metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[copper(II)-bis­­(μ-2-formyl-6-meth­­oxy­phenolato-κ4O2,O1:O1,O6)-[(methanol-κO)sodium]-μ-perchlorato-κ2O:O′]

aKey Laboratory of Chemical Engineering Processes & Technology for High-Efficiency Conversion, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gaoting1218@yahoo.com.cn

(Received 22 December 2011; accepted 9 January 2012; online 14 January 2012)

In the title heterodinuclear complex, [CuNa(C8H7O3)2(ClO4)(CH3OH)]n, the CuII ion is five-coordinated by four O atoms from two 2-formyl-6-meth­oxy­phenolate anions and one O atom from a perchlorate anion in a distorted square-pyramidal geometry. The Na+ ion is six-coordinated by four O atoms from two 2-formyl-6-meth­oxy­phenolate ligands, one O atom of a methanol mol­ecule and one O atom of a perchlorate anion. The perchlorate anions link the Na+ and CuII ions, forming a chain along [010]. O—H⋯O hydrogen bonds connect the chains. ππ inter­actions are present between the benzene rings [centroid–centroid distances = 3.566 (2) and 3.702 (2) Å]. The O atoms of the perchlorate anion are disordered over two sets of sites, with an occupancy ratio of 0.481 (8):0.519 (8).

Related literature

For related structures, see: Gao et al. (2011[Gao, P., Hou, H.-G., Gao, T., Yang, J.-L. & Yang, Y. (2011). Acta Cryst. E67, m1522.]); Lin & Zeng (2006[Lin, Z.-D. & Zeng, W. (2006). Acta Cryst. E62, m1074-m1076.]); Yang et al. (2012[Yang, Y., Gao, P., Yang, J.-L., Hou, H.-G. & Gao, T. (2012). Acta Cryst. E68, m37.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(C8H7O3)2(ClO4)(CH4O)]

  • Mr = 520.29

  • Triclinic, [P \overline 1]

  • a = 7.9552 (16) Å

  • b = 8.9453 (18) Å

  • c = 15.563 (3) Å

  • α = 81.27 (3)°

  • β = 84.24 (3)°

  • γ = 68.25 (3)°

  • V = 1015.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 293 K

  • 0.43 × 0.28 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.610, Tmax = 0.714

  • 9778 measured reflections

  • 4591 independent reflections

  • 3948 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.108

  • S = 1.11

  • 4591 reflections

  • 321 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O10i 0.85 2.11 2.874 (7) 149
O7—H71⋯O11′i 0.85 2.55 3.334 (13) 154
Symmetry code: (i) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Orthovanillin is a commercial ligand that is able to chelate 3d ions and several structure determinations are known, mainly with copper ions (Lin & Zeng, 2006). Recently, we were interested in the nature of the products obtained by reacting a 3d complex with alkali metal ions (Gao et al., 2011; Yang et al., 2012). In this paper we reacted a Cu complex with sodium perchlorate to yield a heterodinuclear complex. As shown in Fig. 1, the CuII ion is five-coordinated by two aldehyde O atoms and two phenolate O atoms from two orthovanillin ligands and one O atom from a perchlorate anion in a distorted square-pyramidal geometry. The Cu atom is inserted into the inner cavity surrounded by four O atoms. The Na+ ion is ligated by two phenolate O atoms, two methoxyl O atoms, one O atom from a methanol molecule and one O atom from a perchlorate anion. The Cu and Na atoms are bridged by the perchlorate anions, forming a one-dimensional structure along [0 1 0].

Related literature top

For related structures, see: Gao et al. (2011); Lin & Zeng (2006); Yang et al. (2012).

Experimental top

To a solution of o-vanillin (0.046 g, 0.20 mmol) in dichloromethane (5 ml) was added a solution of copper(II) acetate monohydrate (0.040 g, 0.20 mmol) and sodium perchlorate (0.028 g, 0.20 mmol) in ethanol (5 ml). The mixture was stirred, heated under reflux (30 min) and then allowed to cool to room temperature (yield: 70%). Crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into the solution for one week. Analysis, calculated for C17H18ClCuNaO11: C 39.24, H 3.49%; found: C 39.38, H 3.48%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic and aldehyde) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). An O-bound H atom was initially located in a differece Fourier map and then treated as a riding atom, with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O). The four O atoms of perchlorate anion were disordered over two sets of sites and refined with occupancy factors of 0.481 (8) for O8, O9, O10 and O11 and 0.519 (8) for O8', O9', O10' and O11' atoms. The command 'isor 0.01' was used to restrict the ADP of the above eight O atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. H atoms and 0.519-occupied O atoms of the perchlorate anion are not shown. [Symmetry codes: (i) x, y-1, z; (ii) x, 1+y, z.]
catena-Poly[copper(II)-bis(µ-2-formyl-6-methoxyphenolato- κ4O2,O1:O1,O6)-[(methanol- κO)sodium]-µ-perchlorato-κ2O:O'] top
Crystal data top
[CuNa(C8H7O3)2(ClO4)(CH4O)]Z = 2
Mr = 520.29F(000) = 530
Triclinic, P1Dx = 1.701 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9552 (16) ÅCell parameters from 8587 reflections
b = 8.9453 (18) Åθ = 3.0–27.6°
c = 15.563 (3) ŵ = 1.29 mm1
α = 81.27 (3)°T = 293 K
β = 84.24 (3)°Block, green
γ = 68.25 (3)°0.43 × 0.28 × 0.28 mm
V = 1015.6 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4591 independent reflections
Radiation source: rotation anode3948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.610, Tmax = 0.714k = 1111
9778 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.4273P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
4591 reflectionsΔρmax = 0.58 e Å3
321 parametersΔρmin = 0.59 e Å3
48 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (3)
Crystal data top
[CuNa(C8H7O3)2(ClO4)(CH4O)]γ = 68.25 (3)°
Mr = 520.29V = 1015.6 (4) Å3
Triclinic, P1Z = 2
a = 7.9552 (16) ÅMo Kα radiation
b = 8.9453 (18) ŵ = 1.29 mm1
c = 15.563 (3) ÅT = 293 K
α = 81.27 (3)°0.43 × 0.28 × 0.28 mm
β = 84.24 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4591 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3948 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.714Rint = 0.021
9778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03448 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.11Δρmax = 0.58 e Å3
4591 reflectionsΔρmin = 0.59 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4762 (3)0.6763 (3)0.08377 (17)0.0364 (5)
C20.5719 (4)0.6802 (4)0.00596 (19)0.0458 (6)
H20.52630.76630.03740.055*
C30.7386 (4)0.5555 (4)0.0092 (2)0.0537 (7)
H30.80260.56040.06230.064*
C40.8070 (4)0.4280 (4)0.0531 (2)0.0484 (7)
H40.91710.34590.04240.058*
C50.7105 (3)0.4198 (3)0.13468 (17)0.0374 (5)
C60.5417 (3)0.5456 (3)0.15163 (16)0.0341 (5)
C70.7836 (3)0.2828 (3)0.1967 (2)0.0433 (6)
H70.89260.20540.17970.052*
C80.2420 (5)0.9285 (4)0.0431 (2)0.0582 (8)
H8A0.32490.98530.03220.087*
H8B0.12750.99900.06510.087*
H8C0.22560.89450.01000.087*
C90.0881 (3)0.6812 (3)0.48246 (16)0.0332 (5)
C100.0140 (3)0.6796 (3)0.56545 (18)0.0401 (6)
H100.08930.76580.57970.048*
C110.0922 (4)0.5491 (4)0.62961 (18)0.0451 (6)
H110.04030.54950.68590.054*
C120.2432 (4)0.4225 (3)0.60967 (17)0.0419 (6)
H120.29550.33740.65260.050*
C130.3218 (3)0.4197 (3)0.52328 (17)0.0344 (5)
C140.2437 (3)0.5486 (3)0.45824 (15)0.0302 (5)
C150.4787 (3)0.2836 (3)0.50530 (18)0.0379 (5)
H150.52270.20510.55230.046*
C160.1374 (4)0.9355 (3)0.4313 (2)0.0482 (7)
H16A0.23610.89690.44260.072*
H16B0.16061.01570.38100.072*
H16C0.12570.98290.48070.072*
C170.1080 (5)0.7533 (5)0.1549 (3)0.0673 (9)
H17A0.00870.69220.13050.101*
H17B0.18740.81280.10890.101*
H17C0.15790.68060.19030.101*
Cl10.36690 (9)1.08254 (8)0.25272 (5)0.04494 (18)
Cu10.50540 (4)0.39856 (3)0.32609 (2)0.03585 (13)
Na10.19514 (14)0.77412 (13)0.26850 (7)0.0424 (3)
O10.3134 (3)0.7898 (2)0.10574 (13)0.0450 (4)
O20.4454 (2)0.5493 (2)0.22418 (12)0.0426 (4)
O30.7213 (3)0.2523 (2)0.27085 (13)0.0456 (5)
O40.0270 (2)0.8028 (2)0.41576 (13)0.0429 (4)
O50.3060 (2)0.5559 (2)0.37745 (11)0.0372 (4)
O60.5644 (2)0.2566 (2)0.43425 (13)0.0424 (4)
O70.0898 (3)0.8613 (3)0.20606 (16)0.0603 (6)
H710.19530.92150.22230.090*
O80.313 (2)0.9655 (12)0.2973 (6)0.134 (4)0.481 (8)
O90.3691 (13)1.1775 (13)0.3156 (6)0.090 (3)0.481 (8)
O100.5238 (9)1.0233 (14)0.2027 (7)0.104 (4)0.481 (8)
O110.2316 (12)1.1649 (14)0.1896 (6)0.134 (4)0.481 (8)
O8'0.2175 (7)1.0358 (9)0.2565 (7)0.093 (3)0.519 (8)
O9'0.3203 (10)1.2409 (8)0.2718 (7)0.086 (3)0.519 (8)
O10'0.4646 (19)1.0763 (15)0.1746 (6)0.140 (4)0.519 (8)
O11'0.5004 (15)0.9750 (12)0.3065 (8)0.164 (5)0.519 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0334 (11)0.0377 (12)0.0389 (13)0.0130 (10)0.0007 (10)0.0073 (10)
C20.0491 (15)0.0542 (16)0.0385 (14)0.0258 (13)0.0003 (12)0.0023 (12)
C30.0503 (16)0.070 (2)0.0445 (15)0.0287 (15)0.0133 (13)0.0103 (14)
C40.0365 (13)0.0568 (17)0.0508 (16)0.0156 (12)0.0138 (12)0.0175 (13)
C50.0322 (11)0.0395 (13)0.0410 (14)0.0121 (10)0.0045 (10)0.0126 (10)
C60.0318 (11)0.0336 (12)0.0370 (12)0.0113 (10)0.0014 (10)0.0087 (10)
C70.0299 (11)0.0374 (13)0.0552 (16)0.0022 (10)0.0055 (11)0.0140 (12)
C80.0620 (19)0.0440 (16)0.0535 (18)0.0038 (14)0.0136 (15)0.0062 (13)
C90.0264 (10)0.0290 (11)0.0407 (13)0.0062 (9)0.0004 (9)0.0047 (9)
C100.0316 (11)0.0404 (13)0.0439 (14)0.0077 (10)0.0057 (10)0.0111 (11)
C110.0447 (14)0.0531 (16)0.0359 (13)0.0170 (12)0.0050 (11)0.0076 (11)
C120.0482 (14)0.0424 (14)0.0327 (12)0.0156 (12)0.0048 (11)0.0017 (10)
C130.0321 (11)0.0312 (11)0.0384 (13)0.0103 (9)0.0040 (10)0.0015 (9)
C140.0259 (10)0.0265 (10)0.0351 (12)0.0063 (9)0.0003 (9)0.0037 (9)
C150.0342 (12)0.0293 (11)0.0428 (13)0.0052 (10)0.0073 (10)0.0053 (10)
C160.0365 (13)0.0316 (13)0.0631 (18)0.0043 (11)0.0030 (12)0.0086 (12)
C170.074 (2)0.075 (2)0.060 (2)0.033 (2)0.0058 (18)0.0119 (18)
Cl10.0447 (3)0.0444 (4)0.0470 (4)0.0179 (3)0.0014 (3)0.0071 (3)
Cu10.03095 (18)0.02748 (18)0.0382 (2)0.00017 (12)0.00257 (12)0.00201 (12)
Na10.0378 (5)0.0354 (5)0.0444 (6)0.0028 (4)0.0055 (4)0.0013 (4)
O10.0428 (10)0.0383 (10)0.0424 (10)0.0039 (8)0.0028 (8)0.0017 (8)
O20.0382 (9)0.0373 (9)0.0375 (9)0.0003 (7)0.0040 (8)0.0005 (7)
O30.0391 (9)0.0340 (9)0.0501 (11)0.0003 (8)0.0036 (8)0.0033 (8)
O40.0375 (9)0.0287 (8)0.0461 (10)0.0041 (7)0.0032 (8)0.0005 (7)
O50.0335 (8)0.0295 (8)0.0352 (9)0.0016 (7)0.0038 (7)0.0006 (7)
O60.0392 (9)0.0285 (9)0.0461 (10)0.0017 (7)0.0020 (8)0.0006 (7)
O70.0401 (10)0.0648 (14)0.0727 (15)0.0083 (10)0.0068 (10)0.0239 (12)
O80.216 (9)0.107 (6)0.119 (6)0.117 (6)0.013 (6)0.018 (5)
O90.090 (5)0.121 (7)0.091 (5)0.064 (5)0.026 (4)0.064 (5)
O100.035 (3)0.137 (7)0.124 (7)0.007 (3)0.012 (3)0.073 (6)
O110.100 (5)0.169 (8)0.097 (5)0.007 (5)0.034 (4)0.001 (5)
O8'0.046 (3)0.078 (4)0.174 (7)0.031 (3)0.009 (3)0.059 (5)
O9'0.059 (3)0.049 (3)0.157 (7)0.021 (3)0.013 (4)0.038 (4)
O10'0.193 (10)0.154 (8)0.071 (5)0.077 (7)0.044 (6)0.005 (5)
O11'0.165 (7)0.126 (6)0.171 (7)0.033 (5)0.086 (6)0.073 (6)
Geometric parameters (Å, º) top
C1—O11.367 (3)C16—O41.432 (3)
C1—C21.367 (4)C16—H16A0.9600
C1—C61.427 (4)C16—H16B0.9600
C2—C31.407 (4)C16—H16C0.9600
C2—H20.9300C17—O71.396 (4)
C3—C41.360 (5)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.422 (4)C17—H17C0.9600
C4—H40.9300Cl1—O81.347 (7)
C5—C71.413 (4)Cl1—O101.373 (7)
C5—C61.428 (3)Cl1—O10'1.373 (9)
C6—O21.297 (3)Cl1—O11'1.390 (8)
C7—O31.242 (3)Cl1—O8'1.392 (5)
C7—H70.9300Cl1—O91.395 (8)
C8—O11.426 (3)Cl1—O9'1.396 (7)
C8—H8A0.9600Cl1—O111.439 (8)
C8—H8B0.9600Cu1—O51.8890 (18)
C8—H8C0.9600Cu1—O21.8941 (19)
C9—C101.365 (4)Cu1—O61.932 (2)
C9—O41.365 (3)Cu1—O31.944 (2)
C9—C141.426 (3)Cu1—O9i2.614 (11)
C10—C111.407 (4)Cu1—O9'i2.650 (8)
C10—H100.9300Cu1—Na13.4010 (17)
C11—C121.358 (4)Na1—O52.342 (2)
C11—H110.9300Na1—O82.349 (9)
C12—C131.424 (4)Na1—O72.365 (2)
C12—H120.9300Na1—O22.379 (2)
C13—C141.408 (3)Na1—O8'2.390 (7)
C13—C151.423 (3)Na1—O42.533 (2)
C14—O51.306 (3)Na1—O12.614 (2)
C15—O61.246 (3)O7—H710.8500
C15—H150.9300
O1—C1—C2125.9 (3)O11'—Cl1—O8'111.4 (6)
O1—C1—C6113.0 (2)O8—Cl1—O9104.4 (6)
C2—C1—C6121.1 (2)O10—Cl1—O9116.6 (6)
C1—C2—C3120.7 (3)O10'—Cl1—O9'105.4 (7)
C1—C2—H2119.6O11'—Cl1—O9'110.6 (6)
C3—C2—H2119.6O8'—Cl1—O9'112.5 (4)
C4—C3—C2120.5 (3)O8—Cl1—O11104.6 (7)
C4—C3—H3119.7O10—Cl1—O11103.6 (6)
C2—C3—H3119.7O9—Cl1—O11113.9 (6)
C3—C4—C5120.1 (3)O5—Cu1—O283.82 (8)
C3—C4—H4119.9O5—Cu1—O693.45 (8)
C5—C4—H4119.9O2—Cu1—O6176.21 (8)
C7—C5—C4118.3 (2)O5—Cu1—O3174.49 (8)
C7—C5—C6121.4 (2)O2—Cu1—O393.50 (9)
C4—C5—C6120.2 (3)O6—Cu1—O389.00 (8)
O2—C6—C1118.2 (2)O2—Cu1—O9i107.1 (2)
O2—C6—C5124.5 (2)O3—Cu1—O9i84.5 (2)
C1—C6—C5117.2 (2)O5—Cu1—O9i100.9 (2)
O3—C7—C5128.4 (2)O6—Cu1—O9i75.9 (2)
O3—C7—H7115.8O2—Cu1—O9'i88.9 (2)
C5—C7—H7115.8O3—Cu1—O9'i87.86 (19)
O1—C8—H8A109.5O5—Cu1—O9'i96.87 (19)
O1—C8—H8B109.5O6—Cu1—O9'i94.0 (2)
H8A—C8—H8B109.5O5—Na1—O8104.4 (3)
O1—C8—H8C109.5O5—Na1—O7126.05 (9)
H8A—C8—H8C109.5O8—Na1—O7120.1 (3)
H8B—C8—H8C109.5O5—Na1—O264.72 (7)
C10—C9—O4125.8 (2)O8—Na1—O2106.8 (4)
C10—C9—C14120.8 (2)O7—Na1—O2121.84 (9)
O4—C9—C14113.4 (2)O5—Na1—O8'127.7 (2)
C9—C10—C11120.7 (2)O8—Na1—O8'24.3 (3)
C9—C10—H10119.6O7—Na1—O8'96.63 (19)
C11—C10—H10119.6O2—Na1—O8'120.27 (15)
C12—C11—C10120.3 (2)O5—Na1—O463.79 (7)
C12—C11—H11119.9O8—Na1—O487.9 (3)
C10—C11—H11119.9O7—Na1—O487.65 (8)
C11—C12—C13120.2 (2)O2—Na1—O4128.46 (8)
C11—C12—H12119.9O8'—Na1—O493.2 (2)
C13—C12—H12119.9O5—Na1—O1126.62 (8)
C14—C13—C15121.7 (2)O8—Na1—O192.0 (3)
C14—C13—C12120.1 (2)O7—Na1—O182.97 (9)
C15—C13—C12118.2 (2)O2—Na1—O161.92 (7)
O5—C14—C13124.3 (2)O8'—Na1—O182.4 (2)
O5—C14—C9117.9 (2)O4—Na1—O1169.07 (7)
C13—C14—C9117.9 (2)C1—O1—C8116.7 (2)
O6—C15—C13128.0 (2)C1—O1—Na1118.00 (15)
O6—C15—H15116.0C8—O1—Na1123.66 (18)
C13—C15—H15116.0C6—O2—Cu1127.00 (16)
O4—C16—H16A109.5C6—O2—Na1126.71 (16)
O4—C16—H16B109.5Cu1—O2—Na1104.90 (9)
H16A—C16—H16B109.5C7—O3—Cu1124.61 (17)
O4—C16—H16C109.5C9—O4—C16117.8 (2)
H16A—C16—H16C109.5C9—O4—Na1118.86 (14)
H16B—C16—H16C109.5C16—O4—Na1123.15 (17)
O7—C17—H17A109.5C14—O5—Cu1127.46 (15)
O7—C17—H17B109.5C14—O5—Na1125.99 (14)
H17A—C17—H17B109.5Cu1—O5—Na1106.52 (8)
O7—C17—H17C109.5C15—O6—Cu1125.08 (16)
H17A—C17—H17C109.5C17—O7—Na1114.4 (2)
H17B—C17—H17C109.5C17—O7—H71108.0
O8—Cl1—O10113.3 (8)Na1—O7—H71132.5
O10'—Cl1—O11'100.0 (8)Cl1—O8—Na1138.4 (7)
O10'—Cl1—O8'116.1 (7)Cl1—O8'—Na1131.5 (4)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O10ii0.852.112.874 (7)149
O7—H71···O11ii0.852.553.334 (13)154
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuNa(C8H7O3)2(ClO4)(CH4O)]
Mr520.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9552 (16), 8.9453 (18), 15.563 (3)
α, β, γ (°)81.27 (3), 84.24 (3), 68.25 (3)
V3)1015.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.43 × 0.28 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.610, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
9778, 4591, 3948
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.108, 1.11
No. of reflections4591
No. of parameters321
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.59

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O10i0.852.112.874 (7)149
O7—H71···O11'i0.852.553.334 (13)154
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from Heilongjiang Province (11551334) and Heilongjiang University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGao, P., Hou, H.-G., Gao, T., Yang, J.-L. & Yang, Y. (2011). Acta Cryst. E67, m1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLin, Z.-D. & Zeng, W. (2006). Acta Cryst. E62, m1074–m1076.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Gao, P., Yang, J.-L., Hou, H.-G. & Gao, T. (2012). Acta Cryst. E68, m37.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds