13O···O11v0.90 (3)1.72 (3)2.605 (1)168 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+3/2, z1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y, z1; (v) x, y+3/2, z1/2.
 

Acknowledgements

AJA and SAB sincerely thank the Vice Chancellor and Management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA thanks the Principal and Management of the National College of Engineering for their support.

References

First citationAli, A. J., Athimoolam, S. & Bahadur, S. A. (2011a). Acta Cryst. E67, o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, A. J., Athimoolam, S. & Bahadur, S. A. (2011b). Acta Cryst. E67, o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387–o2389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714–o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannan, R. K. & Shore, A. (1928). Biochem. J. 22, 920–929.  PubMed CAS Google Scholar
First citationGreenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K. & Hultman, E. (1993). Clin. Sci. 84, 565–571.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds