metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2-carb­­oxy-5-nitro­benzoato-κ2O1:O1)bis­­[(2,2′-bi­pyridine-κ2N:N′)chloridocopper(II)] dihydrate

aDepartment of Chemistry, Mudanjiang Normal College, Mudanjiang 157012, People's Republic of China
*Correspondence e-mail: wanghui1006@126.com

(Received 11 October 2011; accepted 6 November 2011; online 7 January 2012)

The asymmetric unit of the title complex, [Cu2(C8H4NO6)2Cl2(C10H8N2)2]·2H2O, contains two half binuclear complex molecules and two solvent water molecules; the complete complex molecule is generated by the application of a centre of inversion in each case. Each independent CuII cation is penta-coordinated within a distorted square-pyramidal environment defined by a two μ2-O atoms (derived from two 2-carboxy-5-nitrobenzoato anions), two N atoms (bipyridine ligand) and one Cl. Binuclear species are assembled into a two-dimensional supramolecular architecture parallel to (01[\overline1]) by O—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For an introduction to coordination polymers, see Chen et al. (2001[Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021-1023.]); Wang et al.(2009b[Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L. F., Ni, Z. H., Tian, L. & Jiang, J. (2009b). Cryst. Growth Des. 9, 5273-5282.]). For a related structure, see: Wang (2009a[Wang, H. (2009a). Acta Cryst. E65, m1490.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H4NO6)2Cl2(C10H8N2)2]·2H2O

  • Mr = 966.62

  • Triclinic, [P \overline 1]

  • a = 9.1090 (12) Å

  • b = 12.3571 (17) Å

  • c = 17.024 (2) Å

  • α = 92.684 (2)°

  • β = 101.551 (2)°

  • γ = 92.493 (2)°

  • V = 1872.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.854, Tmax = 0.899

  • 13021 measured reflections

  • 6505 independent reflections

  • 4541 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.149

  • S = 1.05

  • 6505 reflections

  • 555 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.27 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O14i 0.82 1.87 2.664 (6) 164
O12—H12A⋯O13 0.82 2.03 2.611 (8) 127
O13—H1W⋯O14 0.83 (1) 2.64 (5) 3.229 (7) 129 (5)
O13—H2W⋯Cl1ii 0.84 (1) 2.34 (2) 3.168 (5) 169 (8)
O14—H3W⋯O11 0.83 (1) 2.20 (3) 2.992 (7) 158 (8)
O14—H4W⋯O5ii 0.83 (1) 2.30 (5) 3.010 (6) 143 (7)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Imapct GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the field of supramolecular chemistry and crystal engineering, the design and synthesis of coordination polymers have been emerging as an ongoing field owing to their structural aesthetics and topologies as well as diverse functional properties (Chen et al., 2001). Thus far, significant advance achieved in this field has led to a lot of promising materials through the self-assembly of organic ligands and metal ions. Nevertheless, it still remains a great and long-term challenge to exactly predict the molecular structure and functional properties of coordination polymers because of many subtle factors involved in the crystallization process (Wang et al., 2009b). As an extension of our work focusing on the assembly of the mixed ligands in the presence of metal ions, the title compound (I) was synthesized and characterized by x-ray diffraction (Fig. 1).

Compound (I) crystallizes in the triclinic system with two half complex binuclear molecules and two water molecules in the asymmetric unit. Each copper(II) ion is penta-coordinated exhibiting a distorted square-pyramidal coordination sphere. Cu—O and Cu—N bond lengths are in the normal range if compared with those of reported compounds containing O—Cu—N segments (Wang, 2009a). Adjacent dinuclear species are assembled into a two-dimensional supramolecular framework by O–H···O and O–H···Cl hydrogen bonds (Fig. 2).

Related literature top

For an introduction to coordination polymers, see Chen et al. (2001); Wang et al.(2009b). For a related structure, see: Wang (2009a).

Experimental top

A mixture of CuCl2 (0.027 g, 0.2 mmol), 2,2'-bipyridine (0.032 g, 0.2 mmol), 4-nitro-phthalic acid (0.042 g, 0.2 mmol), and H2O (15 ml) was sealed in a 25 ml Teflon-lined stainless steel reactor which was heated to 115°C. Blue block-shaped crystals suitable for X-ray diffraction analysis were separated by filtration (yield: 0.023 g, 24% based on 4-nitro-phthalic acid).

Refinement top

All non-solvate and non-carboxy H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The command 'DFIX' has been used to restrain the distance of H—O in the water solvate and carboxyl groups as well as bonds C19—C24 and C24—C23. The 'DELU' instruction has been used to restrain the displacement parameters of C19, C24, and C23) .

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the supramolecular structure of (I) (Brandenburg, 2005).
Bis(µ-2-carboxy-5-nitrobenzoato-κ2O1:O1)bis[(2,2'- bipyridine-κ2N:N')chloridocopper(II)] dihydrate top
Crystal data top
[Cu2(C8H4NO6)2Cl2(C10H8N2)2]·2H2OZ = 2
Mr = 966.62F(000) = 980
Triclinic, P1Dx = 1.714 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1090 (12) ÅCell parameters from 2695 reflections
b = 12.3571 (17) Åθ = 2.3–22.0°
c = 17.024 (2) ŵ = 1.36 mm1
α = 92.684 (2)°T = 293 K
β = 101.551 (2)°Block, blue
γ = 92.493 (2)°0.12 × 0.10 × 0.08 mm
V = 1872.6 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6505 independent reflections
Radiation source: fine-focus sealed tube4541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.1°
phi and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.854, Tmax = 0.899l = 2020
13021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.7569P]
where P = (Fo2 + 2Fc2)/3
6505 reflections(Δ/σ)max = 0.041
555 parametersΔρmax = 1.27 e Å3
12 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2(C8H4NO6)2Cl2(C10H8N2)2]·2H2Oγ = 92.493 (2)°
Mr = 966.62V = 1872.6 (4) Å3
Triclinic, P1Z = 2
a = 9.1090 (12) ÅMo Kα radiation
b = 12.3571 (17) ŵ = 1.36 mm1
c = 17.024 (2) ÅT = 293 K
α = 92.684 (2)°0.12 × 0.10 × 0.08 mm
β = 101.551 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6505 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4541 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.899Rint = 0.036
13021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05212 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.27 e Å3
6505 reflectionsΔρmin = 0.47 e Å3
555 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

two quite high residual electron density

Explain

The two high residual Q peaks with electron density with 1.27 and 1.22, respectively, are located near the 4-nitrophthalic acid framework, which may be the ghost peaks. This is possible caused due to the poor crystal quality.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5338 (6)0.0982 (4)1.0871 (3)0.0387 (12)
C20.4007 (7)0.0423 (5)1.0863 (3)0.0497 (15)
H20.39430.01401.12000.060*
C30.2752 (7)0.0735 (4)1.0329 (3)0.0479 (14)
H30.18330.03651.03100.057*
C40.2821 (6)0.1574 (4)0.9825 (3)0.0403 (12)
C50.4219 (6)0.2133 (4)0.9861 (3)0.0346 (11)
C60.5477 (6)0.1831 (4)1.0392 (3)0.0398 (12)
H60.64020.21981.04240.048*
C70.4519 (5)0.3035 (4)0.9327 (3)0.0343 (11)
C80.1464 (6)0.1917 (5)0.9273 (3)0.0487 (14)
C90.8608 (5)0.6408 (4)0.9097 (3)0.0417 (13)
H90.91220.60380.95220.050*
C100.9382 (6)0.7197 (5)0.8777 (3)0.0492 (14)
H101.04060.73430.89650.059*
C110.8582 (7)0.7770 (5)0.8163 (4)0.0567 (16)
H110.90680.83220.79430.068*
C120.7096 (6)0.7528 (4)0.7883 (3)0.0463 (14)
H120.65600.79030.74680.056*
C130.6397 (6)0.6717 (4)0.8223 (3)0.0355 (12)
C140.4773 (5)0.6390 (4)0.7981 (3)0.0344 (11)
C150.3784 (6)0.6848 (4)0.7381 (3)0.0452 (13)
H150.41220.73850.70860.054*
C160.2298 (7)0.6503 (5)0.7225 (3)0.0537 (15)
H160.16190.68080.68250.064*
C170.1818 (6)0.5702 (5)0.7664 (4)0.0525 (15)
H170.08130.54610.75660.063*
C180.2852 (6)0.5264 (4)0.8252 (3)0.0413 (13)
H180.25290.47210.85480.050*
C190.7153 (6)0.5993 (5)0.5270 (4)0.0615 (17)
C200.6265 (6)0.6901 (4)0.5381 (4)0.0524 (15)
H200.64890.73590.58430.063*
C210.5074 (5)0.7060 (4)0.4773 (3)0.0400 (13)
C220.4773 (7)0.6359 (4)0.4087 (4)0.0494 (15)
C230.5622 (7)0.5498 (5)0.4014 (4)0.0675 (18)
H230.53860.50340.35550.081*
C240.6809 (7)0.5306 (5)0.4601 (4)0.0683 (18)
H240.73830.47120.45480.082*
C250.4042 (5)0.7933 (4)0.4948 (3)0.0375 (12)
C260.3525 (7)0.6563 (5)0.3404 (4)0.0560 (16)
C270.3086 (6)1.1676 (4)0.6747 (3)0.0393 (12)
H270.39391.14370.70750.047*
C280.2334 (6)1.2493 (4)0.7041 (3)0.0462 (14)
H280.26731.28000.75580.055*
C290.1083 (6)1.2848 (4)0.6561 (3)0.0468 (14)
H290.05551.33970.67490.056*
C300.0608 (6)1.2382 (4)0.5794 (3)0.0413 (13)
H300.02451.26130.54610.050*
C310.1409 (5)1.1571 (4)0.5525 (3)0.0287 (10)
C320.1032 (5)1.1024 (4)0.4714 (3)0.0282 (10)
C330.0218 (5)1.1238 (4)0.4139 (3)0.0365 (12)
H330.08861.17440.42500.044*
C340.0444 (6)1.0686 (4)0.3402 (3)0.0428 (13)
H340.12751.08150.30090.051*
C350.0546 (6)0.9947 (4)0.3246 (3)0.0443 (13)
H350.04090.95770.27470.053*
C360.1748 (6)0.9764 (4)0.3845 (3)0.0406 (12)
H360.24230.92590.37410.049*
Cl10.78986 (14)0.41119 (12)0.98373 (9)0.0513 (4)
Cl20.48929 (17)0.94718 (12)0.66912 (8)0.0550 (4)
Cu10.59103 (6)0.50284 (5)0.92407 (3)0.03410 (19)
Cu20.36310 (6)1.00231 (5)0.55154 (3)0.03154 (18)
N10.7149 (4)0.6149 (3)0.8824 (2)0.0337 (9)
N20.4303 (4)0.5595 (3)0.8412 (2)0.0343 (9)
N30.6704 (6)0.0644 (4)1.1394 (3)0.0534 (12)
N40.8394 (7)0.5799 (6)0.5897 (4)0.0879 (19)
N50.2640 (4)1.1214 (3)0.6011 (2)0.0308 (9)
N60.1989 (4)1.0280 (3)0.4569 (2)0.0310 (9)
O10.7845 (6)0.1239 (4)1.1487 (3)0.0887 (16)
O20.6673 (5)0.0224 (4)1.1707 (2)0.0695 (13)
O30.0252 (5)0.1282 (4)0.9260 (3)0.0770 (14)
H3A0.04770.15400.89830.116*
O40.1475 (4)0.2682 (3)0.8860 (2)0.0548 (10)
O50.4886 (4)0.2789 (3)0.8685 (2)0.0519 (10)
O60.4541 (4)0.4004 (2)0.96305 (19)0.0347 (8)
O70.9139 (7)0.4957 (5)0.5801 (4)0.134 (3)
O80.8725 (6)0.6481 (5)0.6464 (4)0.109 (2)
O90.4530 (4)0.8915 (2)0.49221 (19)0.0348 (8)
O100.2880 (4)0.7654 (3)0.5148 (3)0.0580 (11)
O110.3023 (5)0.7424 (4)0.3291 (3)0.0736 (13)
O120.3072 (7)0.5694 (4)0.2920 (3)0.0926 (17)
H12A0.21520.56410.28130.139*
O130.0783 (6)0.5905 (4)0.1749 (3)0.0776 (14)
O140.2367 (6)0.8268 (4)0.1645 (3)0.0733 (13)
H1W0.075 (9)0.6551 (19)0.191 (4)0.110*
H2W0.125 (8)0.589 (5)0.137 (3)0.110*
H3W0.235 (9)0.792 (5)0.205 (3)0.110*
H4W0.285 (8)0.795 (5)0.135 (3)0.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.029 (3)0.033 (3)0.009 (2)0.008 (2)0.004 (2)
C20.066 (4)0.039 (3)0.046 (3)0.004 (3)0.014 (3)0.013 (3)
C30.053 (4)0.039 (3)0.056 (4)0.010 (3)0.021 (3)0.012 (3)
C40.047 (3)0.036 (3)0.038 (3)0.001 (2)0.009 (2)0.002 (2)
C50.047 (3)0.024 (3)0.035 (3)0.003 (2)0.014 (2)0.000 (2)
C60.045 (3)0.032 (3)0.044 (3)0.001 (2)0.009 (2)0.006 (2)
C70.031 (3)0.041 (3)0.029 (3)0.004 (2)0.000 (2)0.009 (2)
C80.044 (3)0.053 (4)0.050 (3)0.007 (3)0.015 (3)0.001 (3)
C90.030 (3)0.045 (3)0.049 (3)0.005 (2)0.003 (2)0.018 (3)
C100.031 (3)0.055 (4)0.063 (4)0.000 (3)0.009 (3)0.019 (3)
C110.055 (4)0.056 (4)0.065 (4)0.001 (3)0.020 (3)0.026 (3)
C120.042 (3)0.051 (4)0.050 (3)0.011 (3)0.013 (3)0.027 (3)
C130.040 (3)0.038 (3)0.031 (3)0.014 (2)0.010 (2)0.011 (2)
C140.037 (3)0.034 (3)0.032 (3)0.010 (2)0.003 (2)0.005 (2)
C150.052 (4)0.038 (3)0.045 (3)0.007 (3)0.002 (3)0.017 (2)
C160.048 (4)0.051 (4)0.055 (4)0.008 (3)0.011 (3)0.020 (3)
C170.039 (3)0.049 (4)0.063 (4)0.001 (3)0.005 (3)0.004 (3)
C180.039 (3)0.044 (3)0.040 (3)0.003 (3)0.004 (2)0.010 (2)
C190.042 (4)0.057 (4)0.088 (4)0.013 (3)0.010 (3)0.042 (3)
C200.037 (3)0.036 (3)0.091 (5)0.008 (3)0.023 (3)0.023 (3)
C210.028 (3)0.023 (3)0.074 (4)0.006 (2)0.019 (3)0.018 (3)
C220.060 (4)0.022 (3)0.076 (4)0.007 (3)0.036 (3)0.007 (3)
C230.076 (5)0.057 (4)0.078 (4)0.021 (4)0.028 (3)0.013 (3)
C240.075 (5)0.049 (4)0.093 (5)0.020 (3)0.043 (4)0.006 (3)
C250.027 (3)0.036 (3)0.052 (3)0.006 (2)0.009 (2)0.007 (2)
C260.067 (4)0.050 (4)0.056 (4)0.000 (3)0.026 (3)0.000 (3)
C270.034 (3)0.045 (3)0.037 (3)0.003 (2)0.001 (2)0.010 (2)
C280.050 (3)0.047 (3)0.042 (3)0.006 (3)0.011 (3)0.001 (3)
C290.053 (4)0.042 (3)0.047 (3)0.017 (3)0.015 (3)0.006 (3)
C300.035 (3)0.044 (3)0.047 (3)0.013 (2)0.009 (2)0.006 (2)
C310.024 (2)0.029 (3)0.035 (3)0.003 (2)0.009 (2)0.007 (2)
C320.029 (3)0.025 (2)0.035 (3)0.005 (2)0.012 (2)0.013 (2)
C330.030 (3)0.044 (3)0.038 (3)0.012 (2)0.008 (2)0.014 (2)
C340.038 (3)0.054 (4)0.035 (3)0.009 (3)0.001 (2)0.012 (2)
C350.049 (3)0.050 (3)0.032 (3)0.001 (3)0.004 (2)0.001 (2)
C360.043 (3)0.040 (3)0.042 (3)0.010 (2)0.013 (2)0.002 (2)
Cl10.0335 (7)0.0585 (9)0.0638 (9)0.0120 (6)0.0058 (6)0.0327 (7)
Cl20.0630 (10)0.0602 (9)0.0447 (8)0.0299 (7)0.0074 (7)0.0236 (7)
Cu10.0295 (3)0.0381 (4)0.0360 (4)0.0055 (3)0.0059 (3)0.0163 (3)
Cu20.0292 (3)0.0324 (4)0.0349 (3)0.0129 (3)0.0068 (3)0.0097 (3)
N10.031 (2)0.039 (2)0.033 (2)0.0112 (19)0.0072 (18)0.0143 (18)
N20.034 (2)0.035 (2)0.035 (2)0.0071 (19)0.0057 (18)0.0123 (18)
N30.066 (4)0.047 (3)0.046 (3)0.003 (3)0.007 (3)0.009 (2)
N40.072 (4)0.083 (5)0.101 (5)0.010 (4)0.004 (4)0.007 (4)
N50.032 (2)0.030 (2)0.032 (2)0.0061 (18)0.0064 (18)0.0088 (17)
N60.031 (2)0.026 (2)0.037 (2)0.0084 (17)0.0067 (18)0.0066 (18)
O10.066 (3)0.090 (4)0.101 (4)0.005 (3)0.013 (3)0.047 (3)
O20.095 (4)0.059 (3)0.055 (3)0.013 (3)0.010 (2)0.023 (2)
O30.048 (3)0.087 (4)0.093 (4)0.013 (3)0.002 (2)0.037 (3)
O40.047 (2)0.056 (3)0.063 (3)0.004 (2)0.010 (2)0.021 (2)
O50.069 (3)0.051 (2)0.038 (2)0.001 (2)0.0162 (19)0.0067 (18)
O60.039 (2)0.0252 (19)0.0415 (19)0.0053 (15)0.0096 (15)0.0077 (15)
O70.138 (5)0.086 (4)0.156 (6)0.077 (4)0.038 (4)0.006 (4)
O80.079 (4)0.097 (4)0.131 (5)0.028 (3)0.029 (3)0.015 (4)
O90.0365 (19)0.0251 (19)0.045 (2)0.0093 (15)0.0118 (15)0.0056 (15)
O100.038 (2)0.042 (2)0.101 (3)0.0041 (18)0.030 (2)0.001 (2)
O110.090 (4)0.050 (3)0.075 (3)0.022 (3)0.001 (3)0.007 (2)
O120.127 (5)0.056 (3)0.086 (4)0.003 (3)0.006 (3)0.018 (3)
O130.095 (4)0.061 (3)0.082 (4)0.008 (3)0.030 (3)0.004 (3)
O140.059 (3)0.082 (3)0.084 (4)0.012 (2)0.019 (3)0.024 (3)
Geometric parameters (Å, º) top
C1—C21.366 (7)C24—H240.9300
C1—C61.375 (7)C25—O101.216 (6)
C1—N31.466 (7)C25—O91.280 (6)
C2—C31.392 (8)C26—O111.186 (7)
C2—H20.9300C26—O121.321 (7)
C3—C41.384 (7)C27—N51.330 (6)
C3—H30.9300C27—C281.375 (7)
C4—C51.411 (7)C27—H270.9300
C4—C81.487 (8)C28—C291.364 (8)
C5—C61.388 (7)C28—H280.9300
C5—C71.520 (6)C29—C301.381 (7)
C6—H60.9300C29—H290.9300
C7—O51.233 (6)C30—C311.378 (6)
C7—O61.279 (6)C30—H300.9300
C8—O41.206 (6)C31—N51.358 (6)
C8—O31.322 (6)C31—C321.478 (6)
C9—N11.336 (6)C32—N61.341 (6)
C9—C101.374 (7)C32—C331.388 (6)
C9—H90.9300C33—C341.373 (7)
C10—C111.392 (8)C33—H330.9300
C10—H100.9300C34—C351.364 (7)
C11—C121.357 (8)C34—H340.9300
C11—H110.9300C35—C361.373 (7)
C12—C131.375 (7)C35—H350.9300
C12—H120.9300C36—N61.335 (6)
C13—N11.356 (6)C36—H360.9300
C13—C141.487 (7)Cl1—Cu12.2680 (14)
C14—N21.358 (6)Cl2—Cu22.2509 (14)
C14—C151.380 (7)Cu1—O61.968 (3)
C15—C161.371 (7)Cu1—N11.992 (4)
C15—H150.9300Cu1—N21.995 (4)
C16—C171.375 (8)Cu1—O6i2.331 (3)
C16—H160.9300Cu2—O91.966 (3)
C17—C181.379 (7)Cu2—N51.999 (4)
C17—H170.9300Cu2—N62.014 (4)
C18—N21.337 (6)Cu2—O9ii2.341 (3)
C18—H180.9300N3—O21.222 (6)
C19—C241.363 (7)N3—O11.226 (6)
C19—N41.427 (8)N4—O81.233 (8)
C19—C201.439 (8)N4—O71.288 (8)
C20—C211.369 (8)O3—H3A0.8200
C20—H200.9300O6—Cu1i2.331 (3)
C21—C221.395 (8)O9—Cu2ii2.341 (3)
C21—C251.519 (7)O12—H12A0.8200
C22—C231.358 (8)O13—H1W0.834 (10)
C22—C261.493 (9)O13—H2W0.838 (10)
C23—C241.356 (7)O14—H3W0.834 (10)
C23—H230.9300O14—H4W0.831 (10)
C2—C1—C6123.3 (5)N5—C27—C28122.5 (5)
C2—C1—N3118.9 (5)N5—C27—H27118.7
C6—C1—N3117.8 (5)C28—C27—H27118.7
C1—C2—C3117.1 (5)C29—C28—C27119.0 (5)
C1—C2—H2121.5C29—C28—H28120.5
C3—C2—H2121.5C27—C28—H28120.5
C4—C3—C2122.4 (5)C28—C29—C30119.3 (5)
C4—C3—H3118.8C28—C29—H29120.3
C2—C3—H3118.8C30—C29—H29120.3
C3—C4—C5118.4 (5)C31—C30—C29119.5 (5)
C3—C4—C8121.8 (5)C31—C30—H30120.2
C5—C4—C8119.8 (5)C29—C30—H30120.2
C6—C5—C4119.7 (5)N5—C31—C30120.7 (4)
C6—C5—C7114.7 (4)N5—C31—C32114.7 (4)
C4—C5—C7125.6 (4)C30—C31—C32124.6 (4)
C1—C6—C5119.2 (5)N6—C32—C33121.6 (4)
C1—C6—H6120.4N6—C32—C31114.8 (4)
C5—C6—H6120.4C33—C32—C31123.7 (4)
O5—C7—O6124.9 (5)C34—C33—C32118.4 (5)
O5—C7—C5118.6 (5)C34—C33—H33120.8
O6—C7—C5116.0 (4)C32—C33—H33120.8
O4—C8—O3123.2 (6)C35—C34—C33120.2 (5)
O4—C8—C4123.3 (5)C35—C34—H34119.9
O3—C8—C4113.5 (5)C33—C34—H34119.9
N1—C9—C10122.9 (5)C34—C35—C36118.4 (5)
N1—C9—H9118.6C34—C35—H35120.8
C10—C9—H9118.6C36—C35—H35120.8
C9—C10—C11117.7 (5)N6—C36—C35122.8 (5)
C9—C10—H10121.1N6—C36—H36118.6
C11—C10—H10121.1C35—C36—H36118.6
C12—C11—C10120.3 (5)O6—Cu1—N1175.05 (14)
C12—C11—H11119.9O6—Cu1—N294.41 (15)
C10—C11—H11119.9N1—Cu1—N281.37 (16)
C11—C12—C13118.9 (5)O6—Cu1—Cl190.06 (10)
C11—C12—H12120.6N1—Cu1—Cl194.74 (11)
C13—C12—H12120.6N2—Cu1—Cl1162.02 (12)
N1—C13—C12122.0 (5)O6—Cu1—O6i78.33 (13)
N1—C13—C14114.0 (4)N1—Cu1—O6i99.69 (14)
C12—C13—C14124.0 (4)N2—Cu1—O6i98.93 (14)
N2—C14—C15121.1 (5)Cl1—Cu1—O6i99.03 (9)
N2—C14—C13114.4 (4)O9—Cu2—N5174.18 (14)
C15—C14—C13124.5 (5)O9—Cu2—N693.77 (14)
C16—C15—C14119.4 (5)N5—Cu2—N681.05 (15)
C16—C15—H15120.3O9—Cu2—Cl290.70 (10)
C14—C15—H15120.3N5—Cu2—Cl295.02 (11)
C15—C16—C17119.6 (5)N6—Cu2—Cl2162.80 (12)
C15—C16—H16120.2O9—Cu2—O9ii79.29 (13)
C17—C16—H16120.2N5—Cu2—O9ii98.40 (13)
C16—C17—C18118.8 (5)N6—Cu2—O9ii94.85 (13)
C16—C17—H17120.6Cl2—Cu2—O9ii102.30 (9)
C18—C17—H17120.6C9—N1—C13118.2 (4)
N2—C18—C17122.2 (5)C9—N1—Cu1126.5 (3)
N2—C18—H18118.9C13—N1—Cu1115.3 (3)
C17—C18—H18118.9C18—N2—C14118.9 (4)
C24—C19—N4120.0 (6)C18—N2—Cu1126.2 (3)
C24—C19—C20121.8 (6)C14—N2—Cu1114.9 (3)
N4—C19—C20118.2 (6)O2—N3—O1122.5 (5)
C21—C20—C19116.8 (6)O2—N3—C1119.2 (5)
C21—C20—H20121.6O1—N3—C1118.3 (5)
C19—C20—H20121.6O8—N4—O7124.9 (7)
C20—C21—C22120.1 (5)O8—N4—C19117.6 (7)
C20—C21—C25115.7 (5)O7—N4—C19117.3 (7)
C22—C21—C25123.8 (5)C27—N5—C31119.0 (4)
C23—C22—C21121.2 (6)C27—N5—Cu2126.4 (3)
C23—C22—C26118.5 (6)C31—N5—Cu2114.6 (3)
C21—C22—C26120.2 (5)C36—N6—C32118.6 (4)
C22—C23—C24120.8 (7)C36—N6—Cu2126.6 (3)
C22—C23—H23119.6C32—N6—Cu2114.7 (3)
C24—C23—H23119.6C8—O3—H3A109.5
C23—C24—C19119.3 (6)C7—O6—Cu1113.7 (3)
C23—C24—H24120.4C7—O6—Cu1i141.6 (3)
C19—C24—H24120.4Cu1—O6—Cu1i101.67 (13)
O10—C25—O9125.3 (5)C25—O9—Cu2116.4 (3)
O10—C25—C21118.3 (4)C25—O9—Cu2ii142.6 (3)
O9—C25—C21116.2 (4)Cu2—O9—Cu2ii100.71 (13)
O11—C26—O12123.2 (6)C26—O12—H12A109.5
O11—C26—C22123.6 (6)H1W—O13—H2W108 (3)
O12—C26—C22113.1 (6)H3W—O14—H4W110 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O14iii0.821.872.664 (6)164
O12—H12A···O130.822.032.611 (8)127
O13—H1W···O140.83 (1)2.64 (5)3.229 (7)129 (5)
O13—H2W···Cl1iv0.84 (1)2.34 (2)3.168 (5)169 (8)
O14—H3W···O110.83 (1)2.20 (3)2.992 (7)158 (8)
O14—H4W···O5iv0.83 (1)2.30 (5)3.010 (6)143 (7)
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H4NO6)2Cl2(C10H8N2)2]·2H2O
Mr966.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1090 (12), 12.3571 (17), 17.024 (2)
α, β, γ (°)92.684 (2), 101.551 (2), 92.493 (2)
V3)1872.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.854, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
13021, 6505, 4541
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.05
No. of reflections6505
No. of parameters555
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 0.47

Computer programs: SMART (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O14i0.821.872.664 (6)163.9
O12—H12A···O130.822.032.611 (8)127.3
O13—H1W···O140.83 (1)2.64 (5)3.229 (7)129 (5)
O13—H2W···Cl1ii0.84 (1)2.34 (2)3.168 (5)169 (8)
O14—H3W···O110.83 (1)2.20 (3)2.992 (7)158 (8)
O14—H4W···O5ii0.83 (1)2.30 (5)3.010 (6)143 (7)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Imapct GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. (2009a). Acta Cryst. E65, m1490.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L. F., Ni, Z. H., Tian, L. & Jiang, J. (2009b). Cryst. Growth Des. 9, 5273–5282.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds