organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-cyclo­hexyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and, Pakistan and Punjab Forensic Science Agency, Thokar Niaz Baig, Lahore, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr, iukhan@gcu.edu.pk

(Received 13 January 2012; accepted 16 January 2012; online 21 January 2012)

The title compound, C12H16ClNO2S, adopts an L-shaped conformation, with the central C—S—N—C torsion angle being −78.0 (2)°. The cyclo­hexyl ring adopts a chair conformation. In the crystal, adjacent mol­ecules are connected by pairs of N—H⋯O hydrogen bonds around an inversion centre, forming cyclic dimers [graph set R22(8)].

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill; New York: Wiley.]). For related structures, see: Sharif et al. (2011[Sharif, S., Khan, I. U., Mahmood, T. & Kang, S. K. (2011). Acta Cryst. E67, o1570.]); Khan et al. (2010[Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.]); John et al. (2010[John, P., Anwar, F., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1989.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16ClNO2S

  • Mr = 273.78

  • Monoclinic, P 21 /c

  • a = 11.1226 (5) Å

  • b = 6.2490 (2) Å

  • c = 19.8635 (9) Å

  • β = 96.505 (2)°

  • V = 1371.73 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.29 × 0.15 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 12714 measured reflections

  • 3365 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.03

  • 3365 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (4) 2.05 (4) 2.891 (4) 170 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide group containing drugs are extensively used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms (Korolkovas, 1988; Mandell & Sande, 1992). In continuation of our on going structural studies of cyclohexylamine and sulfonamides synthesis (John et al., 2010; Khan et al., 2010; Sharif et al., 2011), herein the crystal structure of title compound (I) is described.

In (I), (Fig. 1), the S atom has a distorted tetrahedral geometry within a CNO2 donor set [maximum deviation: O—S—O = 119.45 (12)°]. The central C6–S1–N1–C7 torsion angle is -78.0 (2)°. The C7–C12 cyclohexyl ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.536 (4) Å, θ = 180.0 (4) °, ϕ = 196 (16) °.

In the crystal, two adjacent molecules are linked by a pair of N—H···O hydrogen bonds, forming an inversion dimer with an R22(8) ring motif (Table 1, Fig. 2).

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2011); Khan et al. (2010); John et al. (2010). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

To 115 µl (1 mmol) of cyclohexylamine in 10 ml distilled water, was added 211 mg (1 mmol) of 4-chlorobenzenesulfonyl chloride while maintaining the pH of reaction mixture at 8 by using 3% sodium carbonate solution. Consumption of the reactants was confirmed by TLC. The pH of reaction mixture was adjusted by 3 N HCl at 3. Precipitates formed, washed with water and crystallized from methanol.

Refinement top

The NH H–atom was located in a difference Fourier map and isotropically refined with a distance restraint: N—H = 0.86 (2) Å. C-bound H atoms were placed in calculated positions with C—H distances in the range 0.93–0.98 Å and and were refined using a riding model with Uiso(H) = 1.2Ueq(C). In the final refinement two low angle reflections evidently effected by the beam stop were omitted, i.e. 0 0 2 and 1 0 0.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule, showing the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) down b axis, showing the molecules are linked into dimers by pairs of N—H ··· O hydrogen bonds, forming R22(8) graph-set motif. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
4-Chloro-N-cyclohexylbenzenesulfonamide top
Crystal data top
C12H16ClNO2SF(000) = 576
Mr = 273.78Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3062 reflections
a = 11.1226 (5) Åθ = 2.6–21.6°
b = 6.2490 (2) ŵ = 0.42 mm1
c = 19.8635 (9) ÅT = 296 K
β = 96.505 (2)°Needle, light brown
V = 1371.73 (10) Å30.29 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2075 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.3°, θmin = 3.4°
ϕ and ω scansh = 1414
12714 measured reflectionsk = 68
3365 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.526P]
where P = (Fo2 + 2Fc2)/3
3365 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C12H16ClNO2SV = 1371.73 (10) Å3
Mr = 273.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1226 (5) ŵ = 0.42 mm1
b = 6.2490 (2) ÅT = 296 K
c = 19.8635 (9) Å0.29 × 0.15 × 0.11 mm
β = 96.505 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2075 reflections with I > 2σ(I)
12714 measured reflectionsRint = 0.030
3365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
3365 reflectionsΔρmin = 0.25 e Å3
157 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97047 (9)0.63719 (19)0.09885 (6)0.1159 (5)
S10.67445 (5)0.02579 (10)0.26455 (3)0.0538 (2)
O10.57744 (18)0.0412 (3)0.21563 (11)0.0788 (8)
O20.75531 (17)0.1301 (3)0.29647 (11)0.0710 (7)
N10.61305 (18)0.1518 (3)0.32146 (11)0.0527 (7)
C10.7127 (2)0.3981 (4)0.19816 (13)0.0581 (9)
C20.7777 (3)0.5312 (4)0.16141 (14)0.0650 (9)
C30.8901 (3)0.4698 (5)0.14686 (14)0.0654 (10)
C40.9396 (2)0.2788 (5)0.16961 (16)0.0733 (11)
C50.8750 (2)0.1454 (4)0.20712 (14)0.0606 (9)
C60.7611 (2)0.2037 (4)0.22098 (12)0.0465 (7)
C70.6789 (2)0.2145 (4)0.38711 (12)0.0541 (8)
C80.7329 (3)0.4325 (5)0.38666 (16)0.0829 (11)
C90.7924 (4)0.4979 (7)0.45609 (18)0.1069 (17)
C100.7084 (4)0.4802 (9)0.5084 (2)0.117 (2)
C110.6528 (5)0.2674 (10)0.50951 (18)0.135 (2)
C120.5920 (4)0.1970 (7)0.44002 (17)0.1033 (16)
H10.636000.438100.207800.0700*
H1N0.555 (3)0.234 (6)0.3060 (19)0.1390*
H20.745800.662600.146400.0780*
H41.016300.239700.159700.0880*
H50.908300.016000.223100.0730*
H70.744500.111500.398500.0650*
H8A0.670100.535000.371500.0990*
H8B0.792700.435500.354700.0990*
H9A0.862300.407400.468500.1280*
H9B0.820600.644500.454200.1280*
H10A0.752000.510000.552400.1410*
H10B0.645200.587000.499700.1410*
H11A0.593000.268400.541400.1620*
H11B0.714600.163800.525400.1620*
H12A0.564700.050200.442600.1240*
H12B0.521800.286300.427100.1240*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0867 (7)0.1367 (9)0.1293 (9)0.0197 (6)0.0339 (6)0.0505 (7)
S10.0456 (4)0.0438 (3)0.0725 (4)0.0069 (3)0.0087 (3)0.0065 (3)
O10.0634 (12)0.0815 (13)0.0904 (14)0.0310 (10)0.0034 (11)0.0211 (11)
O20.0691 (12)0.0436 (9)0.1030 (15)0.0083 (9)0.0210 (11)0.0082 (9)
N10.0393 (11)0.0562 (12)0.0629 (13)0.0041 (9)0.0071 (10)0.0035 (10)
C10.0540 (15)0.0589 (15)0.0637 (16)0.0058 (13)0.0169 (13)0.0006 (12)
C20.0704 (18)0.0594 (15)0.0664 (16)0.0034 (14)0.0132 (15)0.0056 (13)
C30.0553 (16)0.0765 (18)0.0646 (16)0.0132 (15)0.0076 (13)0.0050 (14)
C40.0398 (14)0.091 (2)0.090 (2)0.0036 (15)0.0118 (15)0.0011 (18)
C50.0418 (14)0.0602 (15)0.0793 (18)0.0021 (12)0.0048 (13)0.0025 (13)
C60.0410 (12)0.0461 (12)0.0514 (13)0.0033 (10)0.0015 (10)0.0093 (10)
C70.0463 (14)0.0565 (14)0.0597 (15)0.0112 (12)0.0063 (12)0.0059 (12)
C80.095 (2)0.082 (2)0.0727 (19)0.0204 (19)0.0134 (18)0.0077 (16)
C90.106 (3)0.119 (3)0.095 (3)0.014 (2)0.009 (2)0.038 (2)
C100.092 (3)0.178 (5)0.082 (2)0.019 (3)0.009 (2)0.049 (3)
C110.132 (4)0.216 (6)0.059 (2)0.014 (4)0.018 (2)0.022 (3)
C120.100 (3)0.141 (3)0.072 (2)0.027 (2)0.023 (2)0.021 (2)
Geometric parameters (Å, º) top
Cl1—C31.731 (4)C10—C111.468 (8)
S1—O11.431 (2)C11—C121.531 (6)
S1—O21.425 (2)C1—H10.9300
S1—N11.594 (2)C2—H20.9300
S1—C61.762 (3)C4—H40.9300
N1—C71.475 (3)C5—H50.9300
N1—H1N0.85 (4)C7—H70.9800
C1—C21.366 (4)C8—H8A0.9700
C1—C61.384 (4)C8—H8B0.9700
C2—C31.370 (5)C9—H9A0.9700
C3—C41.370 (4)C9—H9B0.9700
C4—C51.374 (4)C10—H10A0.9700
C5—C61.376 (3)C10—H10B0.9700
C7—C121.510 (5)C11—H11A0.9700
C7—C81.489 (4)C11—H11B0.9700
C8—C91.517 (5)C12—H12A0.9700
C9—C101.478 (6)C12—H12B0.9700
O1—S1—O2119.45 (12)C5—C4—H4120.00
O1—S1—N1106.00 (12)C4—C5—H5120.00
O1—S1—C6105.28 (12)C6—C5—H5120.00
O2—S1—N1108.77 (12)N1—C7—H7108.00
O2—S1—C6107.29 (11)C8—C7—H7108.00
N1—S1—C6109.82 (11)C12—C7—H7108.00
S1—N1—C7123.29 (16)C7—C8—H8A109.00
S1—N1—H1N114 (3)C7—C8—H8B109.00
C7—N1—H1N116 (3)C9—C8—H8A109.00
C2—C1—C6120.0 (2)C9—C8—H8B109.00
C1—C2—C3119.6 (3)H8A—C8—H8B108.00
Cl1—C3—C2119.2 (2)C8—C9—H9A109.00
C2—C3—C4121.1 (3)C8—C9—H9B109.00
Cl1—C3—C4119.7 (2)C10—C9—H9A109.00
C3—C4—C5119.5 (2)C10—C9—H9B109.00
C4—C5—C6119.9 (2)H9A—C9—H9B108.00
S1—C6—C1120.05 (17)C9—C10—H10A109.00
S1—C6—C5119.92 (19)C9—C10—H10B109.00
C1—C6—C5120.0 (2)C11—C10—H10A109.00
N1—C7—C8113.5 (2)C11—C10—H10B109.00
C8—C7—C12111.2 (3)H10A—C10—H10B108.00
N1—C7—C12107.7 (2)C10—C11—H11A109.00
C7—C8—C9112.1 (3)C10—C11—H11B109.00
C8—C9—C10111.9 (4)C12—C11—H11A109.00
C9—C10—C11112.3 (4)C12—C11—H11B109.00
C10—C11—C12113.0 (4)H11A—C11—H11B108.00
C7—C12—C11110.8 (4)C7—C12—H12A110.00
C2—C1—H1120.00C7—C12—H12B109.00
C6—C1—H1120.00C11—C12—H12A109.00
C1—C2—H2120.00C11—C12—H12B109.00
C3—C2—H2120.00H12A—C12—H12B108.00
C3—C4—H4120.00
O1—S1—N1—C7168.78 (18)C1—C2—C3—Cl1178.7 (2)
O2—S1—N1—C739.2 (2)Cl1—C3—C4—C5179.3 (2)
C6—S1—N1—C778.0 (2)C2—C3—C4—C50.6 (5)
N1—S1—C6—C5135.6 (2)C3—C4—C5—C60.6 (4)
O2—S1—C6—C1165.3 (2)C4—C5—C6—S1176.1 (2)
N1—S1—C6—C147.2 (2)C4—C5—C6—C11.1 (4)
O1—S1—C6—C166.5 (2)N1—C7—C8—C9176.1 (3)
O2—S1—C6—C517.5 (2)C12—C7—C8—C954.6 (4)
O1—S1—C6—C5110.7 (2)N1—C7—C12—C11178.0 (3)
S1—N1—C7—C12144.8 (2)C8—C7—C12—C1153.2 (4)
S1—N1—C7—C891.8 (2)C7—C8—C9—C1054.4 (4)
C6—C1—C2—C30.7 (4)C8—C9—C10—C1153.3 (5)
C2—C1—C6—S1176.7 (2)C9—C10—C11—C1253.2 (6)
C2—C1—C6—C50.5 (4)C10—C11—C12—C753.0 (5)
C1—C2—C3—C41.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (4)2.05 (4)2.891 (4)170 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16ClNO2S
Mr273.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.1226 (5), 6.2490 (2), 19.8635 (9)
β (°) 96.505 (2)
V3)1371.73 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.29 × 0.15 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12714, 3365, 2075
Rint0.030
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.03
No. of reflections3365
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (4)2.05 (4)2.891 (4)170 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University Lahore.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJohn, P., Anwar, F., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill; New York: Wiley.  Google Scholar
First citationSharif, S., Khan, I. U., Mahmood, T. & Kang, S. K. (2011). Acta Cryst. E67, o1570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds