metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m221-m222

{4-Bromo-2-[(5-chloro-2-oxidophen­yl)imino­methyl]­phenolato-κ3O,N,O′}(methanol-κO)(methano­lato-κO)­oxidovanadium(V)

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 January 2012; accepted 25 January 2012; online 31 January 2012)

The title Schiff base complex, [V(C13H7BrClNO2)(CH3O)O(CH3OH)], features a vanadyl group, a tridentate Schiff base ligand, and coordinated methanol and methano­late ligands. The NO5 donor set is based on a distorted octa­hedron. Helical supra­molecular chains along [010] are found in the crystal structure mediated by O—H⋯O hydrogen bonds formed between the coordinating methanol mol­ecule and the phenolate O atom of the chloro­benzene residue.

Related literature

For the structures of (E)-2-(2-hy­droxy­benzyl­idene­amino)­phenolates containing halide atoms on the aromatic ring(s), see: Yenişehirli et al. (2010[Yenişehirli, G., Öztaş, N. A., Şahin, E., Çelebier, M., Ancin, N. & Öztaş, S. G. (2010). Heteroat. Chem. 21, 373-385.]). For related Schiff base vanadyl complexes containing alcohol and alkoxide ligands, see: Hartung et al. (2007[Hartung, J., Ludwig, A., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m1422-m1423.]); Clague et al. (1993[Clague, M. J., Keder, N. L. & Butler, A. (1993). Inorg. Chem. 32, 4754-4761.]). For the crystallization procedure, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C13H7BrClNO2)(CH3O)O(CH4O)]

  • Mr = 454.57

  • Monoclinic, P 21 /n

  • a = 9.9585 (2) Å

  • b = 9.8949 (2) Å

  • c = 17.3612 (3) Å

  • β = 100.746 (2)°

  • V = 1680.74 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.42 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.255, Tmax = 0.834

  • 6974 measured reflections

  • 3453 independent reflections

  • 3125 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.04

  • 3453 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected bond lengths (Å)

V—O1 1.872 (2)
V—O2 1.937 (2)
V—O3 2.266 (2)
V—O4 1.766 (2)
V—O5 1.596 (2)
V—N1 2.170 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.84 (1) 1.89 (2) 2.702 (3) 163 (5)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Structural studies of complexes with (E)-2-(2-hydroxybenzylideneamino)phenolates containing halide atoms on the aromatic ring(s) are comparatively rare (Yenişehirli et al., 2010) and those of complexes containing the (E)-4-bromo-2-((5-chloro-2-hydroxyphenylimino)methyl)phenolate ligand have not been reported. Herein we report the oxo-vanadium(V) complex of this ligand, (I).

The V atom in (I) is coordinated by the O,N,O-tridentate Schiff base ligand, an oxido-O atom, an O atom of the methoxido ligand and an O atom of the methanol ligand. The resulting NO5 donor set is based on an octahedron. The methanol ligand is trans to the oxido group and the VO(methanol) bond length is significantly longer than the VO(methanolate) bond, Table 1. The coordination geometry resembles those found in related VO Schiff base compounds containing neutral and anionic forms of alcohols (Clague et al., 1993; Hartung et al., 2007).

The most prominent feature of the crystal packing is the formation of helical supramolecular chains along [010], Fig. 1 and Table 2. The connections between molecules are of the type O—H···O and involve the coordinated methanol molecule as the donor and the phenoxide-O atom of the chloro-substituted benzene ring as the acceptor.

Related literature top

For the structures of (E)-2-(2-hydroxybenzylideneamino)phenolates containing halide atoms on the aromatic ring(s), see: Yenişehirli et al. (2010). For related Schiff base vanadyl complexes containing alcohol and alkoxide ligands, see: Hartung et al. (2007); Clague et al. (1993). For the crystallization procedure, see: Harrowfield et al. (1996).

Experimental top

A solution of 4-chlorosalicylaldehyde (10 mmol) in EtOH (25 ml) was added drop-wise to a solution of 2-(aminomethyl)-4-bromophenol (10 mmol) in EtOH (15 ml). The mixture was refluxed for 5 h. The yellow precipitate was removed by filtration and recrystallized from MeOH solution. Then the ligand (0.8 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and oxovanadium(IV) bis(acetylacetonate) (0.8 mmol) placed in the other. Methanol was then added to fill both arms. The tube was sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After two weeks, crystals were deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air-dried. Yield: 61%. M.pt.: 517 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95–0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.84±0.01 Å; Uiso was refined. The final difference Fourier map had a peak ca 1 Å from Br.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along [010] in (I). The O—H···O hydrogen bonds are shown as orange dashed lines.
{2-[(5-Chloro-2-oxidophenyl)iminomethyl]-4-bromophenolato- κ3O,N,O'}(methanol-κO)(methanolato- κO)oxidovanadium(V) top
Crystal data top
[V(C13H7BrClNO2)(CH3O)O(CH4O)]F(000) = 904
Mr = 454.57Dx = 1.796 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 3765 reflections
a = 9.9585 (2) Åθ = 4.5–76.3°
b = 9.8949 (2) ŵ = 9.42 mm1
c = 17.3612 (3) ÅT = 100 K
β = 100.746 (2)°Plate, brown
V = 1680.74 (6) Å30.20 × 0.20 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3453 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3125 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 4.8°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.255, Tmax = 0.834l = 1021
6974 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0869P)2 + 1.3682P]
where P = (Fo2 + 2Fc2)/3
3453 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 1.37 e Å3
1 restraintΔρmin = 0.93 e Å3
Crystal data top
[V(C13H7BrClNO2)(CH3O)O(CH4O)]V = 1680.74 (6) Å3
Mr = 454.57Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.9585 (2) ŵ = 9.42 mm1
b = 9.8949 (2) ÅT = 100 K
c = 17.3612 (3) Å0.20 × 0.20 × 0.02 mm
β = 100.746 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3453 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3125 reflections with I > 2σ(I)
Tmin = 0.255, Tmax = 0.834Rint = 0.029
6974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.37 e Å3
3453 reflectionsΔρmin = 0.93 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.21340 (4)0.40275 (4)0.54299 (2)0.03558 (16)
V0.58605 (5)1.02259 (5)0.71783 (3)0.01590 (16)
Cl0.86189 (8)1.03418 (8)0.37755 (4)0.02228 (19)
O10.4952 (2)0.8625 (2)0.73417 (12)0.0202 (4)
O20.7315 (2)1.1284 (2)0.68762 (12)0.0177 (4)
O30.7673 (2)0.8869 (2)0.76214 (13)0.0194 (4)
H30.752 (5)0.8057 (17)0.771 (3)0.041 (13)*
O40.6177 (2)1.0892 (2)0.81386 (13)0.0211 (5)
O50.4594 (2)1.1120 (2)0.67670 (13)0.0220 (5)
N10.6091 (3)0.9280 (3)0.60826 (15)0.0169 (5)
C10.4304 (3)0.7660 (3)0.68900 (17)0.0181 (6)
C20.3401 (3)0.6813 (3)0.72029 (19)0.0216 (6)
H20.32300.69800.77150.026*
C30.2760 (3)0.5739 (3)0.6771 (2)0.0234 (7)
H3A0.21600.51640.69860.028*
C40.3008 (3)0.5516 (3)0.6017 (2)0.0237 (7)
C50.3868 (3)0.6329 (3)0.56906 (19)0.0218 (6)
H50.40160.61570.51750.026*
C60.4529 (3)0.7419 (3)0.61230 (18)0.0191 (6)
C70.5457 (3)0.8232 (3)0.57644 (17)0.0182 (6)
H70.56060.79720.52600.022*
C80.7007 (3)1.0031 (3)0.57077 (18)0.0171 (6)
C90.7317 (3)0.9777 (3)0.49641 (17)0.0172 (6)
H90.69100.90410.46540.021*
C100.8226 (3)1.0625 (3)0.46973 (17)0.0189 (6)
C110.8838 (3)1.1709 (3)0.51455 (18)0.0212 (6)
H110.94621.22770.49460.025*
C120.8540 (3)1.1961 (3)0.58772 (18)0.0202 (6)
H120.89501.27010.61820.024*
C130.7623 (3)1.1110 (3)0.61637 (17)0.0169 (6)
C140.8841 (3)0.9337 (4)0.8166 (2)0.0259 (7)
H14A0.95140.86070.82780.039*
H14B0.85590.96190.86530.039*
H14C0.92501.01070.79390.039*
C150.5543 (4)1.2004 (4)0.84499 (19)0.0256 (7)
H15A0.59681.21360.90010.038*
H15B0.45671.18170.84120.038*
H15C0.56601.28220.81520.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0332 (2)0.0270 (2)0.0455 (3)0.01347 (15)0.00452 (18)0.01039 (15)
V0.0176 (3)0.0136 (3)0.0168 (3)0.00055 (19)0.0040 (2)0.00131 (18)
Cl0.0255 (4)0.0234 (4)0.0193 (4)0.0001 (3)0.0078 (3)0.0003 (3)
O10.0231 (11)0.0182 (10)0.0201 (10)0.0041 (9)0.0057 (8)0.0012 (8)
O20.0203 (10)0.0146 (10)0.0188 (10)0.0018 (8)0.0051 (8)0.0001 (8)
O30.0208 (11)0.0135 (10)0.0228 (10)0.0017 (8)0.0008 (8)0.0025 (8)
O40.0231 (11)0.0203 (11)0.0209 (10)0.0001 (9)0.0068 (8)0.0028 (8)
O50.0212 (11)0.0203 (11)0.0241 (11)0.0011 (9)0.0035 (9)0.0008 (8)
N10.0175 (12)0.0151 (12)0.0182 (11)0.0005 (10)0.0036 (9)0.0008 (9)
C10.0169 (13)0.0140 (14)0.0225 (14)0.0021 (11)0.0017 (11)0.0013 (11)
C20.0185 (14)0.0193 (15)0.0276 (15)0.0004 (12)0.0058 (12)0.0011 (12)
C30.0174 (15)0.0196 (15)0.0334 (17)0.0030 (12)0.0052 (12)0.0026 (13)
C40.0184 (15)0.0161 (14)0.0338 (17)0.0032 (12)0.0025 (12)0.0014 (13)
C50.0213 (15)0.0183 (15)0.0244 (15)0.0007 (12)0.0006 (12)0.0023 (12)
C60.0179 (14)0.0146 (14)0.0242 (14)0.0001 (12)0.0024 (11)0.0018 (11)
C70.0198 (14)0.0160 (14)0.0190 (13)0.0020 (12)0.0039 (11)0.0003 (11)
C80.0178 (14)0.0132 (13)0.0203 (14)0.0002 (11)0.0038 (11)0.0005 (11)
C90.0203 (15)0.0142 (14)0.0171 (14)0.0016 (11)0.0031 (11)0.0001 (10)
C100.0197 (14)0.0201 (15)0.0167 (13)0.0032 (12)0.0031 (11)0.0003 (11)
C110.0220 (15)0.0202 (15)0.0219 (14)0.0014 (12)0.0055 (11)0.0040 (12)
C120.0205 (14)0.0169 (14)0.0224 (14)0.0014 (12)0.0016 (11)0.0012 (11)
C130.0173 (14)0.0148 (13)0.0181 (13)0.0023 (11)0.0019 (11)0.0012 (11)
C140.0204 (16)0.0208 (15)0.0322 (17)0.0014 (13)0.0063 (13)0.0010 (13)
C150.0266 (16)0.0259 (16)0.0260 (15)0.0014 (14)0.0092 (13)0.0092 (13)
Geometric parameters (Å, º) top
Br—C41.906 (3)C4—C51.372 (5)
V—O11.872 (2)C5—C61.405 (4)
V—O21.937 (2)C5—H50.9500
V—O32.266 (2)C6—C71.451 (4)
V—O41.766 (2)C7—H70.9500
V—O51.596 (2)C8—C131.400 (4)
V—N12.170 (3)C8—C91.405 (4)
Cl—C101.740 (3)C9—C101.377 (4)
O1—C11.324 (4)C9—H90.9500
O2—C131.340 (4)C10—C111.397 (4)
O3—C141.433 (4)C11—C121.380 (4)
O3—H30.835 (10)C11—H110.9500
O4—C151.424 (4)C12—C131.400 (4)
N1—C71.284 (4)C12—H120.9500
N1—C81.425 (4)C14—H14A0.9800
C1—C61.411 (4)C14—H14B0.9800
C1—C21.411 (4)C14—H14C0.9800
C2—C31.385 (5)C15—H15A0.9800
C2—H20.9500C15—H15B0.9800
C3—C41.396 (5)C15—H15C0.9800
C3—H3A0.9500
O5—V—O4101.68 (11)C6—C5—H5120.1
O5—V—O199.96 (11)C5—C6—C1119.6 (3)
O4—V—O1100.33 (10)C5—C6—C7118.0 (3)
O5—V—O298.49 (11)C1—C6—C7122.5 (3)
O4—V—O292.46 (10)N1—C7—C6124.4 (3)
O1—V—O2154.86 (10)N1—C7—H7117.8
O5—V—N192.90 (11)C6—C7—H7117.8
O4—V—N1163.59 (11)C13—C8—C9120.5 (3)
O1—V—N184.30 (10)C13—C8—N1112.9 (3)
O2—V—N177.84 (9)C9—C8—N1126.5 (3)
O5—V—O3173.36 (10)C10—C9—C8118.1 (3)
O4—V—O384.85 (10)C10—C9—H9120.9
O1—V—O379.86 (9)C8—C9—H9120.9
O2—V—O379.85 (9)C9—C10—C11121.8 (3)
N1—V—O380.47 (9)C9—C10—Cl119.1 (2)
C1—O1—V135.74 (19)C11—C10—Cl119.1 (2)
C13—O2—V119.48 (19)C12—C11—C10120.3 (3)
C14—O3—V122.00 (19)C12—C11—H11119.8
C14—O3—H3110 (3)C10—C11—H11119.8
V—O3—H3118 (4)C11—C12—C13119.0 (3)
C15—O4—V129.3 (2)C11—C12—H12120.5
C7—N1—C8122.0 (3)C13—C12—H12120.5
C7—N1—V127.0 (2)O2—C13—C12121.8 (3)
C8—N1—V110.89 (19)O2—C13—C8117.9 (3)
O1—C1—C6122.4 (3)C12—C13—C8120.3 (3)
O1—C1—C2118.4 (3)O3—C14—H14A109.5
C6—C1—C2119.2 (3)O3—C14—H14B109.5
C3—C2—C1120.7 (3)H14A—C14—H14B109.5
C3—C2—H2119.7O3—C14—H14C109.5
C1—C2—H2119.7H14A—C14—H14C109.5
C2—C3—C4119.0 (3)H14B—C14—H14C109.5
C2—C3—H3A120.5O4—C15—H15A109.5
C4—C3—H3A120.5O4—C15—H15B109.5
C5—C4—C3121.8 (3)H15A—C15—H15B109.5
C5—C4—Br119.4 (3)O4—C15—H15C109.5
C3—C4—Br118.8 (3)H15A—C15—H15C109.5
C4—C5—C6119.7 (3)H15B—C15—H15C109.5
C4—C5—H5120.1
O5—V—O1—C169.0 (3)C2—C3—C4—C50.0 (5)
O4—V—O1—C1172.9 (3)C2—C3—C4—Br179.5 (2)
O2—V—O1—C167.7 (4)C3—C4—C5—C60.2 (5)
N1—V—O1—C123.0 (3)Br—C4—C5—C6179.2 (2)
O3—V—O1—C1104.3 (3)C4—C5—C6—C10.3 (5)
O5—V—O2—C1382.2 (2)C4—C5—C6—C7178.4 (3)
O4—V—O2—C13175.6 (2)O1—C1—C6—C5176.3 (3)
O1—V—O2—C1354.6 (3)C2—C1—C6—C51.0 (4)
N1—V—O2—C138.9 (2)O1—C1—C6—C71.7 (5)
O3—V—O2—C1391.2 (2)C2—C1—C6—C7179.1 (3)
O4—V—O3—C1436.8 (2)C8—N1—C7—C6179.1 (3)
O1—V—O3—C14138.3 (2)V—N1—C7—C65.0 (4)
O2—V—O3—C1456.6 (2)C5—C6—C7—N1177.6 (3)
N1—V—O3—C14135.9 (2)C1—C6—C7—N14.3 (5)
O5—V—O4—C154.4 (3)C7—N1—C8—C13178.1 (3)
O1—V—O4—C15106.9 (3)V—N1—C8—C135.4 (3)
O2—V—O4—C1594.8 (3)C7—N1—C8—C91.7 (5)
N1—V—O4—C15147.9 (4)V—N1—C8—C9174.8 (3)
O3—V—O4—C15174.4 (3)C13—C8—C9—C100.7 (5)
O5—V—N1—C785.7 (3)N1—C8—C9—C10179.6 (3)
O4—V—N1—C7121.4 (4)C8—C9—C10—C110.2 (5)
O1—V—N1—C714.0 (3)C8—C9—C10—Cl179.5 (2)
O2—V—N1—C7176.2 (3)C9—C10—C11—C120.0 (5)
O3—V—N1—C794.6 (3)Cl—C10—C11—C12179.7 (2)
O5—V—N1—C890.5 (2)C10—C11—C12—C130.4 (5)
O4—V—N1—C862.3 (4)V—O2—C13—C12171.7 (2)
O1—V—N1—C8169.7 (2)V—O2—C13—C88.8 (4)
O2—V—N1—C87.54 (19)C11—C12—C13—O2178.6 (3)
O3—V—N1—C889.1 (2)C11—C12—C13—C80.9 (5)
V—O1—C1—C621.3 (5)C9—C8—C13—O2178.4 (3)
V—O1—C1—C2161.3 (2)N1—C8—C13—O21.4 (4)
O1—C1—C2—C3176.2 (3)C9—C8—C13—C121.0 (5)
C6—C1—C2—C31.3 (5)N1—C8—C13—C12179.2 (3)
C1—C2—C3—C40.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.84 (1)1.89 (2)2.702 (3)163 (5)
Symmetry code: (i) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[V(C13H7BrClNO2)(CH3O)O(CH4O)]
Mr454.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.9585 (2), 9.8949 (2), 17.3612 (3)
β (°) 100.746 (2)
V3)1680.74 (6)
Z4
Radiation typeCu Kα
µ (mm1)9.42
Crystal size (mm)0.20 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.255, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
6974, 3453, 3125
Rint0.029
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.04
No. of reflections3453
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.37, 0.93

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
V—O11.872 (2)V—O41.766 (2)
V—O21.937 (2)V—O51.596 (2)
V—O32.266 (2)V—N12.170 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.835 (10)1.893 (18)2.702 (3)163 (5)
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

We gratefully acknowledge support of this study by Tabriz Azad University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClague, M. J., Keder, N. L. & Butler, A. (1993). Inorg. Chem. 32, 4754–4761.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationHartung, J., Ludwig, A., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, m1422–m1423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYenişehirli, G., Öztaş, N. A., Şahin, E., Çelebier, M., Ancin, N. & Öztaş, S. G. (2010). Heteroat. Chem. 21, 373–385.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m221-m222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds