metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(10-meth­­oxy­benzo[h]quinolinium) tetra­chloridozinc

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
*Correspondence e-mail: liubo4314@yahoo.com.cn

(Received 16 December 2011; accepted 23 December 2011; online 11 January 2012)

In the title compound, (C14H12NO)2[ZnCl4], the benzo[h]quinolinium groups are approximately planar, with maximum deviations of 0.049 (8) and 0.056 (9) Å. The meth­oxy groups are stabilized by intra­molecular N—H⋯O hydrogen bonds. The structure also exhibits weak inter­molecular N—H⋯Cl hydrogen bonds between the cations and anions. ππ inter­actions are present between the pyridinium and benzene rings [centroid–centroid distances = 3.640 (4), 3.728 (5) and 3.628 (5) Å].

Related literature

For background to quinoline derivatives, see: Kouznetsov et al. (2005[Kouznetsov, V. V., Méndez, L. Y. V. & Gómez, C. M. M. (2005). Curr. Org. Chem. 9, 141-161.]). For related complexes, see: Guo et al. (2007[Guo, Z., Dong, Z., Zhu, R., Jin, S. & Liu, B. (2007). Spectrochim. Acta Part A, 68, 337-340.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H12NO)2[ZnCl4]

  • Mr = 627.66

  • Triclinic, [P \overline 1]

  • a = 8.3846 (15) Å

  • b = 9.6352 (18) Å

  • c = 18.348 (3) Å

  • α = 91.810 (3)°

  • β = 92.508 (3)°

  • γ = 114.967 (3)°

  • V = 1340.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 0.775

  • 5013 measured reflections

  • 4177 independent reflections

  • 3432 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.220

  • S = 1.18

  • 4177 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.95 2.612 (7) 133
N1—H1⋯Cl1i 0.86 2.68 3.319 (6) 132
N2—H2⋯O2 0.86 1.93 2.598 (7) 134
N2—H2⋯Cl2ii 0.86 2.84 3.472 (6) 132
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800s (Kouznetsov et al., 2005). The quinoline ring system occurs in various natural products, especially in alkaloids (Kouznetsov et al., 2005). In the course of exploring new quinoline complexes (Guo et al., 2007), we obtained the title compound and the synthesis and structure are reported here.

In the title compound (Fig. 1), the benzo[h]quinolinium groups are planar, with maximum deviations from the average planes of 0.049 (8) and 0.056 (9) Å, respectively. The methoxy groups are stabilized by intramolecular N—H···O hydrogen bonds (Table 1). The structure also exhibits week intermolecular N—H···Cl hydrogen bonds between the cations and anions. ππ interactions are present between the pyridinium and benzene rings [centroid–centroid distances = 3.640 (4), 3.728 (5) and 3.628 (5) Å].

Related literature top

For background to quinoline derivatives, see: Kouznetsov et al. (2005). For related complexes, see: Guo et al. (2007).

Experimental top

10-Methoxybenzo[h]quinoline (0.30 g, 1.43 mmol) was dissolved in THF (20 ml) and ZnCl2 (0.20 g, 1.48 mmol) was added. The mixture was heated with stirring at reflux temperature for 8 h, then cooled to 333 K and filtered. The filtrate was condenced to get yellow crystals suitable for X-ray analysis.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 (aromatic) and 0.96 (methyl) and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Bis(10-methoxybenzo[h]quinolinium) tetrachloridozinc top
Crystal data top
(C14H12NO)2[ZnCl4]Z = 2
Mr = 627.66F(000) = 640
Triclinic, P1Dx = 1.555 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3846 (15) ÅCell parameters from 2730 reflections
b = 9.6352 (18) Åθ = 2.2–27.5°
c = 18.348 (3) ŵ = 1.35 mm1
α = 91.810 (3)°T = 293 K
β = 92.508 (3)°Block, yellow
γ = 114.967 (3)°0.30 × 0.20 × 0.20 mm
V = 1340.4 (4) Å3
Data collection top
Bruker APEX CCD
diffractometer
4177 independent reflections
Radiation source: fine-focus sealed tube3432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 24.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.688, Tmax = 0.775k = 115
5013 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.118P)2 + 1.3115P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
4177 reflectionsΔρmax = 0.92 e Å3
337 parametersΔρmin = 0.85 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (5)
Crystal data top
(C14H12NO)2[ZnCl4]γ = 114.967 (3)°
Mr = 627.66V = 1340.4 (4) Å3
Triclinic, P1Z = 2
a = 8.3846 (15) ÅMo Kα radiation
b = 9.6352 (18) ŵ = 1.35 mm1
c = 18.348 (3) ÅT = 293 K
α = 91.810 (3)°0.30 × 0.20 × 0.20 mm
β = 92.508 (3)°
Data collection top
Bruker APEX CCD
diffractometer
4177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3432 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.775Rint = 0.028
5013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.18Δρmax = 0.92 e Å3
4177 reflectionsΔρmin = 0.85 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.65848 (11)0.46816 (9)0.25386 (4)0.0402 (4)
Cl10.4662 (3)0.3566 (2)0.34307 (9)0.0479 (5)
Cl20.5032 (3)0.5538 (2)0.17408 (10)0.0491 (5)
Cl30.7041 (4)0.2815 (3)0.19234 (12)0.0686 (7)
Cl40.9008 (3)0.6651 (3)0.30484 (12)0.0639 (6)
O10.2911 (7)1.1282 (5)0.4863 (3)0.0443 (12)
O21.2012 (6)0.4167 (5)0.0191 (3)0.0447 (12)
N10.3863 (7)0.9990 (6)0.3799 (3)0.0362 (13)
H10.38111.08090.39720.043*
N21.1219 (7)0.2271 (6)0.1233 (3)0.0403 (14)
H21.19140.31490.10880.048*
C70.2315 (8)0.9970 (7)0.5249 (4)0.0339 (15)
C110.2044 (9)0.7392 (8)0.5306 (4)0.0383 (16)
C190.8652 (9)0.0063 (8)0.1046 (4)0.0400 (17)
C50.3231 (8)0.8696 (7)0.4211 (4)0.0334 (15)
C221.0506 (9)0.3249 (8)0.0213 (4)0.0371 (16)
C40.3342 (9)0.7386 (7)0.3914 (4)0.0367 (16)
C60.2526 (8)0.8717 (7)0.4925 (3)0.0307 (14)
C200.9774 (8)0.1375 (7)0.0789 (4)0.0322 (15)
C180.9075 (10)0.0513 (8)0.1711 (4)0.0471 (19)
H180.83380.14540.18830.056*
C10.4544 (10)1.0034 (9)0.3153 (4)0.0453 (18)
H1A0.49531.09330.29030.054*
C130.2790 (10)0.6069 (8)0.4329 (5)0.0493 (19)
H130.28630.51950.41360.059*
C210.9408 (8)0.1852 (8)0.0091 (4)0.0348 (15)
C260.7838 (9)0.0852 (8)0.0321 (4)0.0418 (17)
C100.1336 (10)0.7295 (9)0.5993 (4)0.0486 (18)
H100.10170.64120.62510.058*
C30.4010 (10)0.7407 (9)0.3237 (4)0.0468 (18)
H30.40390.65210.30350.056*
C80.1616 (10)0.9881 (8)0.5903 (4)0.0447 (18)
H80.14631.07100.61060.054*
C90.1130 (11)0.8546 (10)0.6269 (4)0.058 (2)
H90.06450.84920.67190.070*
C171.0585 (11)0.0437 (10)0.2115 (4)0.055 (2)
H171.09110.01170.25460.066*
C20.4640 (10)0.8740 (9)0.2854 (4)0.0488 (19)
H2A0.51180.87580.24050.059*
C140.2706 (11)1.2609 (8)0.5156 (4)0.0487 (19)
H14A0.14771.23500.51980.073*
H14B0.31881.34320.48340.073*
H14C0.33181.29220.56290.073*
C291.3189 (10)0.5596 (8)0.0091 (4)0.0451 (17)
H29A1.35560.53980.05560.068*
H29B1.42030.60930.02430.068*
H29C1.25910.62470.01490.068*
C120.2156 (10)0.6040 (8)0.5000 (4)0.0455 (18)
H120.17970.51560.52600.055*
C161.1615 (10)0.1866 (9)0.1877 (4)0.0491 (19)
H161.25860.25450.21670.059*
C250.7424 (10)0.1275 (9)0.1000 (4)0.0482 (19)
H250.63930.06280.12680.058*
C231.0090 (10)0.3623 (9)0.0891 (4)0.0457 (18)
H231.08460.45240.10900.055*
C280.7095 (10)0.1024 (9)0.0607 (5)0.052 (2)
H280.63280.19640.07700.062*
C270.6748 (10)0.0574 (9)0.0032 (5)0.050 (2)
H270.57350.12270.03090.060*
C240.8520 (10)0.2638 (10)0.1279 (4)0.051 (2)
H240.82160.29060.17290.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0497 (6)0.0382 (5)0.0349 (5)0.0200 (4)0.0069 (4)0.0055 (3)
Cl10.0652 (12)0.0475 (11)0.0383 (10)0.0292 (9)0.0152 (8)0.0111 (8)
Cl20.0621 (12)0.0488 (11)0.0392 (10)0.0258 (9)0.0029 (8)0.0073 (8)
Cl30.1108 (19)0.0549 (13)0.0580 (13)0.0491 (13)0.0347 (12)0.0140 (10)
Cl40.0558 (13)0.0597 (14)0.0627 (13)0.0122 (10)0.0040 (10)0.0037 (11)
O10.066 (3)0.034 (3)0.044 (3)0.031 (2)0.010 (2)0.002 (2)
O20.042 (3)0.032 (3)0.047 (3)0.002 (2)0.002 (2)0.008 (2)
N10.042 (3)0.036 (3)0.035 (3)0.021 (3)0.002 (2)0.004 (2)
N20.043 (3)0.033 (3)0.038 (3)0.009 (3)0.004 (3)0.006 (3)
C70.030 (3)0.032 (4)0.042 (4)0.015 (3)0.002 (3)0.005 (3)
C110.035 (4)0.039 (4)0.041 (4)0.016 (3)0.004 (3)0.005 (3)
C190.040 (4)0.035 (4)0.048 (4)0.017 (3)0.012 (3)0.002 (3)
C50.034 (4)0.030 (4)0.040 (4)0.018 (3)0.002 (3)0.002 (3)
C220.036 (4)0.033 (4)0.040 (4)0.012 (3)0.008 (3)0.003 (3)
C40.036 (4)0.027 (4)0.046 (4)0.013 (3)0.004 (3)0.002 (3)
C60.028 (3)0.027 (3)0.036 (3)0.010 (3)0.001 (3)0.007 (3)
C200.028 (3)0.027 (3)0.039 (4)0.011 (3)0.003 (3)0.005 (3)
C180.046 (4)0.034 (4)0.058 (5)0.013 (4)0.020 (4)0.008 (4)
C10.054 (5)0.048 (4)0.040 (4)0.027 (4)0.003 (3)0.010 (3)
C130.049 (4)0.036 (4)0.071 (5)0.026 (4)0.004 (4)0.006 (4)
C210.027 (3)0.034 (4)0.042 (4)0.011 (3)0.005 (3)0.002 (3)
C260.034 (4)0.041 (4)0.050 (4)0.015 (3)0.013 (3)0.003 (3)
C100.056 (5)0.042 (4)0.051 (4)0.024 (4)0.002 (4)0.010 (4)
C30.055 (5)0.043 (4)0.049 (4)0.028 (4)0.003 (3)0.010 (4)
C80.054 (5)0.037 (4)0.049 (4)0.023 (4)0.015 (4)0.007 (3)
C90.067 (5)0.067 (6)0.044 (4)0.031 (5)0.018 (4)0.000 (4)
C170.070 (6)0.064 (6)0.038 (4)0.034 (5)0.010 (4)0.016 (4)
C20.058 (5)0.063 (5)0.036 (4)0.035 (4)0.003 (3)0.005 (4)
C140.076 (5)0.031 (4)0.051 (4)0.034 (4)0.003 (4)0.005 (3)
C290.043 (4)0.033 (4)0.047 (4)0.004 (3)0.007 (3)0.006 (3)
C120.054 (5)0.037 (4)0.054 (5)0.027 (4)0.003 (4)0.007 (3)
C160.041 (4)0.056 (5)0.042 (4)0.012 (4)0.000 (3)0.006 (4)
C250.038 (4)0.050 (5)0.047 (4)0.012 (4)0.006 (3)0.004 (4)
C230.046 (4)0.044 (4)0.041 (4)0.013 (4)0.008 (3)0.007 (3)
C280.041 (4)0.034 (4)0.070 (6)0.005 (3)0.014 (4)0.013 (4)
C270.034 (4)0.036 (4)0.064 (5)0.001 (3)0.007 (3)0.006 (4)
C240.054 (5)0.060 (5)0.037 (4)0.023 (4)0.009 (3)0.003 (4)
Geometric parameters (Å, º) top
Zn1—Cl42.252 (2)C1—H1A0.9300
Zn1—Cl32.268 (2)C13—C121.359 (11)
Zn1—Cl12.305 (2)C13—H130.9300
Zn1—Cl22.310 (2)C21—C261.425 (10)
O1—C71.380 (8)C26—C251.398 (11)
O1—C141.449 (8)C26—C271.426 (11)
O2—C221.364 (8)C10—C91.373 (11)
O2—C291.442 (8)C10—H100.9300
N1—C11.332 (9)C3—C21.392 (11)
N1—C51.395 (9)C3—H30.9300
N1—H10.8600C8—C91.381 (11)
N2—C161.327 (9)C8—H80.9300
N2—C201.365 (8)C9—H90.9300
N2—H20.8600C17—C161.378 (11)
C7—C81.348 (10)C17—H170.9300
C7—C61.410 (9)C2—H2A0.9300
C11—C61.389 (9)C14—H14A0.9600
C11—C121.443 (10)C14—H14B0.9600
C11—C101.405 (10)C14—H14C0.9600
C19—C181.389 (11)C29—H29A0.9600
C19—C201.417 (10)C29—H29B0.9600
C19—C281.432 (11)C29—H29C0.9600
C5—C41.399 (9)C12—H120.9300
C5—C61.463 (9)C16—H160.9300
C22—C211.421 (9)C25—C241.376 (11)
C22—C231.376 (10)C25—H250.9300
C4—C31.381 (10)C23—C241.401 (11)
C4—C131.414 (10)C23—H230.9300
C20—C211.437 (10)C28—C271.326 (12)
C18—C171.373 (11)C28—H280.9300
C18—H180.9300C27—H270.9300
C1—C21.381 (10)C24—H240.9300
Cl4—Zn1—Cl3116.13 (10)C21—C26—C27118.7 (7)
Cl4—Zn1—Cl1109.32 (8)C9—C10—C11117.8 (7)
Cl3—Zn1—Cl1108.22 (8)C9—C10—H10121.1
Cl4—Zn1—Cl2111.04 (8)C11—C10—H10121.1
Cl3—Zn1—Cl2107.14 (8)C4—C3—C2120.8 (6)
Cl1—Zn1—Cl2104.30 (8)C4—C3—H3119.6
C7—O1—C14118.7 (5)C2—C3—H3119.6
C22—O2—C29119.1 (5)C7—C8—C9119.3 (7)
C1—N1—C5123.9 (6)C7—C8—H8120.3
C1—N1—H1118.1C9—C8—H8120.3
C5—N1—H1118.1C10—C9—C8122.4 (7)
C16—N2—C20123.9 (6)C10—C9—H9118.8
C16—N2—H2118.0C8—C9—H9118.8
C20—N2—H2118.0C18—C17—C16119.8 (7)
C8—C7—O1123.1 (6)C18—C17—H17120.1
C8—C7—C6121.3 (6)C16—C17—H17120.1
O1—C7—C6115.6 (6)C1—C2—C3118.9 (7)
C6—C11—C12121.7 (6)C1—C2—H2A120.5
C6—C11—C10120.8 (6)C3—C2—H2A120.5
C12—C11—C10117.4 (7)O1—C14—H14A109.5
C18—C19—C20119.9 (6)O1—C14—H14B109.5
C18—C19—C28121.4 (7)H14A—C14—H14B109.5
C20—C19—C28118.7 (7)O1—C14—H14C109.5
C4—C5—N1116.5 (6)H14A—C14—H14C109.5
C4—C5—C6121.7 (6)H14B—C14—H14C109.5
N1—C5—C6121.7 (5)O2—C29—H29A109.5
O2—C22—C21116.4 (6)O2—C29—H29B109.5
O2—C22—C23122.2 (6)H29A—C29—H29B109.5
C21—C22—C23121.4 (6)O2—C29—H29C109.5
C3—C4—C5120.1 (7)H29A—C29—H29C109.5
C3—C4—C13121.5 (6)H29B—C29—H29C109.5
C5—C4—C13118.4 (6)C13—C12—C11119.5 (7)
C11—C6—C7118.3 (6)C13—C12—H12120.3
C11—C6—C5116.5 (6)C11—C12—H12120.3
C7—C6—C5125.1 (6)N2—C16—C17119.8 (7)
N2—C20—C19116.7 (6)N2—C16—H16120.1
N2—C20—C21122.0 (6)C17—C16—H16120.1
C19—C20—C21121.3 (6)C24—C25—C26120.9 (7)
C17—C18—C19119.7 (7)C24—C25—H25119.6
C17—C18—H18120.2C26—C25—H25119.6
C19—C18—H18120.2C24—C23—C22119.6 (7)
N1—C1—C2119.8 (7)C24—C23—H23120.2
N1—C1—H1A120.1C22—C23—H23120.2
C2—C1—H1A120.1C27—C28—C19119.9 (7)
C12—C13—C4122.1 (6)C27—C28—H28120.0
C12—C13—H13118.9C19—C28—H28120.0
C4—C13—H13118.9C28—C27—C26123.8 (7)
C22—C21—C20124.4 (6)C28—C27—H27118.1
C22—C21—C26118.0 (6)C26—C27—H27118.1
C20—C21—C26117.6 (6)C25—C24—C23120.6 (7)
C25—C26—C21119.5 (7)C25—C24—H24119.7
C25—C26—C27121.8 (7)C23—C24—H24119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.952.612 (7)133
N1—H1···Cl1i0.862.683.319 (6)132
N2—H2···O20.861.932.598 (7)134
N2—H2···Cl2ii0.862.843.472 (6)132
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C14H12NO)2[ZnCl4]
Mr627.66
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3846 (15), 9.6352 (18), 18.348 (3)
α, β, γ (°)91.810 (3), 92.508 (3), 114.967 (3)
V3)1340.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.688, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
5013, 4177, 3432
Rint0.028
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.220, 1.18
No. of reflections4177
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.85

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.952.612 (7)133
N1—H1···Cl1i0.862.683.319 (6)132
N2—H2···O20.861.932.598 (7)134
N2—H2···Cl2ii0.862.843.472 (6)132
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (grant No. 21072019) for supporting this work.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Z., Dong, Z., Zhu, R., Jin, S. & Liu, B. (2007). Spectrochim. Acta Part A, 68, 337–340.  CrossRef Google Scholar
First citationKouznetsov, V. V., Méndez, L. Y. V. & Gómez, C. M. M. (2005). Curr. Org. Chem. 9, 141–161.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds