metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{bis­­[4-(adamantan-1-ylcarbamo­yl)pyridine-κN]chlorido­copper(II)} hemihydrate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn

(Received 31 December 2011; accepted 7 January 2012; online 14 January 2012)

In the centrosymmetric dimeric title compound, [Cu2Cl4(C16H20N2O)4]·0.5H2O, the CuII atom is in a distorted trigonal–bipyramidal environment defined by two bridging Cl atoms, one terminal Cl atom and two N atoms from two monodentate 4-(adamantan-1-ylcarbamo­yl)pyridine ligands. The amine N atoms are involved in intra­molecular N—H⋯O and inter­molecular N—H⋯Cl hydrogen bonds. The latter hydrogen bonds link the complex mol­ecules into a ribbon along [010]. The uncoordinated water mol­ecule is 0.25-occupied.

Related literature

For the structures of related amino compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011a). Adv. Mater. 23, 5658-5662.],b[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011b). J. Am. Chem. Soc. 133, 12780-12786.],c[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011c). Angew. Chem. Int. Ed. 50, 11947-11951.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C16H20N2O)4]·0.5H2O

  • Mr = 1303.25

  • Triclinic, [P \overline 1]

  • a = 6.739 (4) Å

  • b = 11.149 (6) Å

  • c = 21.814 (12) Å

  • α = 92.221 (6)°

  • β = 95.993 (8)°

  • γ = 96.727 (9)°

  • V = 1616.6 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.779, Tmax = 0.880

  • 16110 measured reflections

  • 6320 independent reflections

  • 4988 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.197

  • S = 1.06

  • 6320 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.35 2.969 (5) 129
N2—H2A⋯Cl1ii 0.86 2.66 3.499 (4) 165
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amino compounds have attracted more attention as phase transition dielectric materials for their applications in memory storage (Fu et al., 2007, 2008, 2009; Fu & Xiong, 2008). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and a series of new materials with this organic molecules have been elaborated (Fu et al., 2011a,b,c). In this study, we describe the crystal structure of the title compound.

The asymmetric unit is composed of two 4-[(1-adamantyl)carbamoyl]pyridine ligands, two Cl- anions, one CuII ion and a quarter of water molecule (Fig. 1). The two pyridine rings are twisted from each other by a dihedral angle of 11.14 (1)°. The dimeric complex molecule is centrosymmetric. The distorted trigonal-bipyramidal environment around the CuII ion is defined by two bridging Cl atoms, one terminal Cl atom and two N atoms from two monodentate organic ligands. The geometric parameters in the title compound are in a normal range.

In the crystal, the amino N atoms are involved in an intramolecular N—H···O hydrogen bond and an intermolecular N—H···Cl hydrogen bond. These hydrogen bonds link the complex molecules into a one-dimensional ribbon along [0 1 0] (Table 1 and Fig. 2).

Related literature top

For the structures of related amino compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008). For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a,b,c).

Experimental top

CuCl2.6H2O (2 mmol) and 4-[(1-adamantyl)carbamoyl]pyridine (2 mmol) were dissolved in 70% aqueous methanol solution, and then 2 ml HCl was added. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of the solution at room temperature after two weeks.

Refinement top

H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.98 Å (methine) and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms bonded to O atom were located in a difference Fourier map and restrained with H—O = 0.82 (1) Å. In the last stage of refinement, they were treated as riding atoms with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found at 0.97 Å from Cl1 atom and the deepest hole at 0.80 Å from Cl1 atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) -x, 1-y, 1-z.]
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing the hydrogen bonded ribbon. H atoms not involved in hydrogen bonds (dashed line) have been omitted for clarity.
Di-µ-chlorido-bis{bis[4-(adamantan-1-ylcarbamoyl)pyridine- κN]chloridocopper(II)} hemihydrate top
Crystal data top
[Cu2Cl4(C16H20N2O)4]·0.5H2OZ = 1
Mr = 1303.25F(000) = 683
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.739 (4) ÅCell parameters from 4355 reflections
b = 11.149 (6) Åθ = 2.6–27.5°
c = 21.814 (12) ŵ = 0.88 mm1
α = 92.221 (6)°T = 295 K
β = 95.993 (8)°Block, colorless
γ = 96.727 (9)°0.30 × 0.25 × 0.15 mm
V = 1616.6 (16) Å3
Data collection top
Rigaku Mercury2 CCD
diffractometer
6320 independent reflections
Radiation source: fine-focus sealed tube4988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.779, Tmax = 0.880l = 2626
16110 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.817P]
where P = (Fo2 + 2Fc2)/3
6320 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Cu2Cl4(C16H20N2O)4]·0.5H2Oγ = 96.727 (9)°
Mr = 1303.25V = 1616.6 (16) Å3
Triclinic, P1Z = 1
a = 6.739 (4) ÅMo Kα radiation
b = 11.149 (6) ŵ = 0.88 mm1
c = 21.814 (12) ÅT = 295 K
α = 92.221 (6)°0.30 × 0.25 × 0.15 mm
β = 95.993 (8)°
Data collection top
Rigaku Mercury2 CCD
diffractometer
6320 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4988 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.880Rint = 0.054
16110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.06Δρmax = 1.19 e Å3
6320 reflectionsΔρmin = 0.77 e Å3
379 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.02209 (9)0.63814 (5)0.46299 (2)0.0322 (2)
Cl10.0961 (3)0.78238 (13)0.40137 (6)0.0589 (4)
Cl20.24643 (16)0.45318 (10)0.46545 (5)0.0337 (3)
O10.2052 (7)0.8512 (3)0.74349 (17)0.0636 (12)
O20.6396 (5)0.5226 (3)0.24014 (16)0.0496 (9)
N10.3965 (6)0.3694 (3)0.20396 (17)0.0331 (9)
H1A0.28150.33240.21000.040*
N20.1049 (7)1.0381 (3)0.71060 (17)0.0387 (10)
H2A0.07761.07670.67850.046*
N30.0537 (6)0.7312 (3)0.53575 (17)0.0366 (9)
N40.1535 (6)0.5718 (3)0.39231 (16)0.0334 (8)
C10.3484 (7)0.6058 (5)0.3907 (2)0.0396 (11)
H1B0.41750.65540.42320.048*
C20.4541 (7)0.5711 (4)0.3431 (2)0.0361 (11)
H2B0.58980.59870.34320.043*
C30.3534 (7)0.4941 (4)0.29515 (19)0.0282 (9)
C40.1504 (7)0.4574 (4)0.29694 (19)0.0325 (10)
H4A0.07930.40520.26580.039*
C50.0534 (7)0.4988 (4)0.34532 (19)0.0321 (10)
H5A0.08380.47580.34540.038*
C60.4783 (7)0.4621 (4)0.2442 (2)0.0321 (10)
C70.4921 (6)0.3277 (4)0.15020 (18)0.0259 (9)
C80.3411 (6)0.2306 (4)0.1135 (2)0.0307 (10)
H8A0.21820.26450.10060.037*
H8B0.30850.16400.13950.037*
C90.5378 (7)0.4319 (4)0.1079 (2)0.0347 (10)
H9A0.41470.46510.09440.042*
H9B0.63020.49570.13050.042*
C100.6852 (7)0.2739 (5)0.1707 (2)0.0373 (11)
H10A0.65590.20740.19700.045*
H10B0.78070.33490.19420.045*
C110.6269 (8)0.1311 (4)0.0778 (2)0.0441 (13)
H11A0.59750.06390.10370.053*
H11B0.68500.10120.04220.053*
C120.4312 (7)0.1841 (4)0.0564 (2)0.0391 (11)
H12A0.33500.12120.03350.047*
C130.4807 (8)0.2882 (4)0.0147 (2)0.0411 (11)
H13A0.35890.32200.00040.049*
H13B0.53850.25870.02100.049*
C140.6310 (7)0.3860 (4)0.0516 (2)0.0328 (10)
H14A0.66300.45340.02540.039*
C150.8239 (7)0.3321 (4)0.0733 (2)0.0403 (11)
H15A0.88380.30340.03780.048*
H15B0.91990.39380.09610.048*
C160.7755 (7)0.2287 (5)0.1139 (2)0.0414 (12)
H16A0.89940.19450.12730.050*
C170.0825 (9)0.8159 (5)0.5631 (3)0.0540 (15)
H17A0.20400.83090.54650.065*
C180.0550 (9)0.8840 (5)0.6154 (2)0.0527 (14)
H18A0.15390.94480.63240.063*
C190.1204 (8)0.8601 (4)0.6415 (2)0.0392 (11)
C200.2667 (8)0.7724 (4)0.6124 (2)0.0401 (11)
H20A0.38910.75570.62840.048*
C210.2304 (7)0.7102 (4)0.5598 (2)0.0394 (11)
H21A0.32990.65220.54040.047*
C220.1500 (9)0.9173 (4)0.7036 (2)0.0435 (12)
C230.0991 (7)1.1090 (4)0.76943 (19)0.0312 (10)
C240.3064 (7)1.0948 (4)0.7938 (2)0.0378 (11)
H24A0.40591.12140.76360.045*
H24B0.34661.01040.80070.045*
C250.0430 (8)1.2429 (4)0.7573 (2)0.0371 (11)
H25A0.14271.26860.72690.045*
H25B0.08621.25360.74110.045*
C260.0598 (7)1.0685 (4)0.8172 (2)0.0362 (10)
H26A0.18991.07760.80150.043*
H26B0.02510.98400.82490.043*
C270.1282 (8)1.2794 (4)0.8652 (2)0.0430 (12)
H27A0.25821.28930.84940.052*
H27B0.13801.32870.90330.052*
C280.0326 (8)1.3205 (4)0.8176 (2)0.0383 (11)
H28A0.00361.40580.80970.046*
C290.2370 (8)1.3047 (4)0.8434 (2)0.0456 (13)
H29A0.33841.33260.81430.055*
H29B0.22921.35270.88180.055*
C300.2954 (8)1.1707 (5)0.8546 (2)0.0437 (12)
H30A0.42641.16040.87070.052*
C310.1339 (9)1.1290 (4)0.9021 (2)0.0471 (13)
H31A0.12821.17560.94090.057*
H31B0.16921.04440.90960.057*
C320.0700 (8)1.1463 (4)0.8777 (2)0.0413 (12)
H32A0.17151.12030.90820.050*
O1W0.500 (3)0.9159 (17)0.4447 (12)0.125 (11)0.25
H1WA0.51450.94750.48000.187*0.25
H1WB0.37990.89400.43400.187*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0445 (4)0.0306 (3)0.0236 (3)0.0077 (2)0.0115 (2)0.0042 (2)
Cl10.0939 (12)0.0497 (8)0.0404 (8)0.0268 (8)0.0188 (7)0.0097 (6)
Cl20.0341 (6)0.0375 (6)0.0288 (6)0.0025 (5)0.0040 (4)0.0028 (4)
O10.123 (4)0.0302 (19)0.039 (2)0.006 (2)0.039 (2)0.0058 (16)
O20.044 (2)0.055 (2)0.046 (2)0.0154 (17)0.0200 (16)0.0178 (17)
N10.036 (2)0.032 (2)0.031 (2)0.0051 (16)0.0170 (16)0.0065 (16)
N20.068 (3)0.026 (2)0.023 (2)0.0004 (19)0.0162 (18)0.0035 (15)
N30.049 (2)0.031 (2)0.031 (2)0.0095 (18)0.0103 (18)0.0014 (16)
N40.040 (2)0.035 (2)0.026 (2)0.0097 (17)0.0078 (16)0.0021 (15)
C10.040 (3)0.049 (3)0.028 (2)0.002 (2)0.006 (2)0.010 (2)
C20.036 (2)0.043 (3)0.028 (2)0.004 (2)0.0075 (19)0.0079 (19)
C30.037 (2)0.027 (2)0.022 (2)0.0064 (18)0.0099 (17)0.0005 (17)
C40.035 (2)0.037 (3)0.025 (2)0.002 (2)0.0053 (18)0.0101 (18)
C50.031 (2)0.042 (3)0.024 (2)0.000 (2)0.0089 (17)0.0023 (18)
C60.038 (2)0.035 (2)0.024 (2)0.002 (2)0.0110 (18)0.0039 (18)
C70.030 (2)0.027 (2)0.022 (2)0.0042 (18)0.0085 (16)0.0023 (16)
C80.029 (2)0.033 (2)0.031 (2)0.0011 (19)0.0078 (18)0.0048 (18)
C90.045 (3)0.028 (2)0.034 (3)0.010 (2)0.012 (2)0.0000 (19)
C100.034 (2)0.048 (3)0.032 (3)0.011 (2)0.0015 (19)0.006 (2)
C110.060 (3)0.028 (2)0.050 (3)0.013 (2)0.027 (3)0.002 (2)
C120.045 (3)0.036 (3)0.035 (3)0.003 (2)0.011 (2)0.011 (2)
C130.053 (3)0.045 (3)0.026 (2)0.008 (2)0.008 (2)0.003 (2)
C140.045 (3)0.028 (2)0.028 (2)0.005 (2)0.014 (2)0.0065 (18)
C150.035 (3)0.044 (3)0.045 (3)0.006 (2)0.018 (2)0.002 (2)
C160.031 (2)0.048 (3)0.052 (3)0.023 (2)0.016 (2)0.014 (2)
C170.064 (4)0.042 (3)0.058 (4)0.006 (3)0.034 (3)0.014 (3)
C180.063 (3)0.043 (3)0.049 (3)0.012 (3)0.021 (3)0.019 (2)
C190.063 (3)0.028 (2)0.029 (2)0.006 (2)0.017 (2)0.0049 (19)
C200.054 (3)0.038 (3)0.031 (3)0.008 (2)0.018 (2)0.010 (2)
C210.041 (3)0.040 (3)0.035 (3)0.008 (2)0.001 (2)0.008 (2)
C220.073 (4)0.026 (2)0.032 (3)0.000 (2)0.020 (2)0.007 (2)
C230.045 (3)0.024 (2)0.025 (2)0.0017 (19)0.0082 (19)0.0059 (17)
C240.042 (3)0.035 (3)0.035 (3)0.000 (2)0.008 (2)0.009 (2)
C250.058 (3)0.027 (2)0.027 (2)0.006 (2)0.007 (2)0.0005 (18)
C260.045 (3)0.029 (2)0.037 (3)0.013 (2)0.008 (2)0.0047 (19)
C270.052 (3)0.036 (3)0.037 (3)0.002 (2)0.002 (2)0.008 (2)
C280.061 (3)0.022 (2)0.032 (3)0.002 (2)0.009 (2)0.0041 (18)
C290.058 (3)0.031 (3)0.051 (3)0.013 (2)0.013 (3)0.010 (2)
C300.045 (3)0.045 (3)0.043 (3)0.003 (2)0.023 (2)0.012 (2)
C310.082 (4)0.034 (3)0.026 (3)0.003 (3)0.015 (2)0.004 (2)
C320.050 (3)0.038 (3)0.034 (3)0.009 (2)0.005 (2)0.000 (2)
O1W0.074 (13)0.072 (13)0.23 (3)0.003 (11)0.064 (16)0.097 (16)
Geometric parameters (Å, º) top
Cu1—N32.006 (4)C13—H13B0.9700
Cu1—N42.015 (4)C14—C151.533 (7)
Cu1—Cl12.2961 (16)C14—H14A0.9800
Cu1—Cl2i2.3978 (15)C15—C161.507 (7)
Cu1—Cl22.5854 (16)C15—H15A0.9700
O1—C221.222 (6)C15—H15B0.9700
O2—C61.223 (5)C16—H16A0.9800
N1—C61.355 (6)C17—C181.387 (7)
N1—C71.480 (5)C17—H17A0.9300
N1—H1A0.8600C18—C191.368 (7)
N2—C221.344 (6)C18—H18A0.9300
N2—C231.476 (5)C19—C201.389 (7)
N2—H2A0.8600C19—C221.516 (6)
N3—C171.315 (7)C20—C211.375 (6)
N3—C211.350 (6)C20—H20A0.9300
N4—C11.328 (6)C21—H21A0.9300
N4—C51.353 (6)C23—C261.534 (6)
C1—C21.387 (6)C23—C251.536 (6)
C1—H1B0.9300C23—C241.539 (6)
C2—C31.392 (6)C24—C301.535 (6)
C2—H2B0.9300C24—H24A0.9700
C3—C41.386 (6)C24—H24B0.9700
C3—C61.519 (5)C25—C281.536 (6)
C4—C51.390 (6)C25—H25A0.9700
C4—H4A0.9300C25—H25B0.9700
C5—H5A0.9300C26—C321.542 (6)
C7—C101.528 (6)C26—H26A0.9700
C7—C81.534 (6)C26—H26B0.9700
C7—C91.534 (6)C27—C321.532 (7)
C8—C121.539 (6)C27—C281.543 (7)
C8—H8A0.9700C27—H27A0.9700
C8—H8B0.9700C27—H27B0.9700
C9—C141.534 (6)C28—C291.535 (7)
C9—H9A0.9700C28—H28A0.9800
C9—H9B0.9700C29—C301.535 (7)
C10—C161.530 (6)C29—H29A0.9700
C10—H10A0.9700C29—H29B0.9700
C10—H10B0.9700C30—C311.548 (8)
C11—C161.524 (7)C30—H30A0.9800
C11—C121.543 (7)C31—C321.519 (7)
C11—H11A0.9700C31—H31A0.9700
C11—H11B0.9700C31—H31B0.9700
C12—C131.530 (7)C32—H32A0.9800
C12—H12A0.9800O1W—H1WA0.8258
C13—C141.538 (7)O1W—H1WB0.8262
C13—H13A0.9700
N3—Cu1—N4167.22 (17)C16—C15—H15A109.7
N3—Cu1—Cl188.13 (12)C14—C15—H15A109.7
N4—Cu1—Cl190.06 (12)C16—C15—H15B109.7
N3—Cu1—Cl2i87.18 (12)C14—C15—H15B109.7
N4—Cu1—Cl2i89.94 (12)H15A—C15—H15B108.2
Cl1—Cu1—Cl2i158.66 (6)C15—C16—C11109.7 (4)
N3—Cu1—Cl296.71 (12)C15—C16—C10110.0 (4)
N4—Cu1—Cl295.73 (12)C11—C16—C10109.7 (4)
Cl1—Cu1—Cl2111.32 (7)C15—C16—H16A109.1
Cl2i—Cu1—Cl289.91 (5)C11—C16—H16A109.1
Cu1i—Cl2—Cu190.09 (5)C10—C16—H16A109.1
C6—N1—C7124.3 (4)N3—C17—C18123.6 (5)
C6—N1—H1A117.9N3—C17—H17A118.2
C7—N1—H1A117.8C18—C17—H17A118.2
C22—N2—C23124.6 (4)C19—C18—C17118.8 (5)
C22—N2—H2A117.7C19—C18—H18A120.6
C23—N2—H2A117.7C17—C18—H18A120.6
C17—N3—C21118.0 (4)C18—C19—C20118.0 (4)
C17—N3—Cu1117.1 (3)C18—C19—C22122.0 (5)
C21—N3—Cu1124.9 (3)C20—C19—C22119.7 (4)
C1—N4—C5118.3 (4)C21—C20—C19119.8 (5)
C1—N4—Cu1117.8 (3)C21—C20—H20A120.1
C5—N4—Cu1123.9 (3)C19—C20—H20A120.1
N4—C1—C2123.4 (4)N3—C21—C20121.6 (5)
N4—C1—H1B118.3N3—C21—H21A119.2
C2—C1—H1B118.3C20—C21—H21A119.2
C1—C2—C3118.8 (4)O1—C22—N2125.3 (4)
C1—C2—H2B120.6O1—C22—C19118.4 (4)
C3—C2—H2B120.6N2—C22—C19116.2 (4)
C4—C3—C2118.0 (4)N2—C23—C26109.8 (4)
C4—C3—C6126.2 (4)N2—C23—C25108.0 (3)
C2—C3—C6115.7 (4)C26—C23—C25109.5 (4)
C3—C4—C5119.8 (4)N2—C23—C24110.9 (4)
C3—C4—H4A120.1C26—C23—C24110.2 (4)
C5—C4—H4A120.1C25—C23—C24108.4 (4)
N4—C5—C4121.6 (4)C30—C24—C23109.5 (4)
N4—C5—H5A119.2C30—C24—H24A109.8
C4—C5—H5A119.2C23—C24—H24A109.8
O2—C6—N1124.1 (4)C30—C24—H24B109.8
O2—C6—C3119.4 (4)C23—C24—H24B109.8
N1—C6—C3116.4 (4)H24A—C24—H24B108.2
N1—C7—C10111.2 (4)C23—C25—C28109.9 (4)
N1—C7—C8107.4 (3)C23—C25—H25A109.7
C10—C7—C8109.5 (4)C28—C25—H25A109.7
N1—C7—C9110.7 (3)C23—C25—H25B109.7
C10—C7—C9109.8 (4)C28—C25—H25B109.7
C8—C7—C9108.1 (4)H25A—C25—H25B108.2
C7—C8—C12110.0 (3)C23—C26—C32109.4 (4)
C7—C8—H8A109.7C23—C26—H26A109.8
C12—C8—H8A109.7C32—C26—H26A109.8
C7—C8—H8B109.7C23—C26—H26B109.8
C12—C8—H8B109.7C32—C26—H26B109.8
H8A—C8—H8B108.2H26A—C26—H26B108.2
C14—C9—C7109.9 (3)C32—C27—C28109.3 (4)
C14—C9—H9A109.7C32—C27—H27A109.8
C7—C9—H9A109.7C28—C27—H27A109.8
C14—C9—H9B109.7C32—C27—H27B109.8
C7—C9—H9B109.7C28—C27—H27B109.8
H9A—C9—H9B108.2H27A—C27—H27B108.3
C7—C10—C16109.5 (4)C29—C28—C25110.0 (4)
C7—C10—H10A109.8C29—C28—C27109.2 (4)
C16—C10—H10A109.8C25—C28—C27109.0 (4)
C7—C10—H10B109.8C29—C28—H28A109.6
C16—C10—H10B109.8C25—C28—H28A109.6
H10A—C10—H10B108.2C27—C28—H28A109.6
C16—C11—C12109.6 (4)C28—C29—C30109.5 (4)
C16—C11—H11A109.8C28—C29—H29A109.8
C12—C11—H11A109.8C30—C29—H29A109.8
C16—C11—H11B109.8C28—C29—H29B109.8
C12—C11—H11B109.8C30—C29—H29B109.8
H11A—C11—H11B108.2H29A—C29—H29B108.2
C13—C12—C8110.1 (4)C29—C30—C24109.8 (4)
C13—C12—C11108.8 (4)C29—C30—C31108.9 (4)
C8—C12—C11108.9 (4)C24—C30—C31109.3 (4)
C13—C12—H12A109.7C29—C30—H30A109.6
C8—C12—H12A109.7C24—C30—H30A109.6
C11—C12—H12A109.7C31—C30—H30A109.6
C12—C13—C14108.9 (4)C32—C31—C30109.9 (4)
C12—C13—H13A109.9C32—C31—H31A109.7
C14—C13—H13A109.9C30—C31—H31A109.7
C12—C13—H13B109.9C32—C31—H31B109.7
C14—C13—H13B109.9C30—C31—H31B109.7
H13A—C13—H13B108.3H31A—C31—H31B108.2
C9—C14—C15109.4 (4)C31—C32—C27110.5 (4)
C9—C14—C13109.4 (4)C31—C32—C26108.9 (4)
C15—C14—C13109.4 (4)C27—C32—C26109.3 (4)
C9—C14—H14A109.5C31—C32—H32A109.3
C15—C14—H14A109.5C27—C32—H32A109.3
C13—C14—H14A109.5C26—C32—H32A109.3
C16—C15—C14109.7 (4)H1WA—O1W—H1WB109.6
N3—Cu1—Cl2—Cu1i87.15 (12)C12—C13—C14—C959.6 (5)
N4—Cu1—Cl2—Cu1i89.93 (12)C12—C13—C14—C1560.3 (5)
Cl1—Cu1—Cl2—Cu1i177.76 (5)C9—C14—C15—C1659.7 (5)
Cl2i—Cu1—Cl2—Cu1i0.000 (2)C13—C14—C15—C1660.2 (5)
N4—Cu1—N3—C177.0 (9)C14—C15—C16—C1160.1 (5)
Cl1—Cu1—N3—C1789.0 (4)C14—C15—C16—C1060.6 (5)
Cl2i—Cu1—N3—C1770.1 (4)C12—C11—C16—C1560.4 (5)
Cl2—Cu1—N3—C17159.7 (4)C12—C11—C16—C1060.5 (5)
N4—Cu1—N3—C21175.6 (6)C7—C10—C16—C1560.2 (5)
Cl1—Cu1—N3—C2193.6 (4)C7—C10—C16—C1160.6 (5)
Cl2i—Cu1—N3—C21107.2 (4)C21—N3—C17—C180.4 (8)
Cl2—Cu1—N3—C2117.7 (4)Cu1—N3—C17—C18177.2 (5)
N3—Cu1—N4—C116.7 (9)N3—C17—C18—C192.1 (9)
Cl1—Cu1—N4—C198.5 (4)C17—C18—C19—C203.2 (8)
Cl2i—Cu1—N4—C160.2 (3)C17—C18—C19—C22170.9 (5)
Cl2—Cu1—N4—C1150.1 (3)C18—C19—C20—C211.9 (8)
N3—Cu1—N4—C5160.5 (6)C22—C19—C20—C21172.4 (4)
Cl1—Cu1—N4—C578.8 (4)C17—N3—C21—C201.8 (7)
Cl2i—Cu1—N4—C5122.6 (4)Cu1—N3—C21—C20175.6 (4)
Cl2—Cu1—N4—C532.7 (4)C19—C20—C21—N30.7 (8)
C5—N4—C1—C20.5 (7)C23—N2—C22—O15.3 (9)
Cu1—N4—C1—C2176.9 (4)C23—N2—C22—C19172.0 (5)
N4—C1—C2—C31.8 (8)C18—C19—C22—O1127.1 (6)
C1—C2—C3—C41.0 (7)C20—C19—C22—O146.9 (8)
C1—C2—C3—C6178.9 (4)C18—C19—C22—N250.4 (7)
C2—C3—C4—C50.8 (7)C20—C19—C22—N2135.6 (5)
C6—C3—C4—C5176.8 (4)C22—N2—C23—C2661.0 (6)
C1—N4—C5—C41.4 (7)C22—N2—C23—C25179.7 (5)
Cu1—N4—C5—C4178.6 (3)C22—N2—C23—C2461.0 (6)
C3—C4—C5—N42.1 (7)N2—C23—C24—C30179.4 (4)
C7—N1—C6—O20.7 (7)C26—C23—C24—C3058.8 (5)
C7—N1—C6—C3177.9 (4)C25—C23—C24—C3061.0 (5)
C4—C3—C6—O2162.0 (5)N2—C23—C25—C28179.4 (4)
C2—C3—C6—O215.7 (6)C26—C23—C25—C2859.8 (5)
C4—C3—C6—N115.3 (7)C24—C23—C25—C2860.5 (5)
C2—C3—C6—N1167.1 (4)N2—C23—C26—C32178.0 (4)
C6—N1—C7—C1065.9 (5)C25—C23—C26—C3259.6 (5)
C6—N1—C7—C8174.3 (4)C24—C23—C26—C3259.6 (5)
C6—N1—C7—C956.5 (6)C23—C25—C28—C2959.7 (5)
N1—C7—C8—C12179.5 (4)C23—C25—C28—C2760.0 (5)
C10—C7—C8—C1259.6 (5)C32—C27—C28—C2959.7 (5)
C9—C7—C8—C1260.0 (5)C32—C27—C28—C2560.5 (5)
N1—C7—C9—C14178.4 (4)C25—C28—C29—C3058.4 (5)
C10—C7—C9—C1458.4 (5)C27—C28—C29—C3061.1 (5)
C8—C7—C9—C1461.0 (5)C28—C29—C30—C2459.1 (6)
N1—C7—C10—C16178.4 (4)C28—C29—C30—C3160.6 (5)
C8—C7—C10—C1659.8 (5)C23—C24—C30—C2960.8 (5)
C9—C7—C10—C1658.7 (5)C23—C24—C30—C3158.5 (5)
C7—C8—C12—C1360.1 (5)C29—C30—C31—C3259.4 (5)
C7—C8—C12—C1159.1 (5)C24—C30—C31—C3260.5 (5)
C16—C11—C12—C1360.5 (5)C30—C31—C32—C2759.1 (5)
C16—C11—C12—C859.5 (5)C30—C31—C32—C2661.1 (5)
C8—C12—C13—C1459.0 (5)C28—C27—C32—C3159.1 (5)
C11—C12—C13—C1460.3 (5)C28—C27—C32—C2660.8 (5)
C7—C9—C14—C1558.5 (5)C23—C26—C32—C3160.5 (5)
C7—C9—C14—C1361.4 (5)C23—C26—C32—C2760.4 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.352.969 (5)129
N2—H2A···Cl1ii0.862.663.499 (4)165
O1W—H1WA···O1Wiii0.832.223.00 (4)159
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C16H20N2O)4]·0.5H2O
Mr1303.25
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.739 (4), 11.149 (6), 21.814 (12)
α, β, γ (°)92.221 (6), 95.993 (8), 96.727 (9)
V3)1616.6 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.779, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
16110, 6320, 4988
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.197, 1.06
No. of reflections6320
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.77

Computer programs: CrystalClear (Rigaku, 2005), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.352.969 (5)129
N2—H2A···Cl1ii0.862.663.499 (4)165
O1W—H1WA···O1Wiii0.832.223.00 (4)159
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Doctoral Foundation of SEU, People's Republic of China.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011a). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011b). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011c). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds