metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­kis(1-allyl-1H-imidazole-κN3)bis­­(thio­cyanato-κN)nickel(II)

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China, and bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: zsmei163@163.com

(Received 11 January 2012; accepted 13 January 2012; online 21 January 2012)

The structure of the title compound, [Ni(NCS)2(C6H8N2)4], consists of isolated mol­ecules of [Ni(NCS)2(Aim)4] (Aim = 1-allyl­imidazole), which contain a distorted octa­hedral NiN6 chromophore. The NCS anions are trans and four N atoms from the 1-allyl­imidazole ligands define the equatorial plane. The mean Mn—N(Aim) and Mn—N(NCS) distances are 2.105 (2) and 2.098 (2) Å, respectively. Weak C—H⋯N inter­actions contribute to the crystal packing stability.

Related literature

In the corresponding nickel compound [Ni(NCS)2(1-methyl­imidazole)4] (Liu et al., 2005[Liu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568-m1570.]), the NiII ions have a distorted octa­hedral environment.

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C6H8N2)4]

  • Mr = 607.45

  • Triclinic, [P \overline 1]

  • a = 8.8390 (18) Å

  • b = 9.5390 (19) Å

  • c = 10.515 (2) Å

  • α = 70.22 (3)°

  • β = 65.29 (3)°

  • γ = 86.66 (3)°

  • V = 754.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.854, Tmax = 0.923

  • 2934 measured reflections

  • 2741 independent reflections

  • 2367 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.00

  • 2741 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—N4 2.090 (2)
Ni—N5 2.098 (2)
Ni—N2 2.120 (2)
S—C13 1.631 (3)
N4i—Ni—N5 90.41 (9)
N4—Ni—N5 89.59 (9)
N4i—Ni—N2 87.44 (9)
N4—Ni—N2 92.56 (9)
N5—C13—S 178.0 (3)
Symmetry code: (i) -x+2, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N5 0.93 2.74 3.139 (4) 107
C7—H7A⋯N3 0.93 2.54 2.862 (5) 101
C11—H11A⋯N5 0.93 2.87 3.187 (5) 102
C10—H10A⋯N5i 0.93 2.70 3.125 (4) 109
C5—H5A⋯N5i 0.93 2.69 3.134 (4) 110
C9—H9A⋯N5ii 0.97 2.97 3.793 (5) 143
Symmetry codes: (i) -x+2, -y+2, -z; (ii) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and local programs.

Supporting information


Comment top

The molecular structure of (I) is shown in Fig. 1. The Ni atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-allylimidazole ligands. The equatorial plane of the complex is formed by four Ni—N(1-allylimadazole) bonds with lengths of 2.090 (2) and 2.120 (2) Å, and the axial positions are occupied by two N-bonded NCS groups [Ni—N(NCS) = 2.098 (2) Å]. These values agree well with those observed in [Ni(NCS)2(1-methyl-1H-imidazole)4] (Liu et al., 2005). The values of the bond angles around nickel atoms are close to those expected for a regular octahedral geometry, the N—Ni—N angles range from 87.44 (9) to 92.56 (9) °, and the thiocyanate ligands are almost linear. Weak C—H···N interactions contribute to the crystal packing stability.

In the corresponding nickel compound [Ni(NCS)2(1-methylimidazole)4] (Liu, et al., 2005), the NiII ions have a distorted octahedral environment.

Related literature top

In the corresponding nickel compound [Ni(NCS)2(1-methylimidazole)4] (Liu et al., 2005), the NiII ions have a distorted octahedral environment.

Experimental top

The title compound was prepared by the reaction of 1-allylimidazole (1.21 g, 20 mmol) with NiSO4.6H2O (1.31 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 393 K for 24 h. Analysis, calculated for C26H32NiN10S2: C 51.41, H 5.31, N 23.06%; found: C 51.76, H 5.40, N 23.35%. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically(C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
trans-Tetrakis(1-allyl-1H-imidazole-κN3)bis(thiocyanato- κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C6H8N2)4]Z = 1
Mr = 607.45F(000) = 318
Triclinic, P1Dx = 1.337 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8390 (18) ÅCell parameters from 25 reflections
b = 9.5390 (19) Åθ = 10–13°
c = 10.515 (2) ŵ = 0.82 mm1
α = 70.22 (3)°T = 293 K
β = 65.29 (3)°Block, green
γ = 86.66 (3)°0.20 × 0.10 × 0.10 mm
V = 754.3 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2367 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.854, Tmax = 0.923l = 1112
2934 measured reflections3 standard reflections every 200 reflections
2741 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
2741 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ni(NCS)2(C6H8N2)4]γ = 86.66 (3)°
Mr = 607.45V = 754.3 (3) Å3
Triclinic, P1Z = 1
a = 8.8390 (18) ÅMo Kα radiation
b = 9.5390 (19) ŵ = 0.82 mm1
c = 10.515 (2) ÅT = 293 K
α = 70.22 (3)°0.20 × 0.10 × 0.10 mm
β = 65.29 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2367 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.854, Tmax = 0.9233 standard reflections every 200 reflections
2934 measured reflections intensity decay: 1%
2741 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.47 e Å3
2741 reflectionsΔρmin = 0.69 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1.00001.00000.00000.03248 (18)
S0.90268 (13)0.62180 (10)0.17752 (10)0.0667 (3)
N10.8248 (3)0.6671 (3)0.4349 (3)0.0495 (6)
C10.5245 (7)0.4590 (5)0.7843 (5)0.1058 (17)
H1A0.59480.43040.83240.127*
H1B0.40990.45560.83990.127*
N20.9261 (3)0.8588 (2)0.2250 (2)0.0391 (5)
C20.5851 (6)0.5028 (4)0.6428 (4)0.0805 (12)
H2A0.51000.53030.59960.097*
N31.5200 (3)0.9732 (3)0.1668 (3)0.0455 (6)
C30.7651 (5)0.5141 (4)0.5395 (4)0.0699 (10)
H3A0.83080.48350.59700.084*
H3B0.78010.44700.48440.084*
N41.2458 (3)0.9421 (2)0.0627 (2)0.0391 (5)
C40.8908 (4)0.7128 (3)0.2850 (3)0.0473 (7)
H4A0.90910.64920.23080.057*
N50.9365 (3)0.8207 (2)0.0471 (3)0.0435 (5)
C50.8802 (4)0.9078 (3)0.3426 (3)0.0481 (7)
H5A0.89051.00730.33450.058*
C60.8185 (4)0.7922 (4)0.4713 (3)0.0553 (8)
H6A0.77900.79630.56680.066*
C71.6338 (5)1.1428 (4)0.4780 (4)0.0670 (9)
H7A1.52271.10250.42260.080*
H7B1.67371.19370.58020.080*
C81.7320 (4)1.1281 (3)0.4132 (3)0.0546 (8)
H8A1.84181.17050.47370.066*
C91.6888 (4)1.0502 (4)0.2513 (4)0.0582 (8)
H9A1.76860.97790.24120.070*
H9B1.69901.12310.20890.070*
C101.3775 (3)1.0383 (3)0.1235 (3)0.0435 (6)
H10A1.37291.13940.13510.052*
C111.3071 (4)0.8078 (3)0.0683 (3)0.0506 (7)
H11A1.24260.71790.03350.061*
C121.4764 (4)0.8268 (3)0.1325 (4)0.0548 (8)
H12A1.54860.75370.14970.066*
C130.9239 (3)0.7367 (3)0.0999 (3)0.0368 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0336 (3)0.0344 (3)0.0275 (3)0.00381 (18)0.00890 (19)0.01389 (19)
S0.0922 (7)0.0590 (5)0.0670 (6)0.0058 (5)0.0374 (5)0.0384 (4)
N10.0551 (14)0.0469 (13)0.0343 (12)0.0015 (11)0.0123 (11)0.0075 (10)
C10.120 (4)0.092 (3)0.062 (3)0.026 (3)0.003 (3)0.015 (2)
N20.0394 (12)0.0399 (12)0.0322 (11)0.0050 (9)0.0089 (9)0.0139 (9)
C20.082 (3)0.078 (3)0.060 (2)0.028 (2)0.020 (2)0.0060 (19)
N30.0347 (12)0.0550 (14)0.0427 (13)0.0081 (10)0.0145 (10)0.0151 (11)
C30.086 (3)0.0514 (19)0.0476 (18)0.0001 (17)0.0167 (18)0.0012 (15)
N40.0374 (12)0.0424 (12)0.0344 (11)0.0064 (10)0.0113 (10)0.0153 (9)
C40.0545 (17)0.0448 (15)0.0367 (14)0.0073 (13)0.0128 (13)0.0159 (12)
N50.0460 (13)0.0406 (12)0.0423 (12)0.0033 (10)0.0136 (10)0.0188 (10)
C50.0529 (17)0.0489 (16)0.0363 (14)0.0017 (13)0.0093 (12)0.0188 (13)
C60.065 (2)0.0638 (19)0.0296 (14)0.0056 (15)0.0101 (13)0.0176 (13)
C70.071 (2)0.074 (2)0.0478 (18)0.0108 (18)0.0182 (17)0.0209 (17)
C80.0395 (15)0.0573 (18)0.0527 (18)0.0033 (13)0.0047 (14)0.0207 (15)
C90.0373 (15)0.077 (2)0.0538 (18)0.0022 (14)0.0162 (14)0.0186 (16)
C100.0420 (15)0.0449 (15)0.0415 (15)0.0051 (12)0.0138 (12)0.0177 (12)
C110.0469 (16)0.0398 (15)0.0531 (17)0.0062 (12)0.0123 (14)0.0139 (13)
C120.0484 (17)0.0524 (18)0.0534 (17)0.0205 (14)0.0150 (14)0.0172 (14)
C130.0374 (13)0.0339 (13)0.0339 (13)0.0021 (10)0.0112 (11)0.0105 (11)
Geometric parameters (Å, º) top
Ni—N4i2.090 (2)C3—H3A0.9700
Ni—N42.090 (2)C3—H3B0.9700
Ni—N52.098 (2)N4—C101.308 (3)
Ni—N5i2.098 (2)N4—C111.372 (3)
Ni—N2i2.120 (2)C4—H4A0.9300
Ni—N22.120 (2)N5—C131.152 (3)
S—C131.631 (3)C5—C61.337 (4)
N1—C41.345 (4)C5—H5A0.9300
N1—C61.363 (4)C6—H6A0.9300
N1—C31.461 (4)C7—C81.285 (5)
C1—C21.271 (5)C7—H7A0.9300
C1—H1A0.9300C7—H7B0.9300
C1—H1B0.9300C8—C91.493 (4)
N2—C41.314 (3)C8—H8A0.9300
N2—C51.364 (3)C9—H9A0.9700
C2—C31.490 (6)C9—H9B0.9700
C2—H2A0.9300C10—H10A0.9300
N3—C101.342 (3)C11—C121.353 (4)
N3—C121.354 (4)C11—H11A0.9300
N3—C91.461 (4)C12—H12A0.9300
N4i—Ni—N4180.000 (1)C10—N4—C11105.5 (2)
N4i—Ni—N590.41 (9)C10—N4—Ni124.18 (18)
N4—Ni—N589.59 (9)C11—N4—Ni129.86 (19)
N4i—Ni—N5i89.59 (9)N2—C4—N1111.4 (3)
N4—Ni—N5i90.41 (9)N2—C4—H4A124.3
N5—Ni—N5i180.000 (1)N1—C4—H4A124.3
N4i—Ni—N2i92.56 (9)C13—N5—Ni167.0 (2)
N4—Ni—N2i87.44 (9)C6—C5—N2110.3 (3)
N5—Ni—N2i90.56 (9)C6—C5—H5A124.9
N5i—Ni—N2i89.44 (9)N2—C5—H5A124.9
N4i—Ni—N287.44 (9)C5—C6—N1106.5 (3)
N4—Ni—N292.56 (9)C5—C6—H6A126.8
N5—Ni—N289.44 (9)N1—C6—H6A126.8
N5i—Ni—N290.56 (9)C8—C7—H7A120.0
N2i—Ni—N2180.0C8—C7—H7B120.0
C4—N1—C6106.7 (2)H7A—C7—H7B120.0
C4—N1—C3127.1 (3)C7—C8—C9127.0 (3)
C6—N1—C3126.2 (3)C7—C8—H8A116.5
C2—C1—H1A120.0C9—C8—H8A116.5
C2—C1—H1B120.0N3—C9—C8113.2 (3)
H1A—C1—H1B120.0N3—C9—H9A108.9
C4—N2—C5105.2 (2)C8—C9—H9A108.9
C4—N2—Ni129.36 (19)N3—C9—H9B108.9
C5—N2—Ni124.73 (18)C8—C9—H9B108.9
C1—C2—C3126.0 (5)H9A—C9—H9B107.8
C1—C2—H2A117.0N4—C10—N3111.6 (2)
C3—C2—H2A117.0N4—C10—H10A124.2
C10—N3—C12107.0 (2)N3—C10—H10A124.2
C10—N3—C9125.9 (3)C12—C11—N4109.2 (3)
C12—N3—C9126.7 (3)C12—C11—H11A125.4
N1—C3—C2111.1 (3)N4—C11—H11A125.4
N1—C3—H3A109.4C11—C12—N3106.6 (3)
C2—C3—H3A109.4C11—C12—H12A126.7
N1—C3—H3B109.4N3—C12—H12A126.7
C2—C3—H3B109.4N5—C13—S178.0 (3)
H3A—C3—H3B108.0
N4i—Ni—N2—C4101.9 (3)C3—N1—C4—N2177.8 (3)
N4—Ni—N2—C478.1 (3)N4i—Ni—N5—C13118.9 (10)
N5—Ni—N2—C411.5 (2)N4—Ni—N5—C1361.1 (10)
N5i—Ni—N2—C4168.5 (2)N2i—Ni—N5—C1326.3 (10)
N4i—Ni—N2—C567.1 (2)N2—Ni—N5—C13153.7 (10)
N4—Ni—N2—C5112.9 (2)C4—N2—C5—C60.1 (4)
N5—Ni—N2—C5157.6 (2)Ni—N2—C5—C6171.3 (2)
N5i—Ni—N2—C522.4 (2)N2—C5—C6—N10.1 (4)
C4—N1—C3—C2120.9 (4)C4—N1—C6—C50.2 (4)
C6—N1—C3—C256.7 (5)C3—N1—C6—C5177.8 (3)
C1—C2—C3—N1121.4 (5)C10—N3—C9—C876.4 (4)
N5—Ni—N4—C10148.6 (2)C12—N3—C9—C895.5 (4)
N5i—Ni—N4—C1031.4 (2)C7—C8—C9—N36.1 (5)
N2i—Ni—N4—C1058.0 (2)C11—N4—C10—N30.5 (3)
N2—Ni—N4—C10122.0 (2)Ni—N4—C10—N3173.39 (17)
N5—Ni—N4—C1122.5 (2)C12—N3—C10—N40.4 (3)
N5i—Ni—N4—C11157.5 (2)C9—N3—C10—N4173.7 (3)
N2i—Ni—N4—C11113.1 (2)C10—N4—C11—C120.3 (3)
N2—Ni—N4—C1166.9 (2)Ni—N4—C11—C12172.7 (2)
C5—N2—C4—N10.0 (3)N4—C11—C12—N30.1 (4)
Ni—N2—C4—N1170.67 (18)C10—N3—C12—C110.2 (3)
C6—N1—C4—N20.1 (4)C9—N3—C12—C11173.4 (3)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N50.932.743.139 (4)107
C7—H7A···N30.932.542.862 (5)101
C11—H11A···N50.932.873.187 (5)102
C10—H10A···N5i0.932.703.125 (4)109
C5—H5A···N5i0.932.693.134 (4)110
C9—H9A···N5ii0.972.973.793 (5)143
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C6H8N2)4]
Mr607.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8390 (18), 9.5390 (19), 10.515 (2)
α, β, γ (°)70.22 (3), 65.29 (3), 86.66 (3)
V3)754.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.854, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
2934, 2741, 2367
Rint0.019
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.00
No. of reflections2741
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.69

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008) and local programs.

Selected geometric parameters (Å, º) top
Ni—N42.090 (2)Ni—N22.120 (2)
Ni—N52.098 (2)S—C131.631 (3)
N4i—Ni—N590.41 (9)N4—Ni—N292.56 (9)
N4—Ni—N589.59 (9)N5—C13—S178.0 (3)
N4i—Ni—N287.44 (9)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N50.932.7373.139 (4)107.08
C7—H7A···N30.932.5412.862 (5)100.54
C11—H11A···N50.932.8673.187 (5)101.60
C10—H10A···N5i0.932.6993.125 (4)108.70
C5—H5A···N5i0.932.6903.134 (4)110.12
C9—H9A···N5ii0.972.9693.793 (5)143.00
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the NSF of China (No. 20871072), the NSF of Shandong Province (No. 2009ZRA02071) and the Scientific Development Plan of University in Shandong Province (No. J09LB53).

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568–m1570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds