metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m129-m130

Bis[4-amino-3,5-bis­­(pyridin-2-yl)-4H-1,2,4-triazole-κ2N2,N3]bis­­(benzene-1,2-dicarb­­oxy­lic acid-κO)copper(II) bis­­(2-carb­­oxy­benzoate)

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: hxxychj@mail.tjnu.edu.cn

(Received 25 December 2011; accepted 3 January 2012; online 11 January 2012)

In the complex cation of the title salt, [Cu(C12H10N6)2(C8H6O4)2](C8H5O4)2, the CuII atom, lying on an inversion center, exhibits a distorted octa­hedral geometry defined by four N atoms from two 4-amino-3,5-bis­(pyridin-2-yl)-4H-1,2,4-triazole ligands in the equatorial plane and two axial O atoms from two benzene-1,2-dicarb­oxy­lic acid ligands. In the crystal, the complex cations and the monodeprotonated 2-carb­oxy­benzoate anions are connected by O—H⋯O and N—H⋯O hydrogen bonds, forming a tape along [100]. Adjacent tapes are further linked into a three-dimensional arrangement via ππ stacking inter­actions between the triazole and benzene rings and between the pyridine and benzene rings [centroid–centroid distances = 3.6734 (14)/3.9430 (16) and 3.8221 (14) Å]. Intra­molecular N—H⋯N and O—H⋯O hydrogen bonds are also observed.

Related literature

For the coordination systems of triazole derivatives, see: Chen et al. (2011[Chen, D., Liu, Y.-J., Lin, Y.-Y., Zhang, J.-P. & Chen, X.-M. (2011). CrystEngComm, 13, 3827-3831.]); Li et al. (2010[Li, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010). Cryst. Growth Des. 10, 5034-5042.]); Zhang et al. (2011[Zhang, J.-P., Zhu, A.-X., Lin, R.-B., Qi, X.-L. & Chen, X.-M. (2011). Adv. Mater. 23, 1268-1271.]). For the coordination systems of aromatic polycarboxyl­ate ligands, see: Sun et al. (2004[Sun, D.-F., Cao, R., Bi, W.-H., Weng, J.-B., Hong, M.-C. & Liang, Y.-C. (2004). Inorg. Chim. Acta, 357, 991-1001.]); Zehnder et al. (2011[Zehnder, R. A., Renn, R. A., Pippin, E., Zeller, M., Wheeler, K. A., Carr, J. A., Fontaine, N. & McMullen, N. C. (2011). J. Mol. Struct. 985, 109-119.]). For the coordination systems of mixed ligands, see: Du et al. (2005[Du, M., Jiang, X.-J. & Zhao, X.-J. (2005). Chem. Commun. pp. 5521-5523.], 2006[Du, M., Jiang, X.-J. & Zhao, X.-J. (2006). Inorg. Chem. 45, 3998-4006.], 2007[Du, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984-3995.], 2008[Du, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306-321.]); Habib et al. (2009[Habib, H. A., Sanchiz, J. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 2452-2460.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H10N6)2(C8H6O4)2](C8H5O4)2

  • Mr = 1202.56

  • Monoclinic, P 21 /c

  • a = 12.1171 (7) Å

  • b = 15.9875 (10) Å

  • c = 15.7498 (7) Å

  • β = 121.739 (3)°

  • V = 2594.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 294 K

  • 0.24 × 0.23 × 0.20 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.906

  • 13987 measured reflections

  • 4579 independent reflections

  • 3594 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.05

  • 4579 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O6 0.90 2.23 2.957 (3) 137
N5—H5B⋯N6 0.90 2.23 2.871 (3) 128
O2—H2⋯O8i 0.82 1.83 2.619 (2) 161
O3—H3⋯O5ii 0.82 1.77 2.579 (2) 171
O7—H7⋯O6 0.82 1.60 2.394 (2) 163
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, the derivatives of 1,2,4-triazole have been widely used to synthesize diverse complicated complexes (Chen et al., 2011; Li et al., 2010; Zhang et al., 2011). In addition, the aromatic polycarboxylate ligands can also be regarded as excellent candidates for building coordination frameworks (Sun et al., 2004; Zehnder et al., 2011). With regard to this, the employment of mixed ligands using the derivatives of 1,2,4-triazole and polycarboxylate ligands can be effective in constructing supramolecular structures (Du et al., 2005, 2006, 2007, 2008; Habib et al., 2009). Herein, we present the title complex prepared by the reaction of copper(II) sulfate with benzene-1,2-dicarboxylic acid (H2pa) and 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (2-bpt) as the mixed ligands.

The molecular structure of the title complex is illustrated in Fig. 1. In the [Cu(2-bpt)2(H2pa)2]2+ cation, the CuII atom, lying on an inversion center, shows a distorted octahedral coordination environment defined by four N atoms from two 2-bpt ligands and two O atoms of the carboxylic groups from two H2pa ligands. The 2-bpt ligand coordinates to the Cu atom in a bidentate chelating coordination mode, with the trans-conformation considering the opposite disposition of two pyridyl N atoms. With regard to the H2pa ligand, one carboxylic group adopts a monodentate coordination mode and the other is uncoordinated. As a result, there exists a monodeprotonated Hpa anion in the asymmetric unit to balance the charge of the complex cation.

As shown in Fig. 2, the [Cu(2-bpt)2(H2pa)2]2+ cations and the Hpa anions are interconnected to a one-dimensional tape via intermolecular O3—H3···O5i and O2—H2···O8ii hydrogen bonds between the carboxyl groups from H2pa and Hpa (Table 1) [symmetry codes: (i) -x, 1-y, 1-z; (ii) 1-x, 1-y, 1-z]. The amino group from 2-bpt is involved in an intermolecular N5—H5A···O6 hydrogen bond and an intramolecular N5—H5B···N6 hydrogen bond, which further reinforce the one-dimensional tape. A strong intramolecular O7—H7···O6 hydrogen bond is also observed within the Hpa anion. Furthermore, the adjacent one-dimensional arrays are further extended to afford a three-dimensional supramolecular architecture via multiple ππ stacking interactions (Fig. 3). The centroid–centroid distances and the dihedral angles are 3.6734 (14) Å and 3.38 (9)° between the triazole (N2, N3, N4, C6, C7) and benzene (C21iii—C26iii) rings and 3.8221 (14) Å and 21.59 (7)° between the pyridine (N1, C1–C5) and benzene (C13i–C18i) rings and 3.9430 (16) Å and 22.25 (8)° between the pyridine (N6, C8–C12) and benzene (C13iv–C18iv) rings, respectively [symmetry codes: (iii) x, 1/2-y, 1/2+z; (iv) x, 1/2-y, -1/2+z].

Related literature top

For the coordination systems of triazole derivatives, see: Chen et al. (2011); Li et al. (2010); Zhang et al. (2011). For the coordination systems of aromatic polycarboxylate ligands, see: Sun et al. (2004); Zehnder et al. (2011). For the coordination systems of mixed ligands, see: Du et al. (2005, 2006, 2007, 2008); Habib et al. (2009).

Experimental top

A mixture of 2-bpt (23.8 mg, 0.1 mmol), H2pa (8.3 mg, 0.05 mmol) and CuSO4.5H2O (24.9 mg, 0.1 mmol) in water (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated to 100°C in 24 h and then gradually cooled to room temperature at a rate of 5°C h-1. Block blue crystals suitable for X-ray analysis were obtained in 50% yield. Analysis, calculated for C56H42CuN12O16: C 55.93, H 3.52, N 13.98%; found: C 55.07, H 3.46, N 13.79%.

Refinement top

All H atoms were initially located in a difference Fourier map and then refined as riding atoms, with C—H = 0.93 (aromatic), N—H = 0.90 (NH2) and O—H = 0.82 (OH) Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N, O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Except for the carboxyl H atoms, all H atoms were omitted for clarity. [Symmetry code: (A) -x, 1-y, 1-z.]
[Figure 2] Fig. 2. A view of the one-dimensional tape connected via N—H···O and O—H···O hydrogen bonds (red dashed lines).
[Figure 3] Fig. 3. A view of the three-dimensional supramolecular structure constructed via aromatic stacking interactions (green dashed lines).
Bis[4-amino-3,5-bis(pyridin-2-yl)-4H-1,2,4-triazole- κ2N2,N3]bis(benzene-1,2-dicarboxylic acid-κO)copper(II) bis(2-carboxybenzoate) top
Crystal data top
[Cu(C12H10N6)2(C8H6O4)2](C8H5O4)2F(000) = 1238
Mr = 1202.56Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4780 reflections
a = 12.1171 (7) Åθ = 2.2–25.4°
b = 15.9875 (10) ŵ = 0.51 mm1
c = 15.7498 (7) ÅT = 294 K
β = 121.739 (3)°Block, blue
V = 2594.8 (2) Å30.24 × 0.23 × 0.20 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
4579 independent reflections
Radiation source: fine-focus sealed tube3594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 149
Tmin = 0.885, Tmax = 0.906k = 1819
13987 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.051P)2 + 0.7095P]
where P = (Fo2 + 2Fc2)/3
4579 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C12H10N6)2(C8H6O4)2](C8H5O4)2V = 2594.8 (2) Å3
Mr = 1202.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.1171 (7) ŵ = 0.51 mm1
b = 15.9875 (10) ÅT = 294 K
c = 15.7498 (7) Å0.24 × 0.23 × 0.20 mm
β = 121.739 (3)°
Data collection top
Bruker APEX CCD
diffractometer
4579 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3594 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.906Rint = 0.023
13987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
4579 reflectionsΔρmin = 0.38 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.03702 (13)
O50.25819 (17)0.25012 (10)0.25335 (15)0.0578 (5)
O60.42188 (18)0.33760 (10)0.30636 (14)0.0557 (5)
O70.61160 (19)0.35032 (10)0.29636 (15)0.0582 (5)
H70.55610.34180.31030.087*
O80.71299 (18)0.27995 (10)0.23886 (15)0.0612 (5)
N10.11634 (16)0.58006 (11)0.48080 (13)0.0357 (4)
N20.12225 (17)0.41813 (11)0.49978 (14)0.0384 (4)
N30.14291 (17)0.33373 (11)0.51187 (14)0.0398 (4)
N40.28569 (17)0.39093 (11)0.48400 (13)0.0364 (4)
N50.38715 (19)0.40434 (13)0.46593 (16)0.0509 (5)
H5A0.35300.39150.40120.076*
H5B0.44060.36430.50750.076*
N60.4013 (2)0.22776 (13)0.50357 (16)0.0519 (5)
C10.2106 (2)0.54244 (14)0.47258 (16)0.0358 (5)
C20.1071 (2)0.66321 (14)0.47397 (18)0.0430 (5)
H2A0.04360.68960.48050.052*
C30.1889 (2)0.71151 (15)0.45752 (19)0.0500 (6)
H3A0.18000.76940.45280.060*
C40.2829 (2)0.67294 (15)0.4483 (2)0.0511 (6)
H40.33830.70440.43680.061*
C50.2950 (2)0.58683 (15)0.45617 (18)0.0451 (6)
H50.35870.55960.45050.054*
C60.2094 (2)0.45237 (13)0.48423 (15)0.0346 (5)
C70.2428 (2)0.31780 (14)0.50288 (16)0.0374 (5)
C80.3001 (2)0.23437 (14)0.51511 (16)0.0398 (5)
C90.4507 (3)0.15095 (18)0.5139 (2)0.0652 (8)
H90.52030.14440.50510.078*
C100.4054 (3)0.08162 (18)0.5366 (2)0.0683 (8)
H100.44300.02960.54260.082*
C110.3039 (3)0.09019 (17)0.5503 (2)0.0629 (7)
H110.27190.04400.56650.075*
C120.2495 (2)0.16788 (15)0.53986 (18)0.0488 (6)
H120.18060.17550.54920.059*
C210.4445 (2)0.19723 (13)0.26040 (16)0.0360 (5)
C220.5573 (2)0.20464 (13)0.25486 (16)0.0365 (5)
C230.6072 (2)0.13201 (14)0.23817 (19)0.0465 (6)
H230.68020.13620.23320.056*
C240.5527 (3)0.05483 (15)0.2289 (2)0.0536 (7)
H240.58930.00760.21880.064*
C250.4435 (2)0.04748 (14)0.2345 (2)0.0526 (7)
H250.40560.00460.22820.063*
C260.3915 (2)0.11756 (14)0.24943 (19)0.0461 (6)
H260.31720.11190.25250.055*
C270.3693 (2)0.26633 (14)0.27388 (17)0.0420 (5)
C280.6319 (2)0.28304 (14)0.26291 (18)0.0423 (5)
O10.14046 (17)0.52179 (11)0.68003 (12)0.0519 (4)
O20.15757 (19)0.60865 (11)0.79643 (15)0.0611 (5)
H20.20510.63410.78290.092*
O30.12352 (19)0.62542 (11)0.74566 (13)0.0596 (5)
H30.15940.66650.75170.089*
O40.0100 (2)0.62734 (12)0.91204 (14)0.0656 (5)
C130.0569 (2)0.47914 (14)0.78016 (16)0.0375 (5)
C140.0682 (2)0.39419 (15)0.76748 (17)0.0450 (6)
H140.11080.37700.73560.054*
C150.0174 (2)0.33481 (15)0.8014 (2)0.0543 (7)
H150.02400.27820.79100.065*
C160.0429 (3)0.35987 (16)0.8505 (2)0.0555 (7)
H160.07480.32010.87520.067*
C170.0561 (2)0.44334 (16)0.86325 (18)0.0502 (6)
H17A0.09700.45950.89670.060*
C180.0091 (2)0.50426 (14)0.82691 (17)0.0391 (5)
C190.1203 (2)0.53840 (15)0.74604 (17)0.0407 (5)
C200.0436 (2)0.59263 (15)0.83447 (18)0.0436 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0356 (2)0.0354 (2)0.0541 (2)0.00117 (16)0.03318 (19)0.00233 (17)
O50.0499 (11)0.0419 (10)0.0929 (13)0.0050 (8)0.0454 (10)0.0014 (9)
O60.0716 (12)0.0328 (9)0.0875 (13)0.0053 (8)0.0589 (11)0.0126 (9)
O70.0693 (12)0.0329 (9)0.0952 (14)0.0116 (8)0.0589 (12)0.0105 (9)
O80.0668 (12)0.0412 (10)0.1046 (15)0.0081 (9)0.0650 (12)0.0038 (9)
N10.0327 (10)0.0386 (11)0.0434 (10)0.0011 (8)0.0253 (9)0.0018 (8)
N20.0353 (10)0.0378 (10)0.0512 (11)0.0023 (8)0.0290 (9)0.0039 (8)
N30.0385 (10)0.0367 (10)0.0531 (11)0.0022 (8)0.0302 (10)0.0019 (9)
N40.0326 (10)0.0420 (11)0.0438 (10)0.0018 (8)0.0266 (9)0.0004 (8)
N50.0474 (12)0.0530 (12)0.0759 (14)0.0009 (10)0.0488 (12)0.0003 (10)
N60.0527 (13)0.0478 (12)0.0694 (14)0.0089 (10)0.0420 (12)0.0006 (10)
C10.0326 (12)0.0397 (13)0.0394 (12)0.0002 (10)0.0217 (10)0.0010 (10)
C20.0412 (13)0.0392 (13)0.0590 (15)0.0013 (10)0.0334 (12)0.0022 (11)
C30.0500 (15)0.0397 (13)0.0692 (16)0.0008 (11)0.0374 (14)0.0058 (12)
C40.0476 (14)0.0478 (15)0.0722 (17)0.0042 (12)0.0412 (14)0.0073 (13)
C50.0406 (13)0.0450 (14)0.0670 (16)0.0012 (11)0.0400 (13)0.0047 (12)
C60.0295 (11)0.0416 (13)0.0396 (12)0.0012 (10)0.0228 (10)0.0013 (10)
C70.0360 (12)0.0396 (12)0.0419 (12)0.0001 (10)0.0242 (11)0.0011 (10)
C80.0376 (12)0.0438 (13)0.0396 (12)0.0040 (10)0.0215 (11)0.0015 (10)
C90.0694 (19)0.0571 (18)0.088 (2)0.0191 (15)0.0542 (18)0.0044 (15)
C100.082 (2)0.0498 (17)0.087 (2)0.0219 (15)0.0544 (19)0.0071 (15)
C110.079 (2)0.0455 (15)0.0756 (19)0.0079 (14)0.0483 (17)0.0111 (13)
C120.0495 (15)0.0489 (15)0.0549 (15)0.0031 (12)0.0321 (13)0.0028 (12)
C210.0402 (12)0.0276 (11)0.0426 (12)0.0021 (9)0.0234 (11)0.0029 (9)
C220.0380 (12)0.0288 (11)0.0436 (12)0.0004 (9)0.0221 (11)0.0020 (9)
C230.0468 (14)0.0352 (13)0.0672 (16)0.0046 (10)0.0367 (13)0.0010 (11)
C240.0622 (17)0.0297 (13)0.0766 (18)0.0053 (11)0.0419 (15)0.0036 (12)
C250.0564 (16)0.0271 (13)0.0743 (18)0.0044 (11)0.0343 (14)0.0003 (11)
C260.0437 (13)0.0352 (13)0.0643 (15)0.0031 (10)0.0319 (13)0.0034 (11)
C270.0507 (15)0.0343 (13)0.0522 (14)0.0052 (11)0.0348 (13)0.0059 (10)
C280.0449 (14)0.0310 (12)0.0563 (14)0.0010 (10)0.0303 (12)0.0033 (10)
O10.0536 (10)0.0640 (11)0.0518 (10)0.0052 (8)0.0372 (9)0.0058 (8)
O20.0810 (14)0.0491 (11)0.0853 (13)0.0210 (9)0.0657 (12)0.0156 (10)
O30.0661 (12)0.0499 (11)0.0610 (11)0.0186 (9)0.0321 (10)0.0014 (9)
O40.0877 (14)0.0598 (12)0.0613 (12)0.0002 (10)0.0474 (11)0.0125 (9)
C130.0330 (12)0.0390 (12)0.0415 (12)0.0002 (9)0.0203 (10)0.0006 (10)
C140.0412 (13)0.0446 (14)0.0500 (14)0.0053 (11)0.0245 (12)0.0034 (11)
C150.0547 (16)0.0355 (13)0.0653 (16)0.0005 (12)0.0265 (14)0.0019 (12)
C160.0521 (16)0.0465 (15)0.0695 (17)0.0066 (12)0.0330 (15)0.0106 (13)
C170.0472 (14)0.0558 (16)0.0591 (15)0.0019 (12)0.0358 (13)0.0038 (12)
C180.0361 (12)0.0405 (13)0.0437 (12)0.0006 (10)0.0230 (11)0.0001 (10)
C190.0359 (12)0.0426 (13)0.0463 (13)0.0021 (10)0.0236 (11)0.0014 (11)
C200.0437 (14)0.0451 (13)0.0544 (15)0.0036 (11)0.0343 (13)0.0008 (12)
Geometric parameters (Å, º) top
Cu1—N21.9781 (17)C10—H100.9300
Cu1—N12.0409 (17)C11—C121.375 (4)
Cu1—O12.4455 (17)C11—H110.9300
O5—C271.236 (3)C12—H120.9300
O6—C271.274 (3)C21—C261.396 (3)
O7—C281.277 (3)C21—C221.419 (3)
O7—H70.8200C21—C271.516 (3)
O8—C281.226 (3)C22—C231.397 (3)
N1—C21.334 (3)C22—C281.511 (3)
N1—C11.356 (3)C23—C241.371 (3)
N2—C61.322 (3)C23—H230.9300
N2—N31.367 (3)C24—C251.376 (3)
N3—C71.315 (3)C24—H240.9300
N4—C61.350 (3)C25—C261.365 (3)
N4—C71.374 (3)C25—H250.9300
N4—N51.416 (2)C26—H260.9300
N5—H5A0.9001O1—C191.216 (3)
N5—H5B0.9014O2—C191.311 (3)
N6—C81.334 (3)O2—H20.8200
N6—C91.338 (3)O3—C201.321 (3)
C1—C51.377 (3)O3—H30.8200
C1—C61.453 (3)O4—C201.201 (3)
C2—C31.384 (3)C13—C141.390 (3)
C2—H2A0.9300C13—C181.401 (3)
C3—C41.369 (3)C13—C191.487 (3)
C3—H3A0.9300C14—C151.382 (3)
C4—C51.383 (3)C14—H140.9300
C4—H40.9300C15—C161.373 (4)
C5—H50.9300C15—H150.9300
C7—C81.469 (3)C16—C171.371 (4)
C8—C121.382 (3)C16—H160.9300
C9—C101.365 (4)C17—C181.394 (3)
C9—H90.9300C17—H17A0.9300
C10—C111.362 (4)C18—C201.496 (3)
N2—Cu1—N2i180.0C10—C11—H11120.4
N2—Cu1—N1i99.29 (7)C12—C11—H11120.4
N2i—Cu1—N1i80.71 (7)C11—C12—C8118.2 (2)
N2—Cu1—N180.71 (7)C11—C12—H12120.9
N2i—Cu1—N199.29 (7)C8—C12—H12120.9
N1i—Cu1—N1180.00 (8)C26—C21—C22117.6 (2)
N2—Cu1—O191.79 (7)C26—C21—C27114.24 (19)
N2i—Cu1—O188.21 (7)C22—C21—C27128.08 (19)
N1i—Cu1—O191.79 (6)C23—C22—C21117.9 (2)
N1—Cu1—O188.21 (6)C23—C22—C28113.98 (19)
C28—O7—H7109.5C21—C22—C28128.06 (19)
C2—N1—C1118.25 (18)C24—C23—C22122.4 (2)
C2—N1—Cu1127.02 (15)C24—C23—H23118.8
C1—N1—Cu1114.72 (14)C22—C23—H23118.8
C6—N2—N3109.19 (17)C23—C24—C25119.7 (2)
C6—N2—Cu1113.48 (14)C23—C24—H24120.1
N3—N2—Cu1137.33 (14)C25—C24—H24120.1
C7—N3—N2106.71 (18)C26—C25—C24119.2 (2)
C6—N4—C7106.33 (17)C26—C25—H25120.4
C6—N4—N5123.92 (18)C24—C25—H25120.4
C7—N4—N5129.74 (18)C25—C26—C21123.1 (2)
N4—N5—H5A105.3C25—C26—H26118.5
N4—N5—H5B96.6C21—C26—H26118.5
H5A—N5—H5B112.8O5—C27—O6122.6 (2)
C8—N6—C9116.1 (2)O5—C27—C21117.6 (2)
N1—C1—C5122.4 (2)O6—C27—C21119.8 (2)
N1—C1—C6111.28 (18)O8—C28—O7121.4 (2)
C5—C1—C6126.3 (2)O8—C28—C22118.8 (2)
N1—C2—C3122.3 (2)O7—C28—C22119.8 (2)
N1—C2—H2A118.9C19—O1—Cu1133.81 (16)
C3—C2—H2A118.9C19—O2—H2109.5
C4—C3—C2119.1 (2)C20—O3—H3109.5
C4—C3—H3A120.5C14—C13—C18118.9 (2)
C2—C3—H3A120.5C14—C13—C19117.5 (2)
C3—C4—C5119.6 (2)C18—C13—C19123.6 (2)
C3—C4—H4120.2C15—C14—C13121.2 (2)
C5—C4—H4120.2C15—C14—H14119.4
C1—C5—C4118.4 (2)C13—C14—H14119.4
C1—C5—H5120.8C16—C15—C14119.6 (2)
C4—C5—H5120.8C16—C15—H15120.2
N2—C6—N4108.30 (18)C14—C15—H15120.2
N2—C6—C1119.71 (18)C17—C16—C15120.3 (2)
N4—C6—C1131.98 (19)C17—C16—H16119.9
N3—C7—N4109.44 (19)C15—C16—H16119.9
N3—C7—C8124.1 (2)C16—C17—C18121.0 (2)
N4—C7—C8126.45 (19)C16—C17—H17A119.5
N6—C8—C12123.6 (2)C18—C17—H17A119.5
N6—C8—C7117.3 (2)C17—C18—C13119.0 (2)
C12—C8—C7119.1 (2)C17—C18—C20115.9 (2)
N6—C9—C10124.1 (3)C13—C18—C20125.0 (2)
N6—C9—H9117.9O1—C19—O2123.0 (2)
C10—C9—H9117.9O1—C19—C13123.0 (2)
C11—C10—C9118.7 (3)O2—C19—C13114.0 (2)
C11—C10—H10120.6O4—C20—O3124.1 (2)
C9—C10—H10120.6O4—C20—C18123.9 (2)
C10—C11—C12119.2 (3)O3—C20—C18111.8 (2)
N2—Cu1—N1—C2178.4 (2)N6—C9—C10—C110.3 (5)
N2i—Cu1—N1—C21.6 (2)C9—C10—C11—C120.7 (4)
O1—Cu1—N1—C286.26 (19)C10—C11—C12—C80.4 (4)
N2—Cu1—N1—C12.92 (15)N6—C8—C12—C112.0 (4)
N2i—Cu1—N1—C1177.08 (15)C7—C8—C12—C11179.5 (2)
O1—Cu1—N1—C195.02 (15)C26—C21—C22—C230.4 (3)
N1i—Cu1—N2—C6177.47 (15)C27—C21—C22—C23177.5 (2)
N1—Cu1—N2—C62.53 (15)C26—C21—C22—C28179.2 (2)
O1—Cu1—N2—C690.42 (15)C27—C21—C22—C281.2 (4)
N1i—Cu1—N2—N32.8 (2)C21—C22—C23—C241.1 (4)
N1—Cu1—N2—N3177.2 (2)C28—C22—C23—C24179.9 (2)
O1—Cu1—N2—N389.3 (2)C22—C23—C24—C251.0 (4)
C6—N2—N3—C70.3 (2)C23—C24—C25—C260.1 (4)
Cu1—N2—N3—C7179.97 (17)C24—C25—C26—C210.6 (4)
C2—N1—C1—C50.9 (3)C22—C21—C26—C250.4 (4)
Cu1—N1—C1—C5177.90 (17)C27—C21—C26—C25178.6 (2)
C2—N1—C1—C6178.53 (19)C26—C21—C27—O514.8 (3)
Cu1—N1—C1—C62.6 (2)C22—C21—C27—O5163.2 (2)
C1—N1—C2—C30.9 (3)C26—C21—C27—O6164.4 (2)
Cu1—N1—C2—C3177.74 (18)C22—C21—C27—O617.6 (3)
N1—C2—C3—C40.3 (4)C23—C22—C28—O811.6 (3)
C2—C3—C4—C50.4 (4)C21—C22—C28—O8167.2 (2)
N1—C1—C5—C40.3 (4)C23—C22—C28—O7166.9 (2)
C6—C1—C5—C4179.1 (2)C21—C22—C28—O714.3 (4)
C3—C4—C5—C10.4 (4)N2—Cu1—O1—C19148.0 (2)
N3—N2—C6—N41.2 (2)N2i—Cu1—O1—C1932.0 (2)
Cu1—N2—C6—N4179.01 (13)N1i—Cu1—O1—C1948.7 (2)
N3—N2—C6—C1177.86 (18)N1—Cu1—O1—C19131.3 (2)
Cu1—N2—C6—C11.9 (2)C18—C13—C14—C150.9 (3)
C7—N4—C6—N21.6 (2)C19—C13—C14—C15176.9 (2)
N5—N4—C6—N2177.72 (18)C13—C14—C15—C161.5 (4)
C7—N4—C6—C1177.3 (2)C14—C15—C16—C172.0 (4)
N5—N4—C6—C13.4 (4)C15—C16—C17—C180.1 (4)
N1—C1—C6—N20.5 (3)C16—C17—C18—C132.5 (4)
C5—C1—C6—N2179.9 (2)C16—C17—C18—C20172.8 (2)
N1—C1—C6—N4178.3 (2)C14—C13—C18—C172.9 (3)
C5—C1—C6—N41.1 (4)C19—C13—C18—C17174.8 (2)
N2—N3—C7—N40.7 (2)C14—C13—C18—C20172.0 (2)
N2—N3—C7—C8177.3 (2)C19—C13—C18—C2010.3 (4)
C6—N4—C7—N31.4 (2)Cu1—O1—C19—O2114.9 (2)
N5—N4—C7—N3177.8 (2)Cu1—O1—C19—C1368.1 (3)
C6—N4—C7—C8176.6 (2)C14—C13—C19—O126.3 (3)
N5—N4—C7—C84.2 (4)C18—C13—C19—O1155.9 (2)
C9—N6—C8—C122.3 (4)C14—C13—C19—O2150.9 (2)
C9—N6—C8—C7179.2 (2)C18—C13—C19—O226.9 (3)
N3—C7—C8—N6179.9 (2)C17—C18—C20—O462.5 (3)
N4—C7—C8—N62.4 (3)C13—C18—C20—O4122.5 (3)
N3—C7—C8—C121.6 (3)C17—C18—C20—O3112.5 (2)
N4—C7—C8—C12176.1 (2)C13—C18—C20—O362.5 (3)
C8—N6—C9—C101.1 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O60.902.232.957 (3)137
N5—H5B···N60.902.232.871 (3)128
O2—H2···O8ii0.821.832.619 (2)161
O3—H3···O5i0.821.772.579 (2)171
O7—H7···O60.821.602.394 (2)163
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C12H10N6)2(C8H6O4)2](C8H5O4)2
Mr1202.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.1171 (7), 15.9875 (10), 15.7498 (7)
β (°) 121.739 (3)
V3)2594.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.24 × 0.23 × 0.20
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
13987, 4579, 3594
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.05
No. of reflections4579
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.38

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O60.902.232.957 (3)137.4
N5—H5B···N60.902.232.871 (3)127.9
O2—H2···O8i0.821.832.619 (2)161.1
O3—H3···O5ii0.821.772.579 (2)171.0
O7—H7···O60.821.602.394 (2)163.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported financially by Tianjin Normal University (No. 52XQ1104).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, D., Liu, Y.-J., Lin, Y.-Y., Zhang, J.-P. & Chen, X.-M. (2011). CrystEngComm, 13, 3827–3831.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2005). Chem. Commun. pp. 5521–5523.  Web of Science CSD CrossRef Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2006). Inorg. Chem. 45, 3998–4006.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984–3995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306–321.  Web of Science CSD CrossRef CAS Google Scholar
First citationHabib, H. A., Sanchiz, J. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 2452–2460.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010). Cryst. Growth Des. 10, 5034–5042.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D.-F., Cao, R., Bi, W.-H., Weng, J.-B., Hong, M.-C. & Liang, Y.-C. (2004). Inorg. Chim. Acta, 357, 991–1001.  Web of Science CSD CrossRef CAS Google Scholar
First citationZehnder, R. A., Renn, R. A., Pippin, E., Zeller, M., Wheeler, K. A., Carr, J. A., Fontaine, N. & McMullen, N. C. (2011). J. Mol. Struct. 985, 109–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J.-P., Zhu, A.-X., Lin, R.-B., Qi, X.-L. & Chen, X.-M. (2011). Adv. Mater. 23, 1268–1271.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m129-m130
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds