metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2,2′-[(2-amino­eth­yl)aza­nedi­yl]diethanaminium} di-μ-sulfido-bis­­(di­sulfido­germanate)

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 8 December 2011; accepted 9 January 2012; online 14 January 2012)

In the title compound, (C6H20N4)2[Ge2S6], the dimeric [Ge2S6]4− anion is formed by two edge-sharing GeS4 tetra­hedral units. The average terminal and bridging Ge—S bond lengths are 2.158 (14) and 2.276 (6) Å, respectively. The anions and the diprotonated ammonium cations are organized into a three-dimensional network by N—H⋯S and N—H⋯N hydrogen bonds.

Related literature

For background to main group metal–chalcogenide compounds, see: Bowes & Ozin (1996[Bowes, C. L. & Ozin, G. A. (1996). Adv. Mater. 8, 13-18.]); Zheng et al. (2002[Zheng, N., Bu, X., Wang, B. & Feng, P. (2002). Science, 298, 2366-2370.], 2005[Zheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805-2806.]). For a related structure, see: Jia et al. (2005[Jia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874-881.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H20N4)2[Ge2S6]

  • Mr = 634.06

  • Monoclinic, C 2/c

  • a = 25.2845 (17) Å

  • b = 7.3173 (4) Å

  • c = 16.6001 (9) Å

  • β = 122.637 (4)°

  • V = 2586.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 296 K

  • 0.19 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.616, Tmax = 0.677

  • 11988 measured reflections

  • 2952 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.03

  • 2952 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.05 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯S3i 0.85 (4) 2.61 (5) 3.445 (4) 170 (4)
N2—H2N⋯S2 0.73 (8) 2.91 (8) 3.470 (4) 136 (6)
N2—H2N⋯S3 0.73 (8) 2.89 (8) 3.514 (4) 145 (7)
N2—H3N⋯N3ii 0.99 (4) 1.95 (4) 2.897 (5) 159 (4)
N4—H6N⋯S3i 0.90 (5) 2.44 (5) 3.311 (4) 163 (4)
N4—H7N⋯S2iii 0.87 (4) 2.50 (4) 3.357 (4) 170 (3)
N4—H8N⋯S3iv 0.90 (4) 2.47 (4) 3.362 (4) 171 (3)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been an extensive interest in main group metal–chalcogenide compounds because of their unique structures and potential applications in areas such as semiconductors and photocatalysis (Zheng et al., 2005). To synthesize related compounds, many attempts have been made to the reaction of metal-sulfur fluxes at high temperature (Bowes & Ozin, 1996). Compared to the harsh conditions, solvothermal synthesis in a lower temperature is the most efficient choice for the synthesis of metal–chalcogenide complexes (Zheng et al., 2002). In this paper, we report the hydrothermal synthesis and crystal structure of a new thiogermanate, [taeaH2]2[Ge2S6] (taea = tris(2-aminoethyl)amine).

The title compound is composed of a dimeric [Ge2S6]4- anion and two diprotonated [taeaH2]2+ cations (Fig. 1). The dimeric anion is constructed by two edge-sharing tetrahedral GeS4 units, forming a planar four-membered Ge2S2 ring. The S—Ge—S angles from the tetrahedral unit display a range from 94.68 (3) to 115.75 (4)°. The Ge—S—Ge angle in the four-membered Ge2S2 ring is 85.32 (3)°. The average bond length of Ge—St (terminal bond) is shorter than that of Ge—Sb (bridging bond) by 0.118 Å. The bond parameters in the title compound are similar to those found in the other thiogermmanates (Jia et al., 2005). Two terminal amine groups from the taea molecule are protonated to balance negative charges of the dimeric anion. The anions and cations are organized into an extended three-dimensional network by N—H···N and N—H···S hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For background to main group metal–chalcogenide compounds, see: Bowes & Ozin (1996); Zheng et al. (2002, 2005). For a related structure, see: Jia et al. (2005).

Experimental top

GeO2 (104.6 mg, 1.0 mmol) and S (128.0 mg, 4.0 mmol) were mixed with tris(2-aminoethyl)amine (2.0569 g) in a 23 ml Teflon-lined stainless steel autoclave and stirred for 20 min. The vessel was sealed and heated to 190°C for 6 d and then cooled to room temperature. Colorless flake crystals were obtained and air dried. The yield based on GeO2 is about 40%. Analysis, calculated for C12H40Ge2N8S6: C 22.7, H 6.36, N 17.7%; found: C 22.5, H 6.31, N 17.6%.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding atoms. with C—H = 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Dashed lines denote hydrogen bonds.
Bis{2,2'-[(2-aminoethyl)azanediyl]diethanaminium} di-µ-sulfido-bis(disulfidogermanate) top
Crystal data top
(C6H20N4)2[Ge2S6]F(000) = 1312
Mr = 634.06Dx = 1.628 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3750 reflections
a = 25.2845 (17) Åθ = 2.9–26.8°
b = 7.3173 (4) ŵ = 2.83 mm1
c = 16.6001 (9) ÅT = 296 K
β = 122.637 (4)°Block, colorless
V = 2586.3 (3) Å30.19 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2952 independent reflections
Radiation source: fine-focus sealed tube2243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2832
Tmin = 0.616, Tmax = 0.677k = 99
11988 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
2952 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
(C6H20N4)2[Ge2S6]V = 2586.3 (3) Å3
Mr = 634.06Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.2845 (17) ŵ = 2.83 mm1
b = 7.3173 (4) ÅT = 296 K
c = 16.6001 (9) Å0.19 × 0.16 × 0.15 mm
β = 122.637 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2243 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.677Rint = 0.051
11988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.05 e Å3
2952 reflectionsΔρmin = 1.08 e Å3
159 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.046082 (16)0.40953 (4)0.47830 (2)0.02516 (14)
S10.02392 (4)0.64364 (11)0.40812 (6)0.0284 (2)
S20.14075 (4)0.50236 (13)0.53795 (7)0.0368 (2)
S30.01711 (4)0.17923 (11)0.38125 (6)0.0322 (2)
N10.16919 (14)0.0976 (3)0.2936 (2)0.0291 (7)
N20.10013 (18)0.4325 (5)0.3045 (3)0.0375 (8)
H1N0.074 (2)0.358 (6)0.263 (3)0.042 (12)*
H2N0.096 (3)0.399 (9)0.342 (6)0.11 (3)*
H3N0.0834 (19)0.559 (6)0.295 (3)0.043 (11)*
N30.08225 (18)0.1798 (5)0.3167 (3)0.0411 (8)
H4N0.061 (2)0.179 (7)0.340 (4)0.062 (17)*
H5N0.066 (2)0.111 (6)0.277 (3)0.040 (14)*
N40.09320 (16)0.0946 (5)0.0738 (2)0.0344 (7)
H6N0.070 (2)0.112 (6)0.100 (4)0.054 (14)*
H7N0.1009 (18)0.199 (6)0.058 (3)0.038 (11)*
H8N0.0691 (18)0.031 (5)0.019 (3)0.034 (10)*
C10.19669 (17)0.2513 (5)0.3611 (3)0.0353 (8)
H1A0.24030.26530.38120.042*
H1B0.19570.22330.41740.042*
C20.16258 (18)0.4298 (5)0.3188 (3)0.0370 (9)
H2A0.18740.52930.36100.044*
H2B0.15840.44960.25780.044*
C30.18437 (18)0.0753 (5)0.3472 (3)0.0375 (9)
H3A0.22830.07370.39870.045*
H3B0.17840.17550.30480.045*
C40.14468 (19)0.1096 (5)0.3891 (3)0.0396 (9)
H4A0.16590.19720.44090.048*
H4B0.14010.00350.41520.048*
C50.19364 (17)0.0959 (5)0.2311 (3)0.0342 (8)
H5A0.23500.04000.26520.041*
H5B0.19830.22090.21650.041*
C60.15200 (18)0.0063 (5)0.1386 (3)0.0372 (8)
H6A0.17450.02520.10700.045*
H6B0.14190.12520.15260.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0285 (2)0.0261 (2)0.0180 (2)0.00119 (14)0.01058 (16)0.00061 (12)
S10.0353 (5)0.0292 (4)0.0177 (4)0.0043 (3)0.0123 (4)0.0038 (3)
S20.0288 (5)0.0419 (6)0.0347 (5)0.0023 (4)0.0138 (4)0.0004 (4)
S30.0412 (5)0.0293 (5)0.0231 (4)0.0015 (4)0.0153 (4)0.0034 (3)
N10.0328 (16)0.0249 (14)0.0219 (14)0.0012 (12)0.0097 (12)0.0013 (11)
N20.045 (2)0.036 (2)0.0295 (18)0.0025 (16)0.0191 (17)0.0009 (15)
N30.047 (2)0.043 (2)0.035 (2)0.0016 (17)0.0230 (18)0.0023 (16)
N40.0356 (18)0.0358 (18)0.0248 (16)0.0000 (15)0.0116 (15)0.0001 (14)
C10.0354 (19)0.0322 (19)0.0274 (18)0.0033 (15)0.0097 (15)0.0042 (14)
C20.041 (2)0.0298 (19)0.037 (2)0.0050 (16)0.0187 (18)0.0034 (15)
C30.044 (2)0.0283 (19)0.039 (2)0.0064 (16)0.0216 (18)0.0079 (15)
C40.050 (2)0.036 (2)0.029 (2)0.0008 (17)0.0186 (18)0.0017 (15)
C50.0314 (19)0.038 (2)0.0273 (18)0.0032 (15)0.0119 (16)0.0041 (14)
C60.044 (2)0.035 (2)0.0268 (18)0.0076 (16)0.0151 (16)0.0008 (15)
Geometric parameters (Å, º) top
Ge1—S22.1482 (10)N4—H8N0.90 (4)
Ge1—S32.1677 (9)C1—C21.514 (5)
Ge1—S1i2.2715 (9)C1—H1A0.9700
Ge1—S12.2804 (9)C1—H1B0.9700
N1—C51.466 (5)C2—H2A0.9700
N1—C11.471 (4)C2—H2B0.9700
N1—C31.473 (4)C3—C41.519 (6)
N2—C21.465 (5)C3—H3A0.9700
N2—H1N0.85 (4)C3—H3B0.9700
N2—H2N0.73 (8)C4—H4A0.9700
N2—H3N0.99 (4)C4—H4B0.9700
N3—C41.467 (5)C5—C61.511 (5)
N3—H4N0.81 (5)C5—H5A0.9700
N3—H5N0.75 (5)C5—H5B0.9700
N4—C61.479 (5)C6—H6A0.9700
N4—H6N0.90 (5)C6—H6B0.9700
N4—H7N0.87 (4)
S2—Ge1—S3115.74 (4)N2—C2—C1112.4 (3)
S2—Ge1—S1i112.57 (4)N2—C2—H2A109.1
S3—Ge1—S1i110.36 (4)C1—C2—H2A109.1
S2—Ge1—S1111.28 (4)N2—C2—H2B109.1
S3—Ge1—S1110.26 (3)C1—C2—H2B109.1
S1i—Ge1—S194.69 (3)H2A—C2—H2B107.9
Ge1i—S1—Ge185.31 (3)N1—C3—C4113.4 (3)
C5—N1—C1109.8 (3)N1—C3—H3A108.9
C5—N1—C3110.4 (3)C4—C3—H3A108.9
C1—N1—C3109.5 (3)N1—C3—H3B108.9
C2—N2—H1N116 (3)C4—C3—H3B108.9
C2—N2—H2N120 (6)H3A—C3—H3B107.7
H1N—N2—H2N94 (6)N3—C4—C3111.6 (3)
C2—N2—H3N112 (2)N3—C4—H4A109.3
H1N—N2—H3N113 (4)C3—C4—H4A109.3
H2N—N2—H3N101 (5)N3—C4—H4B109.3
C4—N3—H4N108 (4)C3—C4—H4B109.3
C4—N3—H5N109 (3)H4A—C4—H4B108.0
H4N—N3—H5N102 (5)N1—C5—C6113.3 (3)
C6—N4—H6N112 (3)N1—C5—H5A108.9
C6—N4—H7N111 (3)C6—C5—H5A108.9
H6N—N4—H7N109 (4)N1—C5—H5B108.9
C6—N4—H8N110 (2)C6—C5—H5B108.9
H6N—N4—H8N107 (4)H5A—C5—H5B107.7
H7N—N4—H8N107 (4)N4—C6—C5111.6 (3)
N1—C1—C2112.9 (3)N4—C6—H6A109.3
N1—C1—H1A109.0C5—C6—H6A109.3
C2—C1—H1A109.0N4—C6—H6B109.3
N1—C1—H1B109.0C5—C6—H6B109.3
C2—C1—H1B109.0H6A—C6—H6B108.0
H1A—C1—H1B107.8
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···S3ii0.85 (4)2.61 (5)3.445 (4)170 (4)
N2—H2N···S20.73 (8)2.91 (8)3.470 (4)136 (6)
N2—H2N···S30.73 (8)2.89 (8)3.514 (4)145 (7)
N2—H3N···N3iii0.99 (4)1.95 (4)2.897 (5)159 (4)
N4—H6N···S3ii0.90 (5)2.44 (5)3.311 (4)163 (4)
N4—H7N···S2iv0.87 (4)2.50 (4)3.357 (4)170 (3)
N4—H8N···S3v0.90 (4)2.47 (4)3.362 (4)171 (3)
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x, y, z1/2.

Experimental details

Crystal data
Chemical formula(C6H20N4)2[Ge2S6]
Mr634.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.2845 (17), 7.3173 (4), 16.6001 (9)
β (°) 122.637 (4)
V3)2586.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.19 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.616, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
11988, 2952, 2243
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.03
No. of reflections2952
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 1.08

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···S3i0.85 (4)2.61 (5)3.445 (4)170 (4)
N2—H2N···S20.73 (8)2.91 (8)3.470 (4)136 (6)
N2—H2N···S30.73 (8)2.89 (8)3.514 (4)145 (7)
N2—H3N···N3ii0.99 (4)1.95 (4)2.897 (5)159 (4)
N4—H6N···S3i0.90 (5)2.44 (5)3.311 (4)163 (4)
N4—H7N···S2iii0.87 (4)2.50 (4)3.357 (4)170 (3)
N4—H8N···S3iv0.90 (4)2.47 (4)3.362 (4)171 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z1/2; (iv) x, y, z1/2.
 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

References

First citationBowes, C. L. & Ozin, G. A. (1996). Adv. Mater. 8, 13–18.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874–881.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805–2806.  Web of Science CSD CrossRef Google Scholar
First citationZheng, N., Bu, X., Wang, B. & Feng, P. (2002). Science, 298, 2366–2370.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds