metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m132-m133

{(E)-4-Hy­dr­oxy-N′-[phen­yl(pyridin-2-yl-κN)methyl­­idene]benzohydrazide-κ2N′,O}bis­­(nitrato-κ2O,O′)copper(II)

aYoung Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bSchool of Physics, Iran University of Science and Technology, 16844 Tehran, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: bikas_r@yahoo.com

(Received 8 December 2011; accepted 26 December 2011; online 11 January 2012)

In the title compound, [Cu(NO3)2(C19H15N3O2)], the coordination geometry around the CuII ion can be described as distorted square-pyramidal, with two N atoms and one O atom from an (E)-4-hy­droxy-N′-[phen­yl(pyridin-2-yl)methyl­ene]benzohydrazide ligand and one nitrate O atom in the basal plane and one nitrate O atom at the apical site. The other two nitrate O atoms also bind to the Cu atom with long Cu—O distances [2.607 (4) and 2.853 (5) Å]. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For background to aroylhydrazones, see: Craliz et al. (1955[Craliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.]). For pharmacological and catalytic applications of aroylhydrazones, see: Hosseini Monfared et al. (2010[Hosseini Monfared, H., Bikas, R. & Mayer, P. (2010). Inorg. Chim. Acta, 363, 2574-2583.]). For related structures, see: Huo et al. (2004[Huo, L.-H., Lu, Z.-Z., Gao, S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1636-m1638.]); Kong et al. (2009[Kong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1251.]); Mohd Lair et al. (2010[Mohd Lair, N., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, m470.]); Shit et al. (2009[Shit, S., Chakraborty, J., Samanta, B., Slawin, A. M. Z., Gramlich, V. & Mitra, S. (2009). Struct. Chem. 20, 633-642.]); Yin (2008[Yin, H. (2008). Acta Cryst. C64, m324-m326.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C19H15N3O2)]

  • Mr = 504.91

  • Triclinic, [P \overline 1]

  • a = 9.881 (2) Å

  • b = 10.373 (2) Å

  • c = 11.964 (2) Å

  • α = 102.51 (3)°

  • β = 105.07 (3)°

  • γ = 111.16 (3)°

  • V = 1036.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.731, Tmax = 0.897

  • 11512 measured reflections

  • 5533 independent reflections

  • 4123 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.197

  • S = 1.13

  • 5533 reflections

  • 303 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5i 0.88 (4) 2.20 (5) 2.866 (6) 132 (4)
N3—H3A⋯O4i 0.88 (4) 2.31 (4) 3.180 (5) 171 (3)
O2—H2A⋯O8ii 0.82 1.95 2.766 (5) 174
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazone ligands, a class of Schiff-base compounds, derived from the condensation of acid hydrazides (R–CO–NH–NH2) with aromatic 2-pyridyl aldehydes or ketones are important tridentate O, N, N-donor ligands. The coordination chemistry and biochemistry of aroylhydrazones, R–CO–NH–N=CH–R', have attracted increasing interest due to their chelating ability and pharmacological applications (Craliz et al., 1955; Huo et al., 2004; Kong et al., 2009; Mohd Lair et al., 2010; Shit et al., 2009; Yin, 2008). Hydrazone ligands create environments similar to biological systems by usually making coordination through O and N atoms. The coordination compounds of aroylhydrazones have been reported to act as enzyme inhibitors and are useful due to their pharmacological and catalytic applications (Hosseini Monfared et al., 2010). As part of our studies on the synthesis and characterization of aroylhydrazone compounds, we report here the crystal structure of a new copper complex obtained by the reaction of Cu(NO3)2.3H2O with (E)-4-hydroxy-N'-[phenyl(pyridin-2-yl)methylene]benzohydrazide (HL) in methanol.

The coordination geometry around the CuII ion can be described as disotorted five-coordinated square-pyramidal (Fig. 1). The square plane is constructed by two N atoms and one O atom from the hydrazone ligand and O6 from a nitrate group. The apical position is occupied by O3 atom of another nitrate group. There are also two secondary bonding interactions between the Cu atom and O7 and O5 of two nitrate groups (dashed lines in Fig. 1). These Cu···O distances are 2.607 (4) and 2.853 (5) Å for O7 and O5, respectively. They are shorter than sum of van der Waals radii of oxygen and copper atoms (2.92 Å; Bondi, 1964). The crystal packing of the title compound is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds (Fig. 2, Table 1).

Related literature top

For background to aroylhydrazones, see: Craliz et al. (1955). For pharmacological and catalytic applications of aroylhydrazones, see: Hosseini Monfared et al. (2010). For related structures, see: Huo et al. (2004); Kong et al. (2009); Mohd Lair et al. (2010); Shit et al. (2009); Yin (2008). For van der Waals radii, see: Bondi (1964).

Experimental top

The HL ligand was prepared by refluxing a mixture of 2-benzylpyridine and 4-hydroxybenzohydrazide with equivalent molar ratio in 20 ml methanol. The mixture was refluxed for 3 h. The solution was then evaporated on a steam bath to 5 ml and cooled to room temperature. The obtained solids were separated and filtered off, washed with 5 ml of cooled methanol and then dried in air.

For preparing the title compound, the appropriate HL ligand (1.0 mmol) was dissolved in methanol (20 ml), then Cu(NO3)2.3H2O (1.1 mmol) was added and the solution was refluxed for 4 h. After cooling, the resulting green solution was filtered and evaporated at room temperature. X-ray quality crystals of the title compound were obtained by slow solvent evaporation.

Refinement top

H atom of the N—H group was found in difference Fourier map and refined isotropically. H atom of the O—H group and aromatic C—H groups were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing hydrogen bonds as blue dashed lines.
{(E)-4-Hydroxy-N'-[phenyl(pyridin-2-yl- κN)methylidene]benzohydrazide-κ2N',O}bis(nitrato- κ2O,O')copper(II) top
Crystal data top
[Cu(NO3)2(C19H15N3O2)]Z = 2
Mr = 504.91F(000) = 514
Triclinic, P1Dx = 1.618 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.881 (2) ÅCell parameters from 5533 reflections
b = 10.373 (2) Åθ = 1.9–29.2°
c = 11.964 (2) ŵ = 1.11 mm1
α = 102.51 (3)°T = 298 K
β = 105.07 (3)°Needle, green
γ = 111.16 (3)°0.30 × 0.15 × 0.10 mm
V = 1036.6 (6) Å3
Data collection top
Stoe IPDS 2T
diffractometer
5533 independent reflections
Radiation source: fine-focus sealed tube4123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 1.9°
rotation method scansh = 1313
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
k = 1314
Tmin = 0.731, Tmax = 0.897l = 1616
11512 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.1213P)2]
where P = (Fo2 + 2Fc2)/3
5533 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.84 e Å3
1 restraintΔρmin = 0.64 e Å3
Crystal data top
[Cu(NO3)2(C19H15N3O2)]γ = 111.16 (3)°
Mr = 504.91V = 1036.6 (6) Å3
Triclinic, P1Z = 2
a = 9.881 (2) ÅMo Kα radiation
b = 10.373 (2) ŵ = 1.11 mm1
c = 11.964 (2) ÅT = 298 K
α = 102.51 (3)°0.30 × 0.15 × 0.10 mm
β = 105.07 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
5533 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
4123 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.897Rint = 0.099
11512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.84 e Å3
5533 reflectionsΔρmin = 0.64 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.70675 (5)0.09738 (4)0.74518 (4)0.03884 (16)
O10.7184 (4)0.2036 (3)0.5904 (2)0.0440 (6)
O20.6844 (5)0.4026 (4)0.0445 (3)0.0650 (9)
H2A0.75400.35200.02560.098*
O30.4467 (4)0.2228 (3)0.6994 (3)0.0566 (7)
O40.2388 (4)0.1955 (4)0.6201 (4)0.0750 (10)
O50.4417 (5)0.0900 (5)0.5848 (4)0.0811 (12)
O60.7259 (3)0.2248 (3)0.8443 (3)0.0461 (6)
O70.9656 (4)0.1034 (4)0.8623 (3)0.0595 (8)
O80.9127 (4)0.2510 (4)0.9654 (3)0.0644 (9)
N10.7192 (4)0.0659 (3)0.8753 (3)0.0409 (6)
N20.7711 (3)0.0601 (3)0.6788 (2)0.0356 (5)
N30.7779 (4)0.0173 (3)0.5644 (3)0.0400 (6)
N40.3756 (4)0.1701 (3)0.6356 (3)0.0455 (7)
N50.8729 (4)0.1919 (4)0.8921 (3)0.0430 (6)
C10.6978 (5)0.0614 (5)0.9806 (4)0.0528 (9)
H10.67190.02670.99630.063*
C20.7131 (7)0.1835 (6)1.0667 (4)0.0654 (12)
H20.69840.17831.13960.078*
C30.7503 (7)0.3120 (6)1.0427 (5)0.0703 (14)
H30.75740.39451.09820.084*
C40.7777 (6)0.3203 (5)0.9357 (4)0.0529 (9)
H40.80720.40850.92020.063*
C50.7601 (4)0.1944 (4)0.8529 (3)0.0389 (7)
C60.7855 (4)0.1873 (4)0.7353 (3)0.0365 (6)
C70.8239 (4)0.3152 (3)0.6936 (3)0.0371 (6)
C80.7251 (5)0.3824 (4)0.6785 (4)0.0507 (9)
H80.63210.34490.69170.061*
C90.7662 (6)0.5059 (5)0.6437 (5)0.0605 (11)
H90.69870.54930.63130.073*
C100.9046 (6)0.5646 (5)0.6275 (4)0.0602 (11)
H100.93190.64920.60660.072*
C111.0036 (6)0.4994 (5)0.6419 (4)0.0571 (10)
H111.09770.53940.63080.068*
C120.9617 (5)0.3721 (4)0.6734 (4)0.0480 (8)
H121.02670.32570.68090.058*
C130.7418 (4)0.1287 (4)0.5217 (3)0.0378 (7)
C140.7340 (4)0.1929 (4)0.3982 (3)0.0372 (6)
C150.7989 (5)0.1090 (4)0.3319 (4)0.0463 (8)
H150.85280.00700.36810.056*
C160.7840 (5)0.1755 (4)0.2136 (4)0.0464 (8)
H160.82900.11880.17080.056*
C170.7007 (5)0.3293 (4)0.1578 (3)0.0449 (8)
C180.6355 (5)0.4144 (4)0.2234 (4)0.0474 (8)
H180.57980.51620.18670.057*
C190.6544 (4)0.3464 (4)0.3427 (3)0.0420 (7)
H190.61360.40320.38690.050*
H3A0.762 (5)0.060 (4)0.510 (3)0.042 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0537 (3)0.0329 (2)0.0368 (2)0.02255 (18)0.01981 (19)0.01504 (16)
O10.0690 (16)0.0362 (11)0.0377 (12)0.0304 (12)0.0234 (12)0.0157 (10)
O20.089 (2)0.0500 (16)0.0504 (16)0.0209 (16)0.0403 (17)0.0075 (13)
O30.0596 (17)0.0522 (16)0.0630 (18)0.0276 (14)0.0200 (14)0.0273 (14)
O40.0497 (18)0.068 (2)0.096 (3)0.0300 (16)0.0149 (18)0.015 (2)
O50.069 (2)0.079 (2)0.095 (3)0.0210 (19)0.022 (2)0.058 (2)
O60.0507 (14)0.0443 (13)0.0531 (15)0.0243 (11)0.0212 (12)0.0265 (12)
O70.0511 (16)0.0687 (19)0.0625 (19)0.0213 (14)0.0227 (14)0.0366 (16)
O80.073 (2)0.082 (2)0.066 (2)0.0469 (19)0.0297 (17)0.0495 (19)
N10.0471 (16)0.0399 (14)0.0382 (14)0.0211 (12)0.0179 (12)0.0125 (12)
N20.0459 (15)0.0335 (12)0.0286 (12)0.0212 (11)0.0110 (11)0.0098 (10)
N30.0608 (18)0.0340 (13)0.0350 (14)0.0275 (13)0.0211 (13)0.0146 (11)
N40.0447 (16)0.0369 (14)0.0431 (16)0.0158 (12)0.0061 (13)0.0085 (12)
N50.0487 (16)0.0496 (16)0.0352 (14)0.0258 (14)0.0135 (12)0.0182 (13)
C10.065 (3)0.059 (2)0.043 (2)0.030 (2)0.0250 (19)0.0219 (18)
C20.090 (3)0.078 (3)0.047 (2)0.048 (3)0.038 (2)0.023 (2)
C30.105 (4)0.061 (3)0.055 (3)0.046 (3)0.039 (3)0.009 (2)
C40.070 (3)0.046 (2)0.0421 (19)0.0315 (19)0.0173 (18)0.0065 (15)
C50.0451 (17)0.0410 (16)0.0310 (15)0.0231 (14)0.0115 (13)0.0093 (12)
C60.0421 (17)0.0336 (14)0.0368 (15)0.0208 (13)0.0139 (13)0.0114 (12)
C70.0438 (17)0.0306 (14)0.0346 (15)0.0192 (13)0.0098 (13)0.0079 (11)
C80.055 (2)0.0444 (19)0.064 (2)0.0316 (17)0.0240 (19)0.0214 (18)
C90.082 (3)0.049 (2)0.067 (3)0.043 (2)0.026 (2)0.026 (2)
C100.087 (3)0.0409 (19)0.053 (2)0.026 (2)0.025 (2)0.0228 (17)
C110.061 (2)0.053 (2)0.054 (2)0.0182 (19)0.024 (2)0.0221 (19)
C120.054 (2)0.0459 (18)0.052 (2)0.0259 (16)0.0228 (17)0.0208 (16)
C130.0446 (17)0.0338 (15)0.0416 (17)0.0217 (13)0.0195 (14)0.0132 (13)
C140.0446 (17)0.0371 (15)0.0349 (15)0.0229 (13)0.0159 (13)0.0121 (12)
C150.064 (2)0.0337 (15)0.0471 (19)0.0236 (15)0.0256 (17)0.0154 (14)
C160.060 (2)0.0460 (18)0.0426 (18)0.0264 (17)0.0242 (17)0.0205 (15)
C170.053 (2)0.0437 (18)0.0387 (17)0.0232 (16)0.0193 (15)0.0099 (14)
C180.055 (2)0.0349 (16)0.050 (2)0.0165 (15)0.0273 (17)0.0083 (14)
C190.0496 (19)0.0387 (16)0.0449 (18)0.0213 (15)0.0246 (16)0.0159 (14)
Geometric parameters (Å, º) top
Cu1—N21.944 (3)C4—C51.379 (5)
Cu1—N11.978 (3)C4—H40.9300
Cu1—O61.983 (3)C5—C61.483 (5)
Cu1—O11.993 (2)C6—C71.475 (4)
Cu1—O32.268 (3)C7—C121.383 (5)
O1—C131.256 (4)C7—C81.388 (5)
O2—C171.339 (5)C8—C91.386 (6)
O2—H2A0.8200C8—H80.9300
O3—N41.247 (4)C9—C101.367 (7)
O4—N41.233 (5)C9—H90.9300
O5—N41.232 (5)C10—C111.373 (7)
O6—N51.295 (4)C10—H100.9300
O7—N51.230 (4)C11—C121.399 (6)
O8—N51.237 (4)C11—H110.9300
N1—C11.339 (5)C12—H120.9300
N1—C51.354 (5)C13—C141.454 (5)
N2—C61.282 (4)C14—C191.400 (5)
N2—N31.373 (4)C14—C151.400 (5)
N3—C131.364 (4)C15—C161.377 (5)
N3—H3A0.88 (4)C15—H150.9300
C1—C21.380 (6)C16—C171.405 (5)
C1—H10.9300C16—H160.9300
C2—C31.365 (7)C17—C181.401 (5)
C2—H20.9300C18—C191.378 (5)
C3—C41.389 (6)C18—H180.9300
C3—H30.9300C19—H190.9300
N2—Cu1—N180.16 (12)C4—C5—C6124.1 (3)
N2—Cu1—O6158.77 (13)N2—C6—C7126.2 (3)
N1—Cu1—O697.76 (12)N2—C6—C5111.8 (3)
N2—Cu1—O179.23 (11)C7—C6—C5121.9 (3)
N1—Cu1—O1159.40 (12)C12—C7—C8119.5 (3)
O6—Cu1—O1101.39 (11)C12—C7—C6120.1 (3)
N2—Cu1—O3116.69 (12)C8—C7—C6120.4 (3)
N1—Cu1—O390.60 (13)C9—C8—C7119.5 (4)
O6—Cu1—O384.35 (11)C9—C8—H8120.3
O1—Cu1—O398.75 (13)C7—C8—H8120.3
C13—O1—Cu1113.6 (2)C10—C9—C8120.9 (4)
C17—O2—H2A109.5C10—C9—H9119.6
N4—O3—Cu1109.2 (2)C8—C9—H9119.6
N5—O6—Cu1107.5 (2)C9—C10—C11120.3 (4)
C1—N1—C5119.4 (3)C9—C10—H10119.8
C1—N1—Cu1126.8 (3)C11—C10—H10119.8
C5—N1—Cu1113.7 (2)C10—C11—C12119.5 (4)
C6—N2—N3125.3 (3)C10—C11—H11120.3
C6—N2—Cu1119.5 (2)C12—C11—H11120.3
N3—N2—Cu1114.7 (2)C7—C12—C11120.2 (4)
C13—N3—N2112.3 (3)C7—C12—H12119.9
C13—N3—H3A118 (3)C11—C12—H12119.9
N2—N3—H3A124 (3)O1—C13—N3119.5 (3)
O5—N4—O4117.7 (4)O1—C13—C14121.7 (3)
O5—N4—O3120.0 (4)N3—C13—C14118.9 (3)
O4—N4—O3122.3 (4)C19—C14—C15118.9 (3)
O7—N5—O8123.4 (4)C19—C14—C13117.8 (3)
O7—N5—O6118.4 (3)C15—C14—C13123.3 (3)
O8—N5—O6118.2 (3)C16—C15—C14120.8 (3)
N1—C1—C2122.0 (4)C16—C15—H15119.6
N1—C1—H1119.0C14—C15—H15119.6
C2—C1—H1119.0C15—C16—C17119.8 (3)
C3—C2—C1118.6 (4)C15—C16—H16120.1
C3—C2—H2120.7C17—C16—H16120.1
C1—C2—H2120.7O2—C17—C18116.6 (3)
C2—C3—C4120.3 (4)O2—C17—C16123.4 (3)
C2—C3—H3119.8C18—C17—C16119.9 (3)
C4—C3—H3119.8C19—C18—C17119.6 (3)
C5—C4—C3118.3 (4)C19—C18—H18120.2
C5—C4—H4120.8C17—C18—H18120.2
C3—C4—H4120.8C18—C19—C14120.9 (3)
N1—C5—C4121.3 (3)C18—C19—H19119.5
N1—C5—C6114.6 (3)C14—C19—H19119.5
N2—Cu1—O1—C137.4 (3)Cu1—N1—C5—C60.7 (4)
N1—Cu1—O1—C137.8 (5)C3—C4—C5—N10.9 (7)
O6—Cu1—O1—C13165.8 (3)C3—C4—C5—C6180.0 (4)
O3—Cu1—O1—C13108.2 (3)N3—N2—C6—C75.0 (6)
N2—Cu1—O3—N40.9 (3)Cu1—N2—C6—C7176.1 (3)
N1—Cu1—O3—N478.4 (3)N3—N2—C6—C5175.6 (3)
O6—Cu1—O3—N4176.1 (3)Cu1—N2—C6—C54.4 (4)
O1—Cu1—O3—N483.2 (3)N1—C5—C6—N23.2 (5)
N2—Cu1—O6—N59.2 (4)C4—C5—C6—N2176.0 (4)
N1—Cu1—O6—N592.0 (2)N1—C5—C6—C7177.3 (3)
O1—Cu1—O6—N580.4 (2)C4—C5—C6—C73.5 (6)
O3—Cu1—O6—N5178.2 (2)N2—C6—C7—C1258.8 (5)
N2—Cu1—N1—C1176.0 (4)C5—C6—C7—C12120.6 (4)
O6—Cu1—N1—C117.4 (4)N2—C6—C7—C8123.5 (4)
O1—Cu1—N1—C1175.6 (4)C5—C6—C7—C857.1 (5)
O3—Cu1—N1—C167.0 (4)C12—C7—C8—C90.1 (6)
N2—Cu1—N1—C51.2 (3)C6—C7—C8—C9177.6 (4)
O6—Cu1—N1—C5159.8 (3)C7—C8—C9—C101.9 (7)
O1—Cu1—N1—C51.6 (5)C8—C9—C10—C111.9 (7)
O3—Cu1—N1—C5115.9 (3)C9—C10—C11—C120.0 (7)
N1—Cu1—N2—C63.3 (3)C8—C7—C12—C112.0 (6)
O6—Cu1—N2—C689.4 (4)C6—C7—C12—C11175.7 (4)
O1—Cu1—N2—C6176.9 (3)C10—C11—C12—C72.0 (7)
O3—Cu1—N2—C682.4 (3)Cu1—O1—C13—N39.0 (4)
N1—Cu1—N2—N3175.4 (3)Cu1—O1—C13—C14172.0 (3)
O6—Cu1—N2—N398.5 (4)N2—N3—C13—O15.0 (5)
O1—Cu1—N2—N34.8 (2)N2—N3—C13—C14176.1 (3)
O3—Cu1—N2—N389.7 (3)O1—C13—C14—C1919.3 (5)
C6—N2—N3—C13173.3 (3)N3—C13—C14—C19161.8 (3)
Cu1—N2—N3—C131.7 (4)O1—C13—C14—C15162.1 (4)
Cu1—O3—N4—O516.3 (5)N3—C13—C14—C1516.8 (5)
Cu1—O3—N4—O4164.1 (3)C19—C14—C15—C160.5 (6)
Cu1—O6—N5—O75.3 (4)C13—C14—C15—C16178.0 (4)
Cu1—O6—N5—O8174.7 (3)C14—C15—C16—C171.0 (6)
C5—N1—C1—C21.3 (6)C15—C16—C17—O2178.2 (4)
Cu1—N1—C1—C2178.4 (4)C15—C16—C17—C181.1 (6)
N1—C1—C2—C30.4 (8)O2—C17—C18—C19177.0 (4)
C1—C2—C3—C42.4 (9)C16—C17—C18—C190.3 (6)
C2—C3—C4—C52.6 (8)C17—C18—C19—C141.8 (6)
C1—N1—C5—C41.1 (6)C15—C14—C19—C181.9 (6)
Cu1—N1—C5—C4178.5 (3)C13—C14—C19—C18176.7 (4)
C1—N1—C5—C6178.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.88 (4)2.20 (5)2.866 (6)132 (4)
N3—H3A···O4i0.88 (4)2.31 (4)3.180 (5)171 (3)
O2—H2A···O8ii0.821.952.766 (5)174
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C19H15N3O2)]
Mr504.91
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.881 (2), 10.373 (2), 11.964 (2)
α, β, γ (°)102.51 (3), 105.07 (3), 111.16 (3)
V3)1036.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.731, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
11512, 5533, 4123
Rint0.099
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.197, 1.13
No. of reflections5533
No. of parameters303
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.64

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.88 (4)2.20 (5)2.866 (6)132 (4)
N3—H3A···O4i0.88 (4)2.31 (4)3.180 (5)171 (3)
O2—H2A···O8ii0.821.952.766 (5)174
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, Tabriz Branch, and the Iran University of Science and Technology for financial support.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCraliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHosseini Monfared, H., Bikas, R. & Mayer, P. (2010). Inorg. Chim. Acta, 363, 2574–2583.  Google Scholar
First citationHuo, L.-H., Lu, Z.-Z., Gao, S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1636–m1638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, m470.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShit, S., Chakraborty, J., Samanta, B., Slawin, A. M. Z., Gramlich, V. & Mitra, S. (2009). Struct. Chem. 20, 633–642.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYin, H. (2008). Acta Cryst. C64, m324–m326.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m132-m133
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds