metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­[μ3-4-carb­­oxy-2-(pyridin-4-yl)-1H-imidazole-5-carboxyl­ato-κ5N1,O5:N3,O4:N2]nickel(II)]

aFaculty of Chemistry and Material Science, Langfang Teachers College, Langfang, Hebei 065000, People's Republic of China, and bKey Laboratory of Oilfield Applied Chemistry, College of Heilongjiang Province, Chemistry & Chemical Engineering Daqing Normal University, Daqing, Heilongjiang 163712, People's Republic of China
*Correspondence e-mail: jingxm1982@gmail.com

(Received 15 December 2011; accepted 16 January 2012; online 21 January 2012)

The water-coordinated Ni2+ cation in the title compound, [Ni(C10H5N3O4)(H2O)]n, assumes an octa­hedral NiN3O3 coord­ination mode and is N,O-chelated by two deprotonated 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarb­oxy­lic acid (HPyImDC2−) ligands, forming a layer structure extending in the bc plane. The chains are arranged along the b-axis direction, forming a layer structure extending in the bc plane. O—H⋯O hydrogen bonding between the layers results in the formation of a three-dimensional supra­molecular framework. The structure is isotypic with the Zn analogue [Li et al. (2009). Cryst. Growth Des. 6, 3423–3431].

Related literature

For the isotypic Zn compound, see: Li et al. (2009[Li, X., Wu, B., Niu, C., Niu, Y. & Zhang, H. (2009). Cryst. Growth Des. 9, 3423-3431.]). The HPyImDC2− anion behaves as a T-shaped linker, see: Jing et al. (2010[Jing, X., Meng, H., Li, G., Yu, Y., Huo, Q., Eddaoudi, M. & Liu, Y. (2010). Cryst. Growth Des. 10, 3489-3495.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H5N3O4)(H2O)]

  • Mr = 307.88

  • Monoclinic, P 21 /c

  • a = 7.5117 (15) Å

  • b = 11.400 (2) Å

  • c = 12.896 (4) Å

  • β = 109.04 (3)°

  • V = 1043.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 293 K

  • 0.21 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.216, Tmax = 0.422

  • 10075 measured reflections

  • 2377 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.118

  • S = 1.04

  • 2377 reflections

  • 200 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.94 (7) 1.57 (7) 2.501 (4) 171 (7)
O1W—H1A⋯O3i 0.78 (9) 1.95 (9) 2.726 (5) 174 (9)
O1W—H1B⋯O1ii 0.73 (6) 2.35 (6) 3.007 (5) 150 (5)
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Li et al. (2009) described the structure of [Zn(C10H5N3O4)H2O] as a stairway-like two-dimensional 3,3-connected layer held together via hydrogen-bonding interactions involving the carboxylic acid and water H atoms to be a three-dimensional network. The HPyImDC2- anion behaves as a T-shaped linker (Jing et al., 2010) with one N atoms and bis-N,O-bridging modes chelating the Ni(II) atoms. The present centrosymmetric Ni analogue, (Fig. 1) is isomorphous, the two compounds having nearly identical unit-cell parameters.

As shown in Fig. 2a, the {NiN3O3} octahedra connect with the T-shaped HPyImDC2- anions to be a one-dimensional chain structure extending in the c direction. Then these one-dimensional chains arrange along the b direction to be a two-dimensional layer structure extending in the bc plane (Fig. 2 b), which are further connected through the hydrogen bonds occurred between O(1 W)—H(1 A)···O(3) (-x + 1,-y,-z) and O(1 W)—H(1B)···O(1)(x-1, y, z), respectively, to construct a three-dimensional supramolecular framework (Fig. 2c and Table 1).

Related literature top

For the isotypic Cu compound, see: Li et al. (2009). The HPyImDC2- anion behaves as a T-shaped linker, see: Jing et al. (2010).

Experimental top

Preparation of the complex.

A solution of NiCl26H2O (0.012 g, 0.5 mmol) and H3PyImDC (0.012 g, 0.05 mmol) in DMF (1 ml) and H2O (0.5 ml) was sealed into a 15 ml Teflon-lined stainless autoclave and heated at 433 K for 4 days and then cooled to room temperature gradually to afford well formed green block crystals in about 60% yield (based on Zn). Elemental analysis found (%): C, 39.06; H, 2.30; N, 13.72; Ni, 19.01. H7C10N3O5Ni requires (%): C, 39.01; H, 2.29; N, 13.65; Ni, 19.06. IR (KBr, cm-1): 3571 (s), 3083 (m), 2560 (w), 1675 (w), 1565 (versus), 1271 (s), 842 (m), 567 (w).

Refinement top

The H atoms bonded to C were positioned geometrically with C—H distance 0.93–0.96 Å, and treated as riding atoms, with Uiso(H)=1.1Ueq(C). The H atoms bonded to O were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the centrosymmetric molecule of (I), with displacement ellipsoids drawn at the 25% probability level [symmetry code: (i) -x, -y - 1, -z; (ii) x, -y - 1/2, z + 1/2; (iii) x, -y - 1/2, z - 1/2]
[Figure 2] Fig. 2. (a) A view showing the one-dimensional (one-dimensional) chain along the c direction; (b) one-dimensional chains arranged in the b direction to be a two-dimensional layer structure; (c) the two-dimensional layers packed in an AAA way via hydrogen-bonding interactions to be a three-dimensional network.
Poly[aqua[µ3-4-carboxy-2-(pyridin-4-yl)-1H-imidazole-5-carboxylato- κ5N1,O5:N3,O4:N2]nickel(II)] top
Crystal data top
[Ni(C10H5N3O4)(H2O)]Dx = 1.959 Mg m3
Mr = 307.88Melting point: not measured K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5117 (15) ÅCell parameters from 2377 reflections
b = 11.400 (2) Åθ = 3.3–27.4°
c = 12.896 (4) ŵ = 1.88 mm1
β = 109.04 (3)°T = 293 K
V = 1043.9 (4) Å3Block, green
Z = 40.21 × 0.16 × 0.13 mm
F(000) = 624
Data collection top
Bruker SMART CCD area-detector
diffractometer
2377 independent reflections
Radiation source: fine-focus sealed tube1951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.00cm pixels mm-1θmax = 27.4°, θmin = 3.3°
phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.216, Tmax = 0.422l = 1616
10075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 3.3079P]
where P = (Fo2 + 2Fc2)/3
2377 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
[Ni(C10H5N3O4)(H2O)]V = 1043.9 (4) Å3
Mr = 307.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5117 (15) ŵ = 1.88 mm1
b = 11.400 (2) ÅT = 293 K
c = 12.896 (4) Å0.21 × 0.16 × 0.13 mm
β = 109.04 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2377 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1951 reflections with I > 2σ(I)
Tmin = 0.216, Tmax = 0.422Rint = 0.067
10075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
2377 reflectionsΔρmin = 1.09 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.32031 (7)0.26730 (4)0.18242 (4)0.01465 (17)
O10.7267 (4)0.0698 (3)0.1164 (3)0.0285 (7)
H10.740 (10)0.063 (6)0.046 (6)0.08 (2)*
O20.5375 (4)0.1450 (3)0.1996 (2)0.0234 (7)
O30.7296 (4)0.0603 (3)0.0768 (2)0.0275 (7)
O40.5464 (4)0.1211 (2)0.2426 (2)0.0210 (6)
O1W0.1140 (5)0.1417 (3)0.1203 (3)0.0243 (7)
H1A0.163 (12)0.087 (8)0.106 (7)0.11 (3)*
H1B0.041 (8)0.120 (5)0.142 (4)0.030 (16)*
N10.3422 (5)0.2756 (3)0.0217 (3)0.0158 (7)
N20.3437 (5)0.2632 (3)0.1527 (2)0.0141 (6)
N30.1352 (5)0.5920 (3)0.1621 (3)0.0168 (7)
C10.5860 (6)0.1354 (3)0.1176 (3)0.0178 (8)
C20.4806 (5)0.1986 (3)0.0175 (3)0.0142 (8)
C30.4813 (5)0.1914 (3)0.0886 (3)0.0148 (8)
C40.5922 (6)0.1201 (3)0.1406 (3)0.0172 (8)
C50.2647 (5)0.3130 (3)0.0826 (3)0.0144 (8)
C60.1198 (5)0.4054 (3)0.1148 (3)0.0151 (8)
C70.0568 (6)0.3944 (3)0.1030 (3)0.0161 (8)
H70.090 (7)0.323 (4)0.074 (4)0.029 (13)*
C80.1783 (6)0.4892 (4)0.1272 (3)0.0175 (8)
H80.297 (6)0.478 (4)0.122 (3)0.014 (10)*
C90.0311 (6)0.6007 (4)0.1785 (4)0.0231 (9)
H90.047 (6)0.676 (4)0.206 (4)0.023 (12)*
C100.1607 (6)0.5112 (4)0.1567 (3)0.0222 (9)
H100.285 (7)0.522 (4)0.161 (4)0.030 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0168 (3)0.0167 (3)0.0120 (3)0.0020 (2)0.00689 (19)0.0009 (2)
O10.0247 (17)0.0394 (19)0.0202 (16)0.0164 (14)0.0058 (13)0.0018 (14)
O20.0272 (16)0.0310 (16)0.0141 (14)0.0091 (13)0.0097 (12)0.0055 (12)
O30.0250 (16)0.0351 (18)0.0218 (15)0.0181 (14)0.0068 (13)0.0018 (14)
O40.0247 (16)0.0259 (15)0.0155 (14)0.0076 (12)0.0107 (12)0.0026 (12)
O1W0.0235 (18)0.0257 (17)0.0274 (17)0.0037 (14)0.0134 (14)0.0046 (14)
N10.0180 (16)0.0177 (16)0.0133 (15)0.0024 (14)0.0074 (13)0.0009 (13)
N20.0172 (16)0.0152 (15)0.0126 (15)0.0023 (13)0.0085 (13)0.0000 (13)
N30.0197 (17)0.0187 (16)0.0124 (15)0.0032 (14)0.0059 (13)0.0012 (13)
C10.018 (2)0.021 (2)0.0136 (19)0.0036 (16)0.0045 (16)0.0010 (16)
C20.0104 (18)0.0183 (19)0.0136 (18)0.0043 (14)0.0034 (14)0.0016 (15)
C30.0158 (19)0.0160 (18)0.0151 (18)0.0024 (15)0.0087 (15)0.0015 (15)
C40.0165 (19)0.020 (2)0.018 (2)0.0020 (15)0.0091 (16)0.0035 (16)
C50.016 (2)0.0146 (18)0.0146 (18)0.0030 (15)0.0078 (15)0.0009 (15)
C60.017 (2)0.0199 (19)0.0086 (17)0.0038 (16)0.0054 (14)0.0005 (15)
C70.017 (2)0.0147 (19)0.0164 (19)0.0026 (15)0.0059 (15)0.0001 (16)
C80.014 (2)0.023 (2)0.0166 (19)0.0025 (16)0.0065 (15)0.0073 (16)
C90.028 (2)0.019 (2)0.027 (2)0.0057 (18)0.0151 (18)0.0062 (18)
C100.022 (2)0.026 (2)0.024 (2)0.0044 (17)0.0150 (18)0.0045 (18)
Geometric parameters (Å, º) top
Ni1—O1W2.070 (3)N2—C31.365 (5)
Ni1—N3i2.082 (3)N2—Ni1iii2.105 (3)
Ni1—O4ii2.089 (3)N3—C81.332 (5)
Ni1—O22.103 (3)N3—C91.338 (5)
Ni1—N2ii2.105 (3)N3—Ni1i2.082 (3)
Ni1—N12.134 (3)C1—C21.465 (5)
O1—C11.299 (5)C2—C31.372 (5)
O1—H10.94 (7)C3—C41.474 (5)
O2—C11.230 (5)C5—C61.474 (5)
O3—C41.285 (5)C6—C71.390 (5)
O4—C41.246 (5)C6—C101.396 (6)
O4—Ni1iii2.089 (3)C7—C81.384 (6)
O1W—H1A0.78 (9)C7—H70.96 (5)
O1W—H1B0.73 (6)C8—H80.93 (4)
N1—C51.349 (5)C9—C101.374 (6)
N1—C21.375 (5)C9—H90.95 (5)
N2—C51.356 (5)C10—H100.96 (5)
O1W—Ni1—N3i95.68 (14)O2—C1—O1122.1 (4)
O1W—Ni1—O4ii173.34 (13)O2—C1—C2119.2 (3)
N3i—Ni1—O4ii89.89 (13)O1—C1—C2118.7 (3)
O1W—Ni1—O292.26 (14)C3—C2—N1109.0 (3)
N3i—Ni1—O2170.92 (13)C3—C2—C1132.3 (3)
O4ii—Ni1—O282.49 (12)N1—C2—C1118.5 (3)
O1W—Ni1—N2ii94.71 (13)N2—C3—C2108.6 (3)
N3i—Ni1—N2ii94.98 (12)N2—C3—C4118.9 (3)
O4ii—Ni1—N2ii81.13 (11)C2—C3—C4132.4 (4)
O2—Ni1—N2ii88.74 (12)O4—C4—O3124.6 (4)
O1W—Ni1—N186.54 (13)O4—C4—C3118.2 (3)
N3i—Ni1—N195.94 (12)O3—C4—C3117.1 (3)
O4ii—Ni1—N196.54 (12)N1—C5—N2113.1 (3)
O2—Ni1—N180.11 (11)N1—C5—C6123.1 (3)
N2ii—Ni1—N1168.83 (12)N2—C5—C6123.7 (3)
C1—O1—H1114 (4)C7—C6—C10117.3 (4)
C1—O2—Ni1113.9 (3)C7—C6—C5123.2 (4)
C4—O4—Ni1iii113.4 (2)C10—C6—C5119.4 (3)
Ni1—O1W—H1A107 (6)C8—C7—C6119.2 (4)
Ni1—O1W—H1B130 (4)C8—C7—H7121 (3)
H1A—O1W—H1B107 (7)C6—C7—H7120 (3)
C5—N1—C2104.4 (3)N3—C8—C7123.3 (4)
C5—N1—Ni1146.9 (3)N3—C8—H8119 (3)
C2—N1—Ni1108.0 (2)C7—C8—H8117 (3)
C5—N2—C3104.9 (3)N3—C9—C10123.2 (4)
C5—N2—Ni1iii146.2 (3)N3—C9—H9111 (3)
C3—N2—Ni1iii108.1 (2)C10—C9—H9126 (3)
C8—N3—C9117.5 (3)C9—C10—C6119.4 (4)
C8—N3—Ni1i119.6 (3)C9—C10—H10122 (3)
C9—N3—Ni1i122.9 (3)C6—C10—H10118 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.94 (7)1.57 (7)2.501 (4)171 (7)
O1W—H1A···O3iv0.78 (9)1.95 (9)2.726 (5)174 (9)
O1W—H1B···O1v0.73 (6)2.35 (6)3.007 (5)150 (5)
Symmetry codes: (iv) x+1, y, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C10H5N3O4)(H2O)]
Mr307.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5117 (15), 11.400 (2), 12.896 (4)
β (°) 109.04 (3)
V3)1043.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.21 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.216, 0.422
No. of measured, independent and
observed [I > 2σ(I)] reflections
10075, 2377, 1951
Rint0.067
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.118, 1.04
No. of reflections2377
No. of parameters200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 1.09

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.94 (7)1.57 (7)2.501 (4)171 (7)
O1W—H1A···O3i0.78 (9)1.95 (9)2.726 (5)174 (9)
O1W—H1B···O1ii0.73 (6)2.35 (6)3.007 (5)150 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Second Self-financing Project of Langfang Scientific and Technological Research and the Development Program of Hebei Province of the People's Republic of China (grant No. 2011011037).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJing, X., Meng, H., Li, G., Yu, Y., Huo, Q., Eddaoudi, M. & Liu, Y. (2010). Cryst. Growth Des. 10, 3489–3495.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Wu, B., Niu, C., Niu, Y. & Zhang, H. (2009). Cryst. Growth Des. 9, 3423–3431.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds